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Abstract

We present a simple model for the effect of amino acid sequences on amyloid fibril formation. 

Using the HP model we find the binding lifetimes of four simple sequences by solving the first 

passage time for the intermolecular H-bond reaction coordinate. We find that sequences with 

identical binding energies have widely varying binding times depending on where the aggregation 

prone amino acids are located in the sequence. In general, longer binding times occur when the 

aggregation prone amino acids are clustered in a single “hot spot”. Similarly, binding times are 

shortened by clustering weakly bound residues. Both of these effects are explained by an increase 

in the multiplicity of unbinding trajectories that comes from adding weak binding residues. Our 

model predicts a transition from ordered to disordered fibrils as the concentration of monomers 

increases. We apply our model to Aβ, IAPP, and apomyoglobin using binding energy estimates 

derived from bioinformatics. We find that these sequences are highly selective of the in-register 

state. This selectivity arises from the having strongly bound segments of varying length and 

separation.

Graphical Abstract

Introduction

Protein function relies on the ability of the molecule to adopt a native fold that positions the 

active chemical groups in the proper orientation to perform catalytic, structural, or signalling 

function. This process is driven by a collapse of hydrophobic sidechains that initiates an 

intricate globular fold that is assumed to be the free energy minimum of the protein.1 While 

this assumption is often adequate for the study of isolated proteins, the prevailing evidence is 

that the true thermodynamic minimum is the amyloid state.2 In contrast to the intricate folds 
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of globular proteins, amyloids are striking in their simplicity. Their defining feature is the 

formation of intermolecular β-sheets in which the β-strands extend perpendicular to the 

fibril axis.3 This motif provides an extraordinary degree of stability leading to an 

accumulation of aggregated proteins in various diseases and biomaterials.4–6

Disease-related amyloids are formed by proteins with little apparent sequence similarity, and 

many other proteins can be induced to form amyloids in vitro by adjusting the solution 

conditions. This generality has inspired the notion that the amyloid state is a generic 

property of the polypeptide backbone.7,8 Yet, the amino acid sequence clearly matters and 

there have been many successful efforts to predict aggregation propensity from primary 

sequence.9–18 Our goal here is the complement these bioinformatic approaches with a 

physical model for how amino acid patterning affects the kinetics of amyloid formation. 

This approach provides insights into how solution conditions and protein concentration 

affect growth rates and the structure of the final aggregated state.

Amyloid aggregation can be described with two reaction coordinates

The attachment of a new molecule to an existing fibril involves a complex search over 

spatial and conformational degrees of freedom. To construct a tractable model, we map this 

search onto a reduced space consisting of two reaction coordinates: the alignment between 

the incoming molecule and the fibril end, and the number of backbone H-bonds between the 

incoming molecule and the fibril. Since each amino acid in the fibril core contributes a 

stability on the order of kBT, the number of H-bonds fluctuates rapidly with a characteristic 

timescale on the order of nanoseconds.19–21 Changing the molecular alignment is a much 

slower event because it requires a high energy fluctuation in which all H-bonds are 

simultaneously broken. The frequency of these events depends exponentially on the number 

of bonds to be broken and approaches a millisecond for molecules like Aβ that can form 25–

30 H-bonds.20 Thus, the rapid fluctuation in the number of H-bonds dictates the timescale 

for a much slower search over binding alignments.

Aggregation is a competition between binding and unbinding events

In a simple precipitation reaction the behavior of the system can be described by two rates; 

the rate at which molecules attach to the precipitate and the rate at which they fall off again. 

In the absence of surface nucleation events (important in many crystals, but negligible for 

the one-dimensional elongation considered here), the attachment rate ron will be proportional 

the concentration of molecules in the solution. The detachment rate roff, on the other hand, is 

related to the binding energy holding the molecules in place. Stronger bonds mean that a 

larger energy fluctuation is needed to break the molecules free, so the off-rate often follows 

an Arrhenius dependence on the binding energy. The rates roff and ron determine the 

behavior of the system. At low concentrations roff > ron so existing aggregates will dissolve. 

At high concentrations roff < ron, so the aggregates will grow. At equilibrium there is no net 

growth so roff = ron. The concentration of particles where the on-rate is equal to the off-rate 

is the solubility of the aggregate. At concentrations above this the solution is supersaturated 

and the precipitate is stable, while at lower concentrations the solution is undersaturated and 

the precipitate is thermodynamically unstable.
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This simple picture becomes more complicated with molecules, like proteins, that can bind 

in a variety of states.22,23 In these cases we must also consider whether the precipitate is 

ordered or disordered. For an ordered structure to form, it is necessary to find conditions 

where the ordered structure is stable and the disordered ones are unstable. Since the ordered 

structure usually has a stronger binding energy than disordered ones, this is usually 

accomplished by finding a concentration that is between the solubilities of the ordered and 

disordered structures.

To apply this framework to amyloid fibrils, let us first consider the case of homopolymer 

aggregation, for example, the polyglutamine region of Huntingtin.24–26 The most ordered 

state is the one where adjacent molecules are aligned in-register (see Figure 1). This will 

yield a binding energy of Lε0 and a lifetime that scales like ~ eLε0, where L is the number of 

amino acids in each polymer and ε0 is the binding energy per amino acid (we adopt a sign 

convention where attractive energies are positive and express all energies in units of kBT). 

