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Abstract

Assessing human exposures to chemicals in consumer products requires composition information. 

However, comprehensive composition data for products in commerce are not generally available. 

Many consumer products have reported ingredient lists that are constructed using specific 

guidelines. A probabilistic model was developed to estimate quantitative weight fraction (WF) 

values that are consistent with the rank of an ingredient in the list, the number of reported 

ingredients, and labeling rules. The model provides the mean, median, and 95% upper and lower 

confidence limit WFs for ingredients of any rank in lists of any length. WFs predicted by the 

model compared favorably with those reported on Material Safety Data Sheets. Predictions for 

chemicals known to provide specific functions in products were also found to reasonably agree 

with reported WFs. The model was applied to a selection of publicly available ingredient lists, 

thereby estimating WFs for 1293 unique ingredients in 1123 products in 81 product categories. 

Predicted WFs, although less precise than reported values, can be estimated for large numbers of 

product–chemical combinations and thus provide a useful source of data for high-throughput or 

screening-level exposure assessments.

Introduction

Performing any assessment of human exposure to chemicals in consumer products requires 

both a knowledge of the types of products in which chemicals are found and quantitative 

estimates of their concentrations (i.e., weight fractions, WFs). Such data are needed to 

inform aggregate (e.g., multi-pathway, multi-route, and multi-source) 

assessments1,2,3,4,5,6. Chemical ingredient information is also required to characterize 

likely mixtures of chemicals in support of estimation of cumulative exposures to substances 

having a common endpoint7,8. Finally, quantitative composition information is critical for 

characterizing the variability and uncertainty in human exposure estimates used in risk 

evaluations. The recent National Academies of Sciences report ‘Using 21st Century Science 
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to Improve Risk-Related Evaluations’ notes that uncertainty in chemical source information 

such as product composition is a major obstacle to exposure estimation6 and paucity of 

concentration data has been identified as a significant data gap in exposure assessments of 

consumer product chemicals.9,10,11 However, manufacturers in the U.S. are not required to 

disclose the WFs of specific ingredients in consumer products except in the case of active 

ingredients in certain products12 or in the case of chemicals with known health hazards 

covered by the Occupational Safety and Health Administration’s Hazard Communication 

Standard.13

Researchers have attempted to fill gaps in product ingredient data. The U.S. Environmental 

Protection Agency (EPA) developed an extensive database of information on the use of 

chemicals (including use in products) curated from multiple online secondary data sources.

14Goldsmith et al.15 collected product composition data from publicly available Material 

Safety Data Sheets (MSDS). Chevillotte et al.11developed methods for predicting chemical 

composition of products using generic ingredient information and patent-based quantitative 

information. In this paper, we expand on these efforts and develop a model for predicting 

quantitative ranges of WFs for intentionally-added chemicals, based on information 

provided in ingredient lists on product labels. The approach is based on the fact that lists 

which follow labeling guidelines provide sufficient information to constrain the range of 

possible WF values for the ingredients.

Consumer products regulated by the U.S. Food and Drug Administration (FDA), including 

cosmetics and personal care products, must have labels that include ingredient lists 

established using the following requirements:12

1. All intentionally added ingredients must be listed unless they are claimed to be a 

trade secret. The name of an ingredient accepted by FDA as a trade secret need 

not be disclosed on the label. In lieu of declaring the name of that ingredient, the 

phrase “and other ingredients” is used at the end of the ingredient declaration.

2. Ingredients are listed in descending WF order, with the following exceptions:

1. If the product is considered to be a drug, then the active ingredients 

must be listed first and the WFs must be reported.

2. Ingredients with WFs below 0.01 can be listed in any order.

3. Color additives can be listed separately at the end of the list of 

ingredients and in any order.

3. Fragrance and flavor compounds may be declared individually by their 

appropriate label names or as “fragrance” and “flavor.” If a fragrance compound 

also serves as a flavor, it must be declared as “flavor and fragrance.”

Some manufacturers voluntarily provide ingredient data to the public for certain other 

product types. For example, the American Cleaning Institute (ACI) and the Canadian 

Consumer Specialty Products Association have organized their member companies to 

provide ingredient lists for cleaning, air care, floor maintenance, and automotive products. 

These lists are reported in a manner similar to FDA. Specifically, all ingredients are reported 

in descending order of WF and ingredients with WFs <0.01 may be reported in any order.16 
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Consumer product manufacturers may also provide online product disclosure sheets that list 

all ingredients in descending WF order.

