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Abstract

Alternative splicing is an important mechanism used by the cell to generate greater transcriptomic and proteomic diversity from
the genome. In the heart, alternative splicing is increasingly being recognised as an important layer of post-transcriptional gene
regulation. Driven by rapidly evolving technologies in next-generation sequencing, alternative splicing has emerged as a crucial
process governing complex biological processes during cardiac development and disease. The recent identification of several
cardiac splice factors, such as RNA-binding motif protein 20 and 24, not only provided important insight into the mechanisms
underlying alternative splicing but also revealed how these splicing factors impact functional properties of the heart. Here, we
review our current knowledge of alternative splicing in the heart, with a particular focus on the factors controlling cardiac
alternative splicing and their role in cardiomyopathies and subsequent heart failure.
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Introduction

The heart exhibits adaptive responses to a wide array of ge-
netic and external factors, such as hypertension, to maintain
contractile function. When compensatory responses are not
sustainable, cardiac dysfunction occurs, leading to heart fail-
ure where the heart is unable to pump enough blood through
to meet the body’s needs for nutrients and oxygen. The failing
heart undergoes several structural alterations, most notably
hypertrophy of cardiomyocytes, dilation of the ventricles, an
increase in extracellular matrix proteins, and potentially also
cell death. Heart failure is an increasingly prevalent and lethal
disease that is often caused by underlying cardiomyopathies.

Cardiomyopathies are a heterogenous group of disorders
where the structure and function of the heart is affected.
They either are confined to the heart or are part of systemic
disorders. Cardiomyopathies can broadly be categorised as
dilated cardiomyopathy (DCM), hypertrophic
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cardiomyopathy (HCM), restrictive cardiomyopathy (RCM),
ischemic cardiomyopathy (ICM), and arrthythmogenic right
ventricular cardiomyopathy (ARVCM) (Elliott et al. 2008;
Muchtar et al. 2017; Pinto et al. 2016). Cardiomyopathies
where no pathogenesis can be identified are generally termed
idiopathic cardiomyopathy (Braunwald 2017). The most com-
mon form of cardiomyopathy is DCM with HCM as a close
second.

The European Society of Cardiology has defined DCM as
dilation of the left or both ventricles that is not explained by
abnormal loading conditions or coronary artery disease
(Elliott et al. 2008). DCM is characterised by increased ven-
tricular diameter with ventricular walls of approximately nor-
mal thickness and varying extents of fibrosis. Classification
guidelines indicate that DCM may be diagnosed when coro-
nary artery disease, valvular disease, abnormal loading condi-
tions, hypertension, and congenital heart disease are ruled out
as primary cause of cardiac dysfunction (Elliott et al. 2008).

The prevalence of DCM and of familial DCM is not fully
known, but is believed to be underestimated (Hershberger et
al. 2013). DCM is the most common cause of cardiac trans-
plantation and death for non-ischaemic heart failure in young
adolescents and adults (McNally and Mestroni 2017; Taylor et
al. 2006) and the reported incidence rate ranges from 1:2700
(Codd et al. 1989) to 1:250 (Hershberger et al. 2013). Up to
half of DCM cases are familial and causative mutations have
been described in more than 50 genes encoding mostly
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structural components of cardiomyocytes directly involved in
the cardiac contractile machinery (McNally and Mestroni
2017). However, a novel molecular mechanism of heart dis-
ease has emerged in the past decade that is not directly in-
volved in the contractile machinery of the heart. Driven by
rapidly evolving technologies in microarray and next-
generation sequencing, aberrant RNA splicing has emerged
as a mechanism associated with cardiomyopathies (Kong et
al. 2010; Lee et al. 2011; Song et al. 2012).

In this review, we will discuss the importance of alternative
splicing in the heart and individual components of the splicing
machinery that have been identified in recent years to cause
cardiomyopathy. In addition, we discuss possible therapeutic
interventions and future directions of research.

Alternative splicing

RNA splicing is the molecular process by which introns are
removed from precursor RNAs and exons are linked together
to form the mature mRNA. This process, which occurs mainly
in the nucleus, can be broadly divided into constitutive splic-
ing and alternative splicing. Constitutive splicing is consid-
ered the default pathway whereby all introns are removed
from pre-mRNA and exons are joined together in the same
order as transcribed from the genome. On the other hand,
alternative splicing results in exons that can be in- or excluded
in different combinations to create a diverse array of function-
al RNA transcripts from a single gene (Fig. 1).

Nearly all human multi-exon genes undergo alternative
splicing, indicating that this post-transcriptional step is central
for human gene expression. Unlike promoter activity that is
predominantly reflected in the abundance of transcripts, alter-
native splicing influences the structure of the mRNAs and
their potential encoded proteins. As a result, it influences bind-
ing properties, intracellular localization, enzymatic activity,
protein stability, and post-translational modification of numer-
ous gene products (Manning and Cooper 2017).

Yang and colleagues (Yang et al. 2016) demonstrated that
changes in alternative splicing have a large impact on protein-
protein interaction partners. Alternatively spliced isoforms of
proteins exhibit strikingly different interaction profiles and
thus, in the context of global interactome networks, appear
to behave as if encoded by distinct genes