But, the molecules will not always find the most ordered state. If the molecules are mis-

aligned by one amino acid, the overhanging amino acid will be unable to make stabilizing 

contacts with the fibril and the state lifetime will be ~ e(L−1)ε0. This reduced lifetime means 

that the mis-registered state is less likely to be incorporated in the fibril by a factor of ~ eε0. 

Note that this conclusion also follows from constructing a partition function over alignment 

states and observing that the Boltzmann weights of the two states differ by eε0.

To indicate the alignment between an incoming molecule and the fibril end, we define the 

registry variable R, which can take the values −L < R < L, where L is the number of amino 

acids in each molecule (see Figure 1). Positive values of R indicate that the incoming 

molecule is shifted toward the C-terminus of the fibril template, while negative values 

denote a shift toward the N-terminus. R = 0 indicates a perfect alignment between the 

incoming molecule and the fibril. This will usually be the most stable state because it can 

form the most bonds. In the following, we compute the binding and unbinding times for 

simple sequences as a function of R. We use these calculations to show how amino acid 

sequences affect aggregation rates and assembly fidelity.

Theoretical Methods

Attachment rates

The on-rates can be related to the solution concentration using the Smoluchowski formula 

for particle striking an absorbing sphere

ron = 4πac1D, (1)

where a is the radius of the target (in this case, the fibril end) and D is the diffusion constant 

of the protein monomers. This expression for the attachment rate neglects several 

complications that my affect ron. These include the presence of states in the encounter 

complex that lack H-bonds, sidechain mediated bias in the registry selection, and free energy 

barriers in the initial binding. However, the overall growth rate is dominated by the registry 
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lifetimes, making it unlikely that these effects will be more than a perturbation.21 In the 

remainder of this paper, we refer to the on-rate ron rather than the concentration, which is the 

more experimentally accessible quantity. While Eq. (1) provides a means to convert between 

these quantities, the effects above imply that this conversion is only approximate.

Binding lifetimes in the zipper model (1D reaction coordinate)

We are interested in the residence times of molecules that bind to the end of the fibril. We 

define tR(n) as the lifetime of a molecule that is bound to the fibril by n intermolecular H-

bonds in registry R. We are particularly interested in tR(1), which is the average time that a 

molecule resides at the fibril end after making the first contact. We start with a simple model 

in which the bonds breakage starts at one end of the sequence and proceeds in a zipper-like 

manner toward the other end (see Figure 2).

To begin, we define pR(n, t − t0) as the probability that a molecule that has n bonds at time t0 

has neither broken or formed any bonds at time t. This probability obeys the equation

dpR(n, t − t0)
dt = − pR(n, t − t0)(r+(n + 1) + r−(n)) (2)

where r+(n + 1) is the formation rate of the (n + 1)th bond and r−(n) is the breakage rate of 

the nth bond. This equation has the trivial solution PR(n,t) = e−t/τR(n), where

τR(n) = (r+(n + 1) + r−(n))−1 (3)

is the average lifetime of state n.

Next, we write down a recursion relationship for the binding lifetimes27

tR(n) = τR(n)(r+(n + 1)tR(n + 1) + r−(n)tR(n − 1) + 1) . (4)

This relationship says that the system will proceed from state n to state n + 1 with 

probability τR(n)r+(n + 1) and to state n − 1 with probability τR(n)r−(n). The final term 

accounts for the fact that the new random walks starting at these sites will begin after an 

average waiting time of τR(n) in state n.

To proceed from here we need to specify the bond formation and breakage rates. We assume 

that the formation rates are limited by the diffusion of the free polymer tails in solution and, 

therefore, are insensitive to the bonding energies.21 Therefore, we set r+ ≃ 1 ns.28 For the 

breakage rates, we assume an Arrhenius dependence on the binding energy, which gives r− = 

r+e−ε0.20
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Here we demonstrate how transfer matrices can be used to solve Eq. (4) for a sequence with 

uniform binding energies. In the Supporting Information, we extend this formalism to solve 

for the binding lifetimes of triblock and alternating sequences.

When all bonds have the same binding affinity, the position arguments can be dropped from 

the bond breakage and formation rate constants, along with the R subscripts. The recursion 

relation (Eq. (4)) can be reduced to a homogenous form using the substitution

t(n) = θ(n) − n/(r+ − r−) (5)

which yields

θ(n) = τ(r+θ(n + 1) + r−θ(n − 1)) (6)

Eq. (6) can be re-written in the matrix form u(n + 1) = Mu(n) where

u(n) = θ(n)
θ(n − 1) (7)

M =
1

τr+
1 − 1

τr+
1 0

. (8)

The matrix can be brought into diagonal form with the the transformation

T−1MT =

1
1

τr+
− 2

1
1

τr+
− 2

1
1

τr+
− 2

1
τr+

− 1

1
τr+

− 2

1
τr+

1 − 1
τr+

1 0

1
τr+

− 1 1

1 1
(9)

=
1

τr+
− 1 0

0 1
. (10)
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By repeatedly applying the transfer matrix we can generate the u vector for any number of 

bonds

u(n) = Mn − 1u(1) (11)

= T(T−1MT)y − 1T−1u(1) (12)

=

θ(1)
1

τr+
− 1

n
− 1

1
τr+

− 2

θ(1)
1

τr+
− 1

n − 1
− 1

1
τr+

− 2

(13)

where we have used the boundary condition θ(0) = 0. The second boundary condition 

follows from the requirement that r+(L) = 0, which can be plugged into Eq. (4) to yield t(L) 