We propose that the relationship between these labeling rules and possible values of 

ingredient WFs can be modeled using Monte Carlo techniques, and we present an algebraic 

model for predicting WF ranges for intentionally-added substances from ingredient lists. We 

use composition data previously collected by the US EPA 15,17 to select key model 

parameters. We apply the model to estimate WFs for 1293 unique ingredients in 1123 real 

products. The predictions are summarized by ingredient, product categories, and previously 

developed harmonized chemical function categories.17,18 The estimates were evaluated by 

comparing them to WFs reported on MSDS for similar products and functions. These 

methods can be applied to thousands of additional lists to fill gaps in existing information 

for high-throughput aggregate exposure assessments for chemical screening or prioritization.

Methods

All analyses were performed in R version 3.3.2 (ref. 19) or SAS version 9.4.20 We first 

developed a Monte Carlo model for lists in which all ingredients were reported and ranked 

according to decreasing WF. This method was then modified to address lists in which 

ingredients with WF <0.01 were randomly ordered. The two versions of the model (called 

Case 1 and Case 2) were required since both approaches are used by manufacturers to create 

ingredient lists that appear on product labeling. Finally, approaches were developed for 

addressing special cases wherein color additives, trade secret ingredients, or active 

ingredients were not reported in WF order. Simulation results were compared to an existing 

dataset of reported WF values. Optimal model assumptions were determined and predictions 

made for lists having various lengths.

Model for Ingredient Lists Ranked by Descending WF (Case 1)

The equations below describe WF values for ingredients in terms of an upper and lower 

bound. These bounds are a function of the number of reported ingredients in the product, the 

ingredient rank (position in the list), a minimum WF for intentionally added ingredients, and 

the total WF associated with unlisted components (e.g., contaminants or unreported 

substances).

We assume that intentionally added ingredients have a minimum plausible WF (WFm), 

based on the reasoning that performing an intended function requires some minimum 

concentration. We denote the ingredient rank in a list as i, where i=1 for the first ingredient 

and Nfor the last ingredient. For the first ingredient (i=1), the upper bound on WF 

(WF1,upper) is calculated by subtracting from the total product WF (WFtotal=1) the sum of: 

(1) the WF associated with all unreported substances (WFu) and (2) the WF associated with 

all other reported ingredients (i.e., those with rank >1). WF1,upper is determined when the 

total WF of the remaining ingredients is minimized (i.e., all of the remaining ingredients 

have WF=WFm). Thus:

WF1 ⋅ Upper = 1 − WFu + WFm N − 1 (1)
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The upper bounds for the remaining ingredients (WFi,upper, i ≠ 1) have two constraints. First, 

WFi,upper must be less than WFtotal minus the sum of: (1) WFu, (2) the WF associated with 

all remaining reported ingredients (as in Eq. (1)), and (3) the combined WF of all ingredients 

with rank < i (i.e., those before it in the list). Second, the value must be less than the WF 

value of the ingredient immediately before it on the list (i−1). Therefore:

WFi ⋅ Upper = min 1 − WFu + WFm N − i + ∑
j = 1

i − 1
WF j , WFi − 1 i ≠ 1 (2)

The lower limit on the WF for any ingredient i (WFi, lower) occurs when the sum of the WF 

for ingredients with rank >i is at a maximum value, which occurs when they are all equal to 

WFi, (as they cannot exceed WFi when the list is rank ordered based on WF). Thus 

WFi, lower can be estimated by dividing the remaining fraction of the product (once WFuand 

the sum of the WFs with higher rank are subtracted) by the number of remaining ingredients 

(N-i+1).

WFi ⋅ lower =
1 − WFu + ∑ j = 1

i − 1 WF j
N − i + 1 (3)

The distribution of WFi within its upper and lower bounds is

WFi = WFi ⋅ lower + X WFi ⋅ Upper − WFi ⋅ lower (4)

where X is a continuous random variable between 0 and 1, sampled from a distribution of a 

given shape (e.g., for a uniform distribution X∼U([0,1]). Valid combinations of WFu and 

WFm are constrained by the number of ingredients, N:

1 − WFu ≥ WFm × N (5)

In applying the model, a value WF1 is randomly selected from its range WF1,upper-WF1,lower 

(calculated with Eqs. (1) and (3)). The sampled WF1value is used to calculate the upper and 

lower bounds for WF2. The value of WF2 is determined by randomly sampling between its 

upper and lower bounds and then used to calculate bounds for WF3, and so on for all i. This 

entire process is repeated in a Monte Carlo manner, sampling many initial WF1 values. The 

result is a WF distribution for each ingredient in the product list, which can be characterized 

using metrics such as the mean, 50th percentile (median), lower 95% confidence limit 

(LCL), and upper 95% confidence limit (UCL).

As predicted WFs are a function of the total number of ingredients, separate runs of the 

model are required to assess ingredient lists of various lengths. The approach also requires 

that the user make assumptions for the values of WFm and WFu and shape of the distribution 
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X. An example result for a generic product with three ingredients is illustrated in Figure 1. 

The impacts of various assumptions for model inputs are explored below; however, it is 

useful to note that WFs for ingredients are particularly sensitive to WF1. The shape of the 

distribution X for WF1 has a dramatic effect on the WF distributions for the remaining 

ingredients. If WF1 is close to its upper bound, then the WFs of remaining ingredients must 

occur at very low levels. There are products where this occurs. For example, a liniment may 

contain an active ingredient at a small WF (e.g., 0.015 menthol) dissolved in a large amount 

of acetone (along with small amounts of fragrances, colorants, etc.). At the other extreme, if 

WF1 is at or near its lower bound, then the remaining compounds will occur at similar 

concentrations. The example of this phenomena is illustrated for a product with five 

ingredients in Figure 2.

Alterations to the WF Model for Case 2

The Monte Carlo model described above can be adjusted to account for labeling rules 

allowing ingredients below a given WF to be reported in a random order, for example, the 

0.01 WF threshold in the FDA guidelines and the ACI initiative (Case 2). To address this 

rule in each iteration of the Monte Carlo analysis, WFs for all ingredients are first calculated 

using Eqs. (1)–(5). The order of ingredients having a predicted WF less than the threshold is 

then randomly shuffled.

Addressing Special Types of Ingredients

Under the FDA rules, WFs for active ingredients are reported at the beginning of a list. In 

this case the value of WFu is increased to account for the WFs of the active ingredients (as it 

represents the fraction not accounted for by the ordered part of the list). The total number of 

ingredients is also reduced to Nnew=N−Nactive where Nactive is the number of active 

ingredients. The model is then applied to generate predictions for the remaining ingredients, 

resulting in point estimates for each of the active ingredients and distributions for the 

remaining ingredients.

As stated above, when ingredients meet the FDA criteria for a trade secret they are reported 

as “other ingredients” at the end of the list. In addition, color additives may be reported at 

the end of the list. In these cases, the assumed value of WFu can be revised to account for 

these additional ingredients (e.g., based on a priori knowledge of likely WFs).

Sensitivity Analyses and Selection of Model Parameters

The inputs to the model (WFm, WFu, and the shape X of the WF distribution between the 

upper and lower bounds) were selected here based on review of available data and sensitivity 

analyses. WF data curated by EPA from MSDS15, 17 were used to identify reasonable 

values for WFm and X. No empirical data were identified for selecting a value for WFu. A 

sensitivity analysis was performed to determine the impact of alternative assumptions for the 

three inputs. The WF model was used to generate distributions for “generic” ingredient lists 

of different lengths using the different assumptions; lists having 2–20 ingredients were 

modeled. Model predictions for both Case 1 and Case 2 were repeated assuming WFu=0, 

0.01, 0.05, 0.10, 0.25, and 0.50 for WFmassumptions of 10−9 and 10−3. WFu values were 

selected based on the assumption that chemicals in ingredient lists will reflect at least half of 

Isaacs et al. Page 5

J Expo Sci Environ Epidemiol. Author manuscript; available in PMC 2019 May 01.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



the weight; the two WFm values were the minimum and 5th percentile of midrange WF 

reported in the MSDS data. Ten thousand (10,000) Monte Carlo repetitions were performed 

for each simulation in order to resolve WF percentiles for all ingredients. Mean, median, 

LCL, and UCL statistics were calculated for each ingredient rank in each list. Reasonable 

values of WFm, WFu were selected based on these analyses.

The sensitivity analyses were repeated using uniform, symmetric triangular (mode=0.5), and 

high-weighted triangular (mode=1.0) random distributions for X (Supplementary Figure S1). 

These shapes were selected as they are the simplest examples of bounded distributions. 

Predictions from the WF model using each of the three shapes for Xwere compared against 

midrange ingredient WFs reported in the MSDS data for lists of different lengths. The 

MSDS WF data for individual products were somewhat incomplete since many sheets omit 

common substances with low toxicity (e.g., water). As result, the values of N and the 

rankings of individual ingredients for some products were uncertain. To minimize the impact 

of this uncertainty, only products with a sum reported midrange WF >0.6 were used to 

assess the selection of X. A total of 330 MSDS met these criteria; lists with 2–7 ingredients 

contained enough products (Nproducts > 4) to allow for comparison. Based on these 

comparisons, a recommended shape X was selected for the final model.