= t(L −1) + 1/r−(L). Inserting the vector components of Eq. (6), with Eq. (5), into the second 

boundary condition allows us to solve for the unknown constant

θ(1) =
1

τr+
− 2

1
τr+

− 1
L

− 1
. (14)

The residence time after the formation of the first bond is obtained by undoing the 

transformation from t to θ (Eq. (5))

t(1) =
1

τr+
− 2

1
τr+

− 1
L

− 1
− 1

r+ − r−
. (15)

Binding from both ends of molecule (2D reaction coordinate)

While the zipper model described above can be readily solved for the binding lifetimes, it 

has the unrealistic feature that only one end of the peptide is allowed to fluctuate. To correct 

for this, albeit in a model that will require numerical treatment, we describe the state of the 
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incoming molecule using two reaction coordinates. These coordinates are shown in Figure 

2b; x is the number of unrealized H-bonds on the N-terminus of the fibril template, and y is 

the position of the last formed H-bond. Therefore, L − y is the number of broken H-bonds at 

the C-terminus. With these definitions, the condition x < y describes states where the 

molecule is attached to the fibril and x = y indicates that the molecule has become unbound.

Generalizing Eq. (4), the binding times are related by the recursion relationship

t(x, y)/τ(x, y) = r+N(x + 1)t(x + 1, y) + r−N(x)t(x − t, y)
+ r+C(y + 1)t(x, y + 1) + r−C(y)t(x, y − 1) + 1

(16)

where r+N (x + 1) is the breakage rate of the (x + 1)th bond, r−N (x) is the formation rate of 

the xth bond, r+C(y + 1) is the formation rate of the (y + 1)th bond, and r−C(y) is the 

breakage rate of the yth bond. This equation reflects the fact that after time τ(x,y) = (r+N + r

−N + r+C + r−C)−1 the system evolves to state (x + 1, y) with probability τ(x,y)r+N (x + 1), to 

state (x − 1, y) with probability τ(x,y)r−N (x), etc. We use the binding energies for a given 

sequence to determine the breakage rates r−N (x) = r+eε(x) and r+C(y + 1) = r+eε(y+1), where 

the site specific binding energies are obtained from Table 1 in.12 Next, the system of 

equations, Figure 2, along with the boundary conditions t(x,x) = 0, r−N (0) = r+C(L) = 0, are 

solved numerically using Mathematica.

The lifetime of a given registry is the time between the formation of the first bond and the 

final unbinding. This is given by

tR(1) = 1
L − ∣ R ∣ ∑

x = 0

L − ∣ R ∣ − 1
t(x, x + 1) (17)

where the summation is an average over the possible locations for the first bond to form.

Results and Discussion

High protein concentration increases the probability that transiently bound molecules will 
be incorporated in the fibril

The large number of possible alignments between a soluble molecule and the fibril template 

results in a wide range of binding lifetimes. Figure 3a plots the binding state lifetimes of a 

homopolymer as a function of the alignment R as calculated from Eq. (15). In agreement 

with the simple Arrhenius argument above, the lifetimes decline exponentially as R deviates 

from the perfectly aligned state R = 0.

The net growth of the fibril is determined by comparing these off-rates to the diffusion 

limited attachment rate ron. To make the comparison between the on- and off-rates in a 

simple way, we introduce the probabilities P±(R). We use the reciprocal of tR(1) as the off-

rate of a molecule bound in state R, roff(R) = 1/tR(1). P+(R) gives the probability that a 
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molecule bound in registry R remains attached to the fibril end long enough for the next 

molecule to bind

P+(R) =
ron

ron + roff (R) (18)

while

P−(R) =
roff (R)

ron + roff (R) (19)

is the probability that a newly bound molecule detaches before the next binding event. P+ 

gives an estimate of the probability that a newly bound molecule will be incorporated in the 

fibril (the approximation comes from the fact that subsequent unbinding events can re-

expose a buried molecule giving it another opportunity to unbind). Figure 3b shows P+(R) 

for several values of the concentration. For small values of c the capture probability can be 

approximated P+ ≃ ron/roff, which has a shape similar to the lifetimes plotted in Figure 3a, 

however, at higher concentrations the central peak becomes broader and eventually forms a 

wide plateau. This indicates that at these higher concentrations the assembly process 

becomes less selective and molecules with higher degrees of mis-alignment become 

incorporated in the fibril.

For our investigation of sequence effects we consider sequence motifs for which we can 

obtain analytic expressions for the binding lifetimes. To simplify the analytic treatment, we 

consider a reduced sequence space consisting of two types of amino acids. Following the 

work of Dill and coworkers,29,30 we label the two types as H (hydrophobic) and P (polar). 

Interactions between two H residues result in a strong binding energy εs = ε0 + |δ| while H-P 

and P-P interactions result in a weak binding energy εw = ε0 − |δ|. The corresponding bond 

breakage rates are r− = r+e−εs for H-H bonds and r− = r+e−εw for H-P and P-P bonds. The 

sequences are shown in Figure 4. There are two chains of alternating amino acids (HP)L/2 

and (PH)L/2 that we denote ALT+ and ALT−, respectively. Next, there are two triblock 

copolymers; PL/4-HL/2-PL/4, which we label HSC to indicate the central aggregation-prone 

hot spot, and HL/4-PL/2-HL/4, which we refer to as HSF due to the pair of aggregation-prone 

hot spots flanking the central region. ALT+ and ALT− (and, similarly, HSC and HSF) are 

mathematically identical, differing only in the sign of the binding energy perturbation δ. We 

use δ > 0 for the cases where the leftmost amino acid has a strong binding energy. Finally, 

we compare these motifs to a uniform sequence (UNI) of L amino acids that all bind with 

energy ε0.