Application of the WF Model to Case Study Ingredient Lists

The WF model was applied in a case study using real ingredient lists obtained from online 

sources (e.g., from product ingredient disclosure sheets). Sources of data included: Arm and 

Hammer (www.armandhammer.com), n=35 products; Palmolive (www.palmolive.com), 

n=16; Procter and Gamble (www.pandg.com), n=226; and Unilever (www.unilever.com), 

n=846. The products in these lists were categorized via a set of product use categories 

(PUCs) (e.g., toothpaste and shampoo) developed for exposure modeling.1, 17 Where 

possible, chemicals were categorized according to their function in products (as in Isaacs et 

al.17 and Phillips et al.18) Details of the collection and curation of the lists and 

categorization of products and chemicals are given in the SI. In total, 1123 lists (containing 

24,228 individual ingredient observations and 1293 unique ingredient names) were 

collected.

Using selected values (see Results) for WFm, WFu, and X, the model was applied (10,000 

repetitions) to generate WFs for generic lists having 2–55 ingredients (the minimum and 

maximum N in the lists) using both Case 1 and 2 labeling rules. Each of the real products 

was then assigned a set of ingredient WF predictions matching its list length. Based on 

information provided on its ingredient disclosure sheets, lists obtained from Unilever were 

assigned Case 1 predictions (all ingredients were reported in descending order); all other 

lists were assumed to follow the ACI communication guidelines, and assigned Case 2 

predictions, as the sources were identified via the ACI communication initiative webpage.16

Lists having color additives noted at the end (14 products) were treated uniquely. The mean 

average WF associated with known colorants in personal care and household cleaning 

products in the MSDS database was 0.012 (N=1544); the median was 0.001, and the 95th 

percentile only 0.05. As changes in WFu below 0.1 were shown to have little effect on model 

predictions (see Results), unique model runs were not performed for these products. 
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However, the value of N was reduced to correct for the colorants not included in the rank-

ordered list.

The ultimate result was that each ingredient in each product was assigned median, LCL, and 

UCL WF predictions. These metrics were summarized by ingredient/chemical, by function 

(e.g., solvents), and by function within different PUCs (e.g., solvents in shampoo). These 

results were also compared with the MSDS data.

Results

Determination of WF Model Inputs

The impact of assuming different values of WFu for products having 2–20 ingredients is 

shown in Figure 3. In this case, X was assumed uniform and WFm was assumed to be 10−9. 

There was little impact of changing WFu at values of WFu < 0.1, as this value is small 

compared with the estimated WFs for ingredients with near the top of the list. As 

WFuincreases, WFs decrease, as the upper bound on WF1 becomes significantly decreased 

by WFu. These results imply that when WFuvalues are assumed to be quite low, estimates 

for most ingredients should be valid (i.e., only the most highly-ranked ingredients would be 

impacted by an incorrect assumption). Similar results were obtained for the other shapes of 

X (results not shown). Therefore, for further application of the model we chose a relatively 

small WFu (0.01).

The five runs illustrated in Figure 3 were repeated assuming WFm=0.001 (results not 

shown). Increasing WFm decreased predicted WF for ingredients at the top of the list 

slightly, as increasing WFm increases the lower bounds for ingredients. However, the 

differences in the predictions between the two tested WFm values were small. The maximum 

decrease in median WF for any ingredient was 0.015; the largest differences all occurred for 

i=1. The largest decrease associated with any other ingredient was 0.0042. Therefore, due to 

the relative insensitivity of the model to WFm in this range of reasonable values, we chose to 

use our initial assumption of 10−9 (the MSDS minimum).

Predictions using WFu=0.01 and WFm=10−9 for different shapes of the probability 

distribution X were examined and compared with the EPA MSDS data (Figure 4). The 

differences in WF when using a uniform versus a symmetric triangle distribution for X were 

small. Using a high-weighted triangle distribution for X gave higher WF for ingredients at 

the beginning of the list and much lower WFs for ingredients later in the list (Figure 4a). 

Comparisons of the model with midrange MSDS values for products having five ingredients 

(Nproducts=45) are given in Figure 4b; comparisons for products with three (Nproducts=89) 

and seven (Nproducts=4) ingredients are given in Supplementary Figure S2. Predicted median 

(symbols) and UCL/LCL (whiskers) are compared against median, 5th percentile, and 95th 

percentile MSDS WFs. The predicted WFs were reasonably close to the MSDS values, 

generally with the median WF of each ingredient falling within an order of magnitude of the 

median value from MSDS. Across products with different numbers of ingredients, MSDS 

medians compared best to WF predictions made assuming either a uniform or symmetric 

triangle for X. The comparisons were best for products with more reported ingredients, 

Isaacs et al. Page 7

J Expo Sci Environ Epidemiol. Author manuscript; available in PMC 2019 May 01.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



which could indicate that some MSDS products with only 3 reported components were 

missing data.