Binding lifetimes show Arrhenius scaling with sequence dependent perturbations

It is useful to examine the effect of sequence perturbations on the fully bound state t0(L) 

because the sequences have the same binding energy when all bonds are formed and the 
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molecules are perfectly aligned (R = 0). Figure 5 shows the residence times for the simple 

sequences described above starting from the fully bound state, as calculated from Eq. (15) 

(UNI), S2, S11 (HS), S24, S25, and S30 (ALT). All sequences show Arrhenius scaling for 

large binding energies. However, the similarity on a logarithmic scale conceals the dramatic 

differences in residence times. To explore these differences there are two convenient limits 

to impose on the cumbersome expressions for the binding lifetimes. First, as seen in Figure 

5b, for chain lengths greater than ~ 20 the sequence effects are confined to a constant factor 

that is multiplied by an Arrhenius term. These sequence dependent factors can be obtained 

by dividing the residence time by an Arrhenius rate factor

tArr(L) = e
ε0L

/r+ (20)

and taking the large L limit. We obtain

lim
L ∞

tUNI(L)
tArr(L) = e

2ε0

e
ε0 − 1

2 (21)

lim
L ∞

tALT(L)
tArr(L) = e

2ε0(1 + e
(ε0 + δ)

)
2

eδ(e
2ε0 − 1)

2 (22)

lim
L ∞

tHS(L)
tArr(L) = e

2(ε0 + δ)

(e
(ε0 + δ)

− 1)
2 (23)

where the final expression is valid for both central and flanking hot spots provided that −|ε0| 

< δ < 3ε0. Eq. (21)–Eq. (23) result in the ranking of retention times: HSC > ALT+ > UNI > 

ALT− > HSF (Figure 5b). To understand this ranking, it is useful to explore the second limit, 

that of small δ. In this limit the retention times are

tHS(L) = e
2ε0(e

ε0L
− 1) − Le

ε0(e
ε0 − 1)

r+(1 − e
ε0)

2 − 2e
2ε0(1 − e

ε0L/4
)
3
(1 + e

ε0L/4
)

r+(1 − e
ε0)

3 δ + 𝒪(δ2) (24)

Huang et al. Page 9

J Phys Chem B. Author manuscript; available in PMC 2019 May 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



for the triblock sequences, where δ > 0 corresponds to HSF and δ < 0 gives the result for 

HSC. The corresponding expression for the alternating sequence is

tALT(L) = e
2ε0(e

ε0L
− 1) − Le

ε0(e
ε0 − 1)

r+(1 − e
ε0)

2 + 2e
3ε0(e

ε0L
− 1) − Le

ε0(e
ε0 − 1)

2r+(e
2ε0 − 1)

2 δ + 𝒪(δ2) (25)

where δ > 0 gives ALT+ and δ < 0 gives ALT−. In both expressions the first term gives the 

binding time of UNI. Of greater interest is the first order term. In particular, the HS first 

order term is always negative and has a greater magnitude than the ALT first order term. 

These first order perturbations give rise to the ranking listed above (Figure 6a).

Figure 6 also shows the residence times for large values of δ that lie outside the linear 

regime described by Eq. (24)–Eq. (27). For sufficiently large values of δ the residence times 

increase sharply, particularly for the triblock sequences. In these strongly asymmetric 

systems, the weakly bound sites are net repulsive, so the strongly bound sites dominate the 

unbinding rate.

The average binding lifetime is dominated by events where the molecule forms all possible 
bonds

A more relevant quantity for fibril growth is the residence time after only the first bond is 

formed. The leading order expressions for the first contact lifetimes are

tHS(1) = e
ε0(1 − e

ε0L
)

r+(1 − e
ε0)

2 + e
ε0(1 − e

ε0L/4
)
3
(1 + e

ε0L/4
)

r+(1 − e
ε0)

2 δ + 𝒪(δ2) (26)

for the triblock sequences. The corresponding expression for the alternating sequence is

tALT(1) = e
ε0(1 − e

ε0L
)

r+(1 − e
ε0)

+ e
ε0(1 − e

ε0L
)

r+(1 − e
ε0)(1 + e

ε0)
δ + 𝒪(δ2) (27)

Interestingly, even with only a single bond formed, it is more beneficial to have a long 

continuous string of strongly binding amino acids than it is to have a smaller number of 

strong sites near the initial binding site (Figure 6b). This is because, to a first approximation, 

this binding lifetime is an average of two outcomes. For binding energies on the order of 

kBT, the molecule will unbind before forming additional bonds roughly half of the time.20 

However, once additional bonds start forming, it becomes overwhelmingly likely that it will 

proceed to the fully bound state. Accordingly, we observe the same ranking of lifetimes 
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observed from the fully bound state. From Eq. (26) we can see that the superiority of HSC 

over HSF holds as long as ε0 is attractive.

Binding lifetime trends are independent of initial contact site

An unrealistic assumption of our zipper-like binding mechanism is that the first binding site 

is always weak for HSC and strong for HSF. In reality, the first contact between molecules 

can occur anywhere along the sequence. To investigate the effect of the point of initial 

contact, we looked at a model in which the H-bonds can initiate at any point along the 

sequence and form/break independently at both ends of the chain. If we require that the H-

bonds are grouped in one continuous stretch, the problem reduces to a two-dimensional 

random walk where the two reaction coordinates are the number of broken H-bonds at the 

left and right ends of the chain.

Figure 7 plots the binding lifetimes for both triblock sequences as a function of the initial 

contact sites. Grouping the aggregation prone residues in a single hot spot has a dramatic 

effect on the binding lifetimes. In fact, the shortest lifetimes computed for HSC, which occur 

when the first contact is at a weak binding site at the edge of the sequence, is comparable to 

the longest lifetime of HSF, which occurs for a first contact in the middle of one of the hot 

spots. We also computed the lifetimes of a 10-10 diblock polymer and a 5-5-5-5 tetrablock. 

These sequences support the conclusion that having a contiguous stretch of strongly binding 

residues is more important than the binding affinity at the first contact.

Adding weakly binding residues increases the number of trajectories that lead to 
unbinding

The strong reduction in the binding time of the diblock sequence relative to HSC (Figure 7) 

suggests that HSC may derive its strength from the weak flanking regions that protect the hot 

spot from the rapid bond fluctuations that occur at the polymer ends. This hypothesis can be 

rejected by computing the binding lifetimes for a diblock sequence in the one-dimensional 

model. This calculation yields an even function of δ, which says that breaking a strong 

region followed by a weak region has exactly the same binding time as breaking them in the 

opposite order (data not shown). Thus, a weak region has no protective effect on the 

unbinding of a strong region.

The explanation for the strength of the HSC motif can be deduced by considering the limit of 

highly asymmetric binding energies εw = 0, εs ≫ 1. In this case, left and right moves within 

the weakly bound regions will have equal probability, leading to a highly degenerate set of 

diffusive trajectories. In contrast, within the strongly bound regions, the probability of 

breaking a bond is very small e−εs ≪ 1. Therefore, the rupturing of hot spots is dominated 

by ballistic trajectories because each backward step that is added to a trajectory suppresses 

the probability by an additional factor of e−εs.

This simple argument show that there is a deleterious effect on the binding lifetimes from 

clustering weakly binding residues, just as there is a benefit from clustering strong ones. 

This is because groups of weak binding residues increase the multiplicity of trajectories that 

lead to unbinding. Of course, when dealing with a fixed number of strong and weak 

residues, as in our model sequences, breaking up a hot spot by adding weak residues comes 
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with the compensating effect of shortening a weakly bound region. This can be seen from 

the minor difference between the diblock and tetrablock sequences in Figure 7. The way to 

avoid this tradeoff is to divide either the strong or weak residues across the two ends of the 

sequence, which explains the dramatic difference between HSC and HSF.

Sequence heterogeneity enhances templating efficiency

As noted earlier, single amino acid registry mismatches are less probable, in equilibrium, 

than the perfectly aligned state. For a uniform sequence each amino acid of registry 

mismatch reduces the Boltzmann weight by eε0. This reduction can be much greater if the 

binding energy is localized to a binding hot spot. Consider the HSC sequence, which has 

most of the binding energy localized to the central H block. Here a registry shift of one 

amino acid ruptures a weak bond at the edge and also replaces a strong H-H bond in the hot 

spot with a weak H-P bond. This results in a total energy change of ε0 + δ. As another 

example, a single amino acid shift with the HSF sequence will break two H-H bonds and 

replace one of them with a weak bond for a total energy change of ε0 + 3δ. Larger energy 

penalties for alignment shifts can be achieved by separating the strongly binding residues 

into greater number of hot spots. The ALT sequences represent the extreme case where a 

single amino acid shift breaks all strong bonds. However, a shift of 2 amino acids brings the 

H residues back into alignment allowing all but one of them to reform.

The alignment specificity can be seen by looking at the capture probabilities (Eq. (18)) for 

the HP sequences (Figure 8). The ALT sequence shows a striking even/odd effect reflecting 

the fact that odd registries only permit the formation of weak H-P bonds, while even 

registries contain equal numbers of strong and weak bonds. However, viewed separately, the 

even and odd registries each show the same exponential dependence seen in Figure 3. The 

triblock sequences show sharper central peaks than UNI (Figure 3b) as a result of the greater 

energy penalty for mis-alignment described above. HSF also shows secondary peaks where 

the C-terminal hot spot of one molecule aligns with the N-terminal hot spot of the adjacent 

molecule.

Fibril growth is the result of binding and unbinding events in all registries

An approximate expression for the growth rate can be obtained by assuming that only two 

outcomes are possible after a molecular attachment event; the molecule unbinds before the 

next attachment event, or it becomes permanently locked onto the fibril by the next binding 

event. The probabilities of the latter event are given by Eq. (18), which can be summed to 

give the growth rate

rgrow =
ron

2L − 1 ∑
R = − L + 1

L − 1
P+(R) (28)

where the prefactor is the diffusion-limited attachment rate for each registry. Similarly, we 

can compute the average registry of the bound molecules
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〈 ∣ R ∣ 〉 =
∑R = − L + 1

L − 1 ∣ R ∣ P+(R)
∑R = − L + 1

L − 1 P+(R)
(29)

These approximate expressions assume that diffusion leads to the binding of all registries 

with equal probability. There are two shortcomings to Eq. (28) and Eq. (29). First, they do 

not have memory of previous binding events. That is, the unbinding of a molecule does not 

allow the previous molecule another chance to detach. Secondly, the computed growth rate 

is positive for all concentrations and, therefore, Eq. (28) cannot describe the dissolution of 

fibrils at concentrations below the solubility concentration. To account for these errors, we 

have performed Gillespie simulations of the growth process.31

The fibril growth rate and average registry errors are shown in Figure 9. Eq. (28) and Eq. 