Empirical distributions of WF1 from MSDS were examined (Supplementary Figure S3); 

these distributions were not broken out by number of ingredients due to the relatively small 

product sample sizes. The distributions for WF1 were slightly different for products having 

water as a first ingredient versus other products, but these differences were not significant 

(two-sample Kolmogorov-Smirnov test, P=0.8). These distributions were best approximated 

as a uniform distribution, despite the fact that there were spikes in WF1 around “nominal” 

reporting values of WF (e.g., 0.8). These results support the assumption of a uniform 

distribution for X.

Model Predictions for Lists of Various Lengths

Final model predictions using WFm=10−9, WFu=0.01, and a uniform distribution for X were 

generated for Case 1 and Case 2 rules for generic ingredient lists having 2–55 ingredients. 

Median and upper 95% UCL WF for products with 1–15 ingredients for Case 1 are given in 

Table 1; full results are given in Supplementary Table S2. The mean and UCL WF decrease 

as expected for each ingredient as the number of ingredients increases. The median WF of 

the first ingredient was most sensitive (in terms of absolute fraction) to the increasing 

number of ingredients (ranging from 0.746 for a single-ingredient product to 0.532 for a 

product having 15 ingredients). Ingredients with ranks of 2 and above become less sensitive 

to changes in the number of ingredients. For products with a large number of ingredients the 

median values of WF associated with each ingredient rank decreases most rapidly for ranks 

of eight or less. Similar patterns are seen in the UCL.

The impact of assuming a WF threshold for ingredient ordering (Case 1 versus Case 2) was 

found to be modest. A comparison of predicted WFs for Case 1 versus Case 2 for a product 

with 15 ingredients assuming WFu=0.01 and a uniform distribution for X is shown in 

Supplementary Figure S4. There was little impact of labeling case assumption on mean, 

median, or UCL WF (especially for ingredients near the top of the lists). However, the LCL 

for Case 2 flattens out more quickly as a function of ingredient rank compared to Case 1.

Predicted WFs for Collected Ingredient Lists

WFs were assigned for all ingredients in the 1123 collected public lists (SI Supplementary 

Table S3) using WFs predicted using Case 1 or 2 labeling rules and WFm=10−9, WFu=0.01, 

and X=U[0,1]. As described in the Methods, Case 1 predictions were applied to lists 

obtained from Unilever and Case 2 predictions applied to all other lists, and model inputs 

were adjusted for lists where color additives were reported at the end.

Predicted WF metrics (median, UCL, and LCL WF) for the list ingredients were averaged 

across chemical functions and ingredient names. The predictions for functions 

(Supplementary Table S4) were consistent with general knowledge of consumer product 

formulations; for example, “Solvents” had the highest predicted average median WF (0.21), 

whereas preservatives had the lowest (0.005). Ingredients with at least 20 occurrences in 

products are summarized in Supplementary Table S5 (ranked by average median estimated 

WF across products); chemicals with highest average median WF included ubiquitous 
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ingredients such as ethyl alcohol, butane (a propellant), and water, which had the highest 

predicted median WF (0.41). A comparison between the predicted WFs and midrange 

MSDS-reported values, by function in PUC (e.g., solvents in hairsprays), is shown in Figure 

5. There was reasonable agreement between the MSDS values and the model predictions 

WFs, given that MSDS sheets often report a WF range for an ingredient (e.g., 0.3–1).

Discussion

We present here a methodology to estimate plausible WF ranges for consumer product 

ingredients based on product labels. The approach is based on algebraic reasoning and is not 

dependent on the nature of the products. Thus, it should be applicable to any product where 

the ingredient list is known to follow the FDA or similar rules. The methodology used does 

require assumptions concerning WFu, WFm, and the shape of the WF distribution between 

calculated bounds. As shown above, the predictions are relatively insensitive to uncertainties 

in WFmand values of WFu that are less than 0.1. However, the approach is dependent on an 

assumption of the WF of the first ingredient, and the shape of the distribution of WF values 

between the minimum and maximum values of each ingredient.

In this study we recommend using a uniform distribution of WFs between predicted bounds 

for each ingredient. Assuming a uniform distribution is consistent with empirical MSDS 

data for the first ingredient (largest WF) and produces estimates for ingredients of different 

ranks that approximate MSDS-reported values. The methodology also produces plausible 

predictions for certain classes of ingredients. Chemicals providing certain functions (e.g., 

solvents, propellants, and emulsifiers) are predicted to have larger WFs, consistent with 

typical product formulations that include these types of ingredients. The finding that 

assuming a uniform distribution produces plausible results suggests that consumer products 

generally include products that are dominated by a single ingredient and products that 

contain multiple ingredients at similar concentrations (e.g., as illustrated in Figure 2).