(29) agree well with the simulations at high growth rates, but show discrepancies at low 

concentrations. This is expected because multiple unbinding events, which are not accounted 

for in Eq. (28) and Eq. (29), will be common at low concentration but rare at high 

concentration. Interestingly, the analytic approximations do a good job of qualitatively 

capturing changes in the rank ordering of sequences, even at low concentration.

Sequences with poor templating efficiency grow fastest

The uniform sequence has the highest growth rates over all concentrations studied (Figure 

9a). This increased growth rate is due to off-register states; the uniform sequence has the 

highest affinity for off-register states, so these states are more readily incorporated in the 

fibril. Therefore, the uniform sequence also has the highest average registry error (Figure 

9b).

Neglecting the highly disordered UNI sequence, the ranking of growth rates and solubility 

concentrations follows the ranking of residence times discussed above, because longer 

residence times promote faster growth. The influence of the disordered states has a more 

complicated effect on the fibril order parameter 〈|R|〉. Interestingly, the best sequence for 

growing ordered fibrils depends on the monomer concentration in the solution. At low 

concentrations we expect that the distribution of registries is dominated by small errors. 

From Figure 8 we see that HSF is the most effective sequence for rejecting small registry 

errors and, therefore, it results in the most highly ordered fibrils at low concentrations 

(Figure 9b). However, at higher concentration large registry mismatches come into play. 

Here HSF is particularly prone to large errors due to the secondary peaks in its capture 

probability (Figure 8). Because of this, HSF transitions from being the most ordered at low 

concentration to the most disordered at high concentration.

Small registry errors occur with similar probability for short and long sequences

The incidence of registry errors does not depend strongly on the chain length. Figure 10a 

shows that the residence times for small mismatches scales with the same Arrhenius 

dependence for both short (L = 8) and long (L = 20) chains. Therefore, these small 

mismatches should be incorporated at similar rates, provided the solutions are prepared with 
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similar supersaturation. This is confirmed in Figure 10b which shows 〈|R|〉 as a function of 

concentration for uniform sequences of varying length. In all cases we observe that 〈|R|〉 ∝ 
ln c until the increase saturates at 〈|R|〉 ≃ L/2 at high concentration, indicating a completely 

random distribution of registries.

The transition from ordered to disordered aggregates shown in Figure 9b and Figure 10b is 

very slow, requiring concentration increases of many orders of magnitude. This transition 

can be achieved more rapidly by changing solvent conditions. For example, if the molecules 

are charged, changing the salt concentration or pH of the solution has the compound effect 

of simultaneously increasing ron by reducing the electrostatic diffusion barrier, and 

increasing the lifetime of molecules bound to the fibril.

The exponential suppression of registry errors shown in Figure 10a explains the high degree 

of order seen in Huntingtin aggregates. NMR measurements have shown that approximately 

25% of molecules in Huntingtin fibrils show registry shifts.32 Although the interpretation of 

these experiments is complicated by the effects of flanking non-amyloidogenic sequences, a 

binding energy on the order of 1–1.5 kBT is probably sufficient to suppress registry errors to 

this level.

Sequences of natural amino acids are efficient at preventing registry errors

Next, we apply our model to sequences of the 20 natural amino acids. This greatly increases 

the complexity of the system since there will be 400 energy parameters in the model instead 

of the two parameters in our HP model. While these energy parameters can be extracted 

from simulations, this has only been done for a small number of amino acid pairs.21 As an 

imperfect replacement for these energies, we employ the pairwise aggregation propensities 

determined by Trovato et al.12 These parameters are obtained from a bioinformatic 

approach, but they have magnitudes comparable to the free energies of binding and should 

capture which interactions are favorable and which are unfavorable. However, the lifetimes 

we calculate from these “energies” are not quantitative. Therefore we restrict ourselves to 

qualitative conclusions only.

Figure 11 plots the residence times for Aβ and IAPP as a function of the registry R. These 

residence times are calculated from the two-dimensional diffusion model (Figure 2) that 

allows for bond breakage at both ends of the chain. The lifetimes of each registry are 

averaged over the L −|R| initial contact points. It is striking that the lifetimes are much more 

sharply peaked at R = 0 than those of the HP sequences (see Figure 3b and Figure 8). In fact, 

the ratio of the lifetime for the in-register state to the lifetime of the single amino shift (R = 

±1) is on the order of 102. This means that, unlike the HP sequences, natural sequences will 

be able to achieve highly ordered fibrils, with 〈|R|〉 close to zero over a range of 

concentrations. Furthermore, the similarity in the binding lifetimes of the mis-registered 

states suggests that these sequences will transition more abruptly from ordered fibrils to 

disordered aggregates.

To explore the cause of this templating efficiency, we translated the Aβ and IAPP sequences 

to the HP model using the Kyte-Doolittle scale with a cutoff between tryptophan and serine.
33 We varied εs from 0.7 to 1.3 kBT while scaling εw to satisfy the requirement that the 
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binding energy of Aβ residues 12–40 summed to 15 kBT.34 All parameter sets reproduced 

the main features of the binding lifetimes shown in Figure 11, with a central peak two orders 

of magnitude higher than the mis-registered states. This suggests that templating efficiency 

arises from having hot spots of varying length and separation. This minimal complexity, 

which arises naturally from the enrichment of hydrophobic amino acids in Aβ, is sufficient 

to produce a large energy penalty for registry errors while retaining the binding affinity of 

hydrophobic hot spots. In contrast, randomly generated sequences do not contain these 

hydrophobic stretches, due to the equal proportion of hydrophobic and polar residues, and 

are predicted by both the HP and 20 amino acid models to have negligible binding (data not 

shown).

Binding free energies have an inverted funnel topology

The insets to Figure 11 show the bioinformatic binding energies EI as a function of the 

molecular alignment. As expected, there is a deep well at R = 0 corresponding to the in-

register state. Conversely, the R = ±1 states have very high energy. In both molecules there 

are some registries that have energies approaching the R = 0 state, but these highly mis-

aligned states form few H-bonds so the calculated residence times are much shorter than the 

in-register state.

The overall shape of the energy landscape is remarkable in that there is no bias toward the 

in-register state. In order for proteins to fold into a native state in physiological timescales, it 

is necessary to have an energetic bias, often depicted as a funnel, that guides the folding 

process.35 The energy landscapes in the insets of Figure 11 do not have this feature and, 

instead, resemble a “golf course” or even an inverted funnel landscape.35,36 Amyloid fibrils 

are able to form without the aid of an energetic bias because the simple cross-β structure has 

a much smaller state space, described by our R variable, than the vast combinatorics of 

backbone dihedral angles in protein folding. An important consequence of this unbiased 

landscape is that aggregation occurs by a random search over configuration space that is not 

dominated by a small number of trajectories or intermediate states. As a result, it is difficult 

to predict or explain the effects of mutations because the net effect is an accumulation of 

small perturbations over the entire “non-native” ensemble.21

Shuffled sequence variants show the same clustering trends as the HP model

We can be somewhat more quantitative in our analysis by examining sequences with the 

same amino acid composition but different ordering. Since these sequences all have the same 

binding energy, the only difference in the residence time arises from the position of amino 

acids within the sequence. Monsellier et al. constructed four scrambled variants of 

apomyoglobin (apoMb1–29) and measured their aggregation rates along with the wild type.37 

Figure 12 compares the measured aggregation rates to the elongation rates calculated from 

Eq. (28). While the theoretical rates are not directly comparable to the experimental rates 

due to the non-physical energy parameters and complications like nucleation, our theory 

does a good job of ranking the aggregation propensity of the sequences, getting 4 out of 5 

sequences correct.
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An inspection of the modified sequences reveals the mechanism of aggregation 

enhancement. Monsellier et al. found that the aggregation propensity is highly correlated 

with the width of the most aggregation prone region. They were able to increase the width of 

the hot spot by moving aggregation prone residues from the periphery of the sequence to the 

middle.37 The analog of these manipulations in our HP model would be to modify the ALT 

sequence to resemble HSC. Therefore, the correlation observed by Monsellier et al. can be 

explained by the long residence times of HSC in our HP model. We note that, in addition to 

promoting fibril elongation, clustering the aggregation prone residues into a single hot spot 

will be highly beneficial to surmounting the entropic barrier associated with fibril 

nucleation.38,39

Conclusion

While the amyloid state is a generic property of the polypeptide backbone,7,8 the sequence 

of side chains clearly matters. Our simple model shows that sequences with identical binding 

energies can have widely varying binding lifetimes depending on the arrangement of amino 

acids.

The growth rate of a fibril depends on both the attachment rate of new molecules and the 

rate molecules detach. Highly ordered fibrils are grown when molecules bound in-register 

are retained on the fibril while mis-aligned molecules unbind faster than new molecules can 

arrive. Sequences like Aβ and IAPP contain hot spots of varying length and separation, 

providing a lock-and-key fit that provides strong discrimination between in-register and mis-

aligned states. In contrast, molecules like Huntingtin and low complexity domains in 

biomaterials display repetitive motifs that allow for more heterogeneity in binding.6 In these 

latter cases there may be a tradeoff between the strength conferred by high fidelity binding 

and the rapid self-healing afforded by promiscuous binding.

Detailed calculations of the alternating and triblock sequence binding lifetimes are available 

in the Supporting Information.
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Figure 1. 
High resolution structures of amyloid fibrils show β-sheets composed of molecules perfectly 

aligned in the in-register state (left). However, fibrils grown at very high concentrations or 

grown from molecules with poor templating specificity can contain alignment defects 

(right). We describe the alignment between an incoming molecule (grey) and the existing 

fibril (black) using the registry variable R.
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Figure 2. 
Cartoon of the two H-bonding models used in the calculations. a) The zipper model has a 

single reaction coordinate n that describes the number of H-bonds formed. Bonding begins 

on the left and progresses toward the right. The molecule unbinds when n = 0. b) In the two-

dimensional model bonds can be broken at either end of the chain. A configuration is 

described using two reaction coordinates; x is the number of broken H-bonds on the left, and 

y is the position of the last formed H-bond on the right. The molecule unbinds when x = y 
and the fully bound state is when x = 0, y = L.
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Figure 3. 
(left) Bound state lifetimes (computed from Eq. (6) and Eq. (14)) as a function of the 

alignment between the incoming molecule and the fibril. The lifetime is maximized in the 

perfectly aligned state (R = 0) and drops exponentially as |R| increases. (right) Capture 

probabilities (Eq. (18)) of the uniform sequence as a function of the alignment. As the 

concentration increases, the rate of monomer collisions with the fibril end increases from 

ron=104 s−1 (black), 106 s−1 (red), to 108 s−1 (blue). The capture probability transitions from 

a sharply peaked function at R = 0 to a broad plateau. The plateau indicates that many mis-

registered molecules are incorporated in the fibril. ε0 = 0.5, L = 20
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Figure 4. 
Cartoon representation of sequence motifs. UNI is a sequence where all amino acids have 

identical binding energies. ALT sequences alternate H and P residues. The subscript 

indicates the sign of the binding energy perturbation δ. Positive δ indicates that the sequence 

begins with a H residue so the first bond is strong. The remaining sequences are triblock 

polymers with an aggregation prone region either in the center (HSC) or split between the 

two flanking regions (HSF).
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Figure 5. 
Bound state lifetimes for sequences starting from the fully bound state. UNI (black), ALT+ 