The model is also able to account for chemicals that are not listed in order of WF. We were 

able to produce WF predictions for products that placed colorants at the end of the 

ingredient list by using known information about colorant WFs. In the case of products that 

include trade secret ingredients, the model estimates should be interpreted more carefully, as 

one does not know the true WFu value that these ingredients represent. In the ingredient lists 

presented here, there were no products with trade secret ingredients. Application of this 

model to lists curated from other sources should take this into account. In the future, the 

method could be adjusted for the case in which some particular ingredients have additional 

information (e.g., some known or estimated bounds) based on a priori knowledge, such as a 

regulatory limit or a known function.

The WF predictions developed here are best-suited to screening-level evaluations of 

individual chemicals or substances, rather than any higher-tier evaluation of an entire 

formulation. Although the predicted chemical WF of the product is conserved (adds to 1) for 

any individual Monte Carlo run of the model and for the mean values of the ranges, the same 

is not true for the percentiles (e.g., medians or UCLs), which would be important if one were 

performing a quantitative assessment of the mixture comprising the formulation. However, 
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the median predicted WFs could certainly inform mixture analyses wherein binning 

concentrations (e.g., as high/low) was appropriate.

The predictions of WF produced from this approach are uncertain. The range between the 

LCL and UCL can exceed an order of magnitude for ingredients with higher ranks (close to 

the top of the list) on longer lists. This indicates that although the rules used to create the 

lists constrain the values of WF they do not precisely define the values. Despite this inherent 

uncertainty, there are a number of reasons why the results are useful. There are large 

numbers of products with ingredient lists that have no MSDS sheets or sheets with minimal 

composition data. Larger numbers of ingredients per product were found here (median=21) 

compared to the MSDS data (median=6). The larger number may reflect the fact that many 

MSDS sheets omit components viewed as being nontoxic (e.g., water, starch, etc.) and as a 

result do not reflect all ingredients. In these cases, predictions based on ingredients lists are 

an effective way of characterizing composition. Finally, even given the size of the 

uncertainty the model allows assessors to set useful upper bounds on the WF of a chemical 

in a product. For example, if a product has eight listed ingredients the assessor can conclude 

that it is very likely that the one ranked first will have a WF no higher than 0.956 and that 

the one ranked eighth will be no higher than 0.11. Finally, MSDS data are also reported in 

terms of ranges, and may also be subject to uncertainty. Where actual WFs are reported, 

however, these values should be given preference over the predictions made using this 

approach.

An additional challenge in the use of this approach is chemical synonomy. As mentioned 

above, ingredient lists use multiple names for ingredients. As a result, the same chemical 

may be listed in multiple ways (vinegar, acetic acid, ethanoic acid, etc.). Other efforts have 

curated ingredients lists for limited numbers of chemicals of interest, for example, Gabb and 

Blake21 examined 55 chemicals and endocrine disruptors associated with asthma. In that 

study, over 38,000 product lists were examined after a significant curation effort to 

harmonize ingredient names. Ongoing development and curation of chemical databases such 

as EPA’s Distributed Structure-Searchable Toxicity Database22 and dissemination and 

integration tools such as the CompTox dashboard23 will expand our ability to efficiently 

resolve synonyms for thousands of chemicals at a time, allowing us to leverage additional 

sources for online lists (e.g., online retailers) and generate predictions for chemicals using 

data reported under various names.

Finally, it is important to note that reported ingredients do not fully characterize chemicals in 

consumer products. Ingredients or chemicals may be missing (e.g., due to being a trade 

secret) or characterized by a generic term (e.g., “fragrance”, “color”) that cannot be mapped 

to a unique chemical. As discussed above, products also include unintended ingredients. 

Although this modeling approach does not address these contaminants, it expands the 

chemicals and products for which quantitative information can be developed. Under the 

Exposure Forecasting (ExpoCast) project24, EPA is using new non-targeted or “suspect-

screening” mass-spectrometry methods to identify thousands of chemicals in environmental 

media, including consumer products25,26. Future efforts should focus on ground-truthing 

our ingredient-based information with measured data, and exploring the extent of the gaps 

that occur when only reported ingredient data are used.
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In summary, we have developed a quantitative WF model that provides a rapid and 

straightforward way to develop estimates of the magnitude and variability in WF for 

thousands of products in commerce for which composition data are unavailable. We provide 

chemical-specific WF predictions for 1293 ingredients in 1123 real products, and present 

guidelines for applying these models to other lists. These methods can conservatively fill 

data gaps hindering screening-level exposure assessments, risk evaluations, and quantitative 

chemical mixture analyses for consumer product chemicals.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Predicted median, 95% lower confidence limit (LCL) and 95% upper confidence limit 