(red), HSC (green), HSF (blue). (a) When the average binding energy ε0 exceeds ~ 0.5 the 

sequences follow an Arrhenius trend, although all sequences have lifetimes greater than the 

Arrhe-nius estimate (Eq. (20), purple). δ = 0.3, L = 20 (b) Ratio of binding lifetimes to the 

Arrhenius estimate (Eq. (20)) as a function of the sequence length. At large L the ratio 

becomes constant, indicating Arrhenius scaling. With these parameters (ε0 = 0.5, δ = 0.3) 

UNI and ALT sequences nearly superimpose.
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Figure 6. 
Binding lifetimes as a function of the energy perturbation parameter δ starting from the fully 

bound state (a) and from the initial contact state (b). The two plots differ primarily in the 

vertical scale. This is because the initial contact lifetime is an average of event where the 

molecules proceed to the fully bound state and events where the molecules unbind almost 

immediately (on the nanosecond timescale). These averages are dominated by the fully 

bound states. For large values of |δ| all four sequences have lifetimes that are increasing 

function of |δ| because the weakly bound sites are net repulsive and contribute minimally to 

the binding lifetime. ε0 = 0.5, L = 20
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Figure 7. 
Binding lifetimes as a function of the location of the first contact for diblock, triblock, and 

tetrablock sequences. For all sequences there is a noticeable increase in the lifetime when 

the first contact is a strong binding site. This is due to the reduced probability of rapid 

dissociation. ε0 = 0.5, δ = 0.2
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Figure 8. 
Capture probabilities (Eq. (18)) as a function of binding alignment R and the diffusion 

collision rate ron=104 s−1 (black), 106 s−1 (red), to 108 s−1 (blue). Higher values of ron, 

corresponding to higher monomer concentration, result in greater probability for mis-

registered molecules to be incorporated in the fibril. The HP sequences show considerably 

more structure than the exponential dependence of the UNI sequence (Figure 3) due to the 

effects of aligning the strong binding H residues. In particular, the ALT sequence has lower 

capture probabilities when R is odd because these alignments only allow for the formation of 

weak H-P bonds. Also, the HSF sequence shows secondary peaks at large |R| when the H 

residues from opposite ends of the chain are brought together. ε0 = 0.5, δ = 0.3
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Figure 9. 
Comparison of the fibril growth rate and average registry computed by Eq. (28) and Eq. (29) 

(lines) and Gillespie simulation (dots). (a) Growth rate (molecules per second) as a function 

of the diffusion-limited binding rate. The theory, while quantitatively inaccurate, correctly 

predicts changes in the ranking of sequences as a function of concentration. (inset) The low 

concentration regime shows a sharp increase in the growth rate at the solubility 

concentration. (b) The theory also does a good job of predicting the relative order of average 

registries, even at low concentration. The HSF has the most ordered fibrils at low 

concentration (small ron), but becomes less ordered than the other sequences at high 

concentration when large registry mismatches become more common. These large 

mismatches promote binding events between H residues at opposite ends of the triblock. 

Error bars show the standard deviation from three simulations. ε0 = 0.5, δ = 0.3
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Figure 10. 
Longer sequences can be used to grow more highly ordered fibrils. (a) Binding lifetimes 

decay exponentially for UNI chains regardless of the chain length. The lifetimes of L = 20 

(blue) and L = 8 (red) chains superimpose when scaled by the lifetime of the in-register 

state. This means that registry mismatches at the same R will be incorporated at similar rates 

for both systems when the fibrils are grown near their solubility concentration. (b) The 

average alignment error increases proportional to ln ron (or ln c). The curves collapse to a 

single line when the diffusion rates are scaled by the lifetime of the in-register state. This is 

because the in-register lifetime scales with the reciprocal of the solubility concentration. 

Since chains of different length have similar 〈|R|〉 at the same supersaturation, the relative 

mismatch, 〈|R|〉/L can be minimized with longer chains. ε0 = 0.5
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Figure 11. 
Binding lifetimes of Aβ40 and IAPP as a function of alignment. In both cases the lifetime of 

the in-register state is two orders of magnitude greater than any other state. This separation 

of timescales allows for the growth of highly ordered fibrils. (inset) Binding energy EI as a 

function of alignment. The in-register state is a deep well at R = 0. The high energy of the R 
= ±1 states prevents the incorporation of these “near misses” in the fibril.
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Figure 12. 
Comparison of the computed growth rates of apoMb derived sequences to the growth rates 

measured by circular dichroism.37 The units of the theoretical calculation cannot be 

determined due to our use of energy parameters derived from bioinformatics. Calculations 

performed using ron = 103 s−1. Similar results are obtained for other values of the diffusion 

rate (i.e. monomer concentration) or for other experimental assays of the growth rate.
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