(UCL) for each ingredient of a product formulation with N=3 ingredients. The assumed 

values of the minimum plausible weight fraction for intentionally-added ingredients (WFm) 

and the unreported weight fraction (WFu) were 10−9 and 0.05, respectively. The distribution 

of the weight fraction was assumed to be uniformly distributed between the calculated 

bounds (Eqs. (1)–(4)) for each ingredient.
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Figure 2: 
Simulated weight fractions (WF) for ingredients with ranks 2–5 as a function of the WF of 

the first ingredient (5000 Monte Carlo simulations) for a product with 5 ingredients. When 

the sampled WF for the first ingredient is close its lower bound (Eq. (3)), all the remaining 

ingredients have similar predicted WFs. As the sampled WF of the first ingredient increases 

towards its upper bound (Eq. (1)), predicted WFs for other ingredients become more 

variable. Finally, as the first WF reaches its upper bound, all the other ingredients approach 

the minimum plausible weight fraction for intentionally added ingredients (WFm).
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Figure 3: 
Impact of unreported product fraction (WFu) on predicted weight fractions (WF). The 

minimum plausible WF for intentionally-added ingredients (WFm) was 10−9 and X was 

assumed to be uniform. Case 1 labeling ruls (eall ingredients reported in descending WF 

order) were assumed.
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Figure 4: 
Impact of three different assumptions for the shape of random variable X (WFm=10−9 and 

WFu=0.01). (a) Impact of shape Xon predicted WFs for a generic product with 15 

ingredients (Case 2 labeling rules). (b) Comparison of predicted weight fractions from 

ingredient lists with WF values reported on Material Safety Data Sheets (MSDS) for 

products having 5 (Nproducts=45) reported ingredients. Plotted points are means; bars extend 

to the 5th (LCL) and 95th (UCL) percentiles.
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Figure 5: 
Evaluation of WFs predictions by product use category (PUC) and function: WFs reported 

on MSDS sheets are plotted versus list model predictions for 96 PUC function 

combinations. List model predictions are average median WFs across products in PUCs for 

all ingredients having a known function (e.g., solvents in hairsprays). Error bars indicate SD 

in the median WF across products within PUC.

Isaacs et al. Page 17

J Expo Sci Environ Epidemiol. Author manuscript; available in PMC 2019 May 01.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript

Isaacs et al. Page 18

Ta
b

le
 1

:

R
es

ul
ts

 o
f 

th
e 

W
F 

m
od

el
 f

or
 W

F m
=

10
−

9  
an

d 
W

F u
=

0.
01

 f
or

 f
or

m
ul

at
io

ns
 w

ith
 2

–1
5 

in
gr

ed
ie

nt
s.

N
um

be
r 

of
 I

ng
re

di
en

ts

2
3

4
5

6
7

8
9

10
11

12
13

14
15

R
an

k
M

ed
ia

n 
pr

ed
ic

te
d 

W
F 

fo
r i

ng
re

di
en

t

1
0.

74
6

0.
65

5
0.

61
3

0.
58

6
0.

57
8

0.
57

0
0.

55
6

0.
55

0
0.

54
2

0.
54

5
0.

54
6

0.
52

5
0.

53
0

0.
53

2

2
0.

24
4

0.
24

2
0.

22
2

0.
19

7
0.

17
5

0.
16

0
0.

14
9

0.
14

1
0.

13
7

0.
13

2
0.

12
8

0.
12

8
0.

12
4

0.
11

9

3
0.

07
4

0.
08

5
0.

08
3

0.
08

1
0.

07
9

0.
07

6
0.

07
3

0.
07

0
0.

06
7

0.
06

3
0.

06
3

0.
06

0
0.

05
8

4
0.

02
9

0.
03

6
0.

03
9

0.
03

9
0.

03
9

0.
03

7
0.

03
6

0.
03

4
0.

03
3

0.
03

4
0.

03
3

0.
03

0

5
0.

01
5

0.
02

0
0.

02
3

0.
02

4
0.

02
2

0.
02

3
0.

02
1

0.
02

0
0.

02
1

0.
02

0
0.

01
9

6
0.

00
9

0.
01

4
0.

01
6

0.
01

6
0.

01
6

0.
01

4
0.

01
5

0.
01

5
0.

01
4

0.
01

4

7
0.

00
8

0.
01

1
0.

01
2

0.
01

3
0.

01
1

0.
01

2
0.

01
2

0.
01

1
0.

01
1

8
0.

00
8

0.
01

0
0.

01
1

0.
01

0
0.

01
0

0.
01

1
0.

01
0

0.
01

0

9
0.

00
7

0.
00

9
0.

00
9

0.
00

9
0.

01
0

0.
00

9
0.

00
9

10
0.

00
8

0.
00

8
0.

00
9

0.
00

9
0.

00
8

0.
00

8

11
0.

00
7

0.
00

8
0.

00
9

0.
00

8
0.

00
8

12
0.

00
8

0.
00

9
0.

00
8

0.
00

8

13
0.

00
8

0.
00

8
0.

00
8

14
0.

00
7

0.
00

8

15
0.

00
8

95
%

 U
C

L
 fo

r i
ng

re
di

en
t

1
0.

96
7

0.
95

4
0.

95
3

0.
94

8
0.

94
8

0.
95

1
0.

94
5

0.
94

4
0.

94
7

0.
94

7
0.

94
8

0.
94

4
0.

94
4

0.
94

4

2
0.

47
1

0.
41

2
0.

39
0

0.
38

1
0.

37
7

0.
37

1
0.

36
4

0.
36

5
0.

36
3

0.
36

4
0.

35
7

0.
36

0
0.

36
1

0.
35

6

3
0.

29
4

0.
24

8
0.

21
7

0.
20

2
0.

19
2

0.
18

4
0.

18
0

0.
17

3
0.

17
4

0.
17

1
0.

17
2

0.
16

8
0.

16
7

4
0.

21
6

0.
18

9
0.

16
1

0.
14

0
0.

12
4

0.
11

5
0.

11
0

0.
10

5
0.

10
0

0.
09

8
0.

09
3

0.
09

1

5
0.

17
2

0.
15

0
0.

13
2

0.
11

6
0.

10
5

0.
09

5
0.

08
7

0.
08

0
0.

07
5

0.
07

0
0.

06
6

6
0.

14
3

0.
12

6
0.

11
3

0.
10

1
0.

09
1

0.
08

3
0.

07
7

0.
07

2
0.

06
6

0.
06

2

7
0.

12
2

0.
11

1
0.

09
9

0.
08

9
0.

08
2

0.
07

5
0.

07
0

0.
06

5
0.

06
0

8
0.

10
9

0.
09

9
0.

08
9

0.
08

1
0.

07
4

0.
06

9
0.

06
4

0.
06

0

9
0.

09
7

0.
08

8
0.

08
1

0.
07

4
0.

06
9

0.
06

4
0.

05
9

10
0.

08
8

0.
08

1
0.

07
4

0.
06

9
0.

06
3

0.
05

9

J Expo Sci Environ Epidemiol. Author manuscript; available in PMC 2019 May 01.



E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript

Isaacs et al. Page 19

N
um

be
r 

of
 I

ng
re

di
en

ts

11
0.

08
0

0.
07

4
0.

06
9

0.
06

3
0.

05
9

12
0.

07
3

0.
06

9
0.

06
3

0.
05

9

13
0.

06
9

0.
06

3
0.

05
9

14
0.

06
3

0.
05

9

15
0.

05
9

1.
 A

bb
re

vi
at

io
n:

 W
F,

 w
ei

gh
t f

ac
to

r.

2.
 A

 u
ni

fo
rm

 d
is

tr
ib

ut
io

n 
sh

ap
e 

be
tw

ee
n 

in
gr

ed
ie

nt
 u

pp
er

 a
nd

 lo
w

er
 b

ou
nd

s 
w

as
 u

se
d.

 A
ll 

in
gr

ed
ie

nt
s 

w
er

e 
re

po
rt

ed
 in

 d
es

ce
nd

in
g 

or
de

r 
(C

as
e 

1)
. F

ul
l r

es
ul

ts
 f

or
 b

ot
h 

la
be

lin
g 

ca
se

s 
ar

e 
gi

ve
n 

in
 th

e 
Su

pp
le

m
en

ta
ry

 I
nf

or
m

at
io

n.

J Expo Sci Environ Epidemiol. Author manuscript; available in PMC 2019 May 01.


	Abstract
	Introduction
	Methods
	Model for Ingredient Lists Ranked by Descending WF (Case 1)
	Alterations to the WF Model for Case 2
	Addressing Special Types of Ingredients
	Sensitivity Analyses and Selection of Model Parameters
	Application of the WF Model to Case Study Ingredient Lists

	Results
	Determination of WF Model Inputs
	Model Predictions for Lists of Various Lengths
	Predicted WFs for Collected Ingredient Lists

	Discussion
	References
	Figure 1:
	Figure 2:
	Figure 3:
	Figure 4:
	Figure 5:
	Table 1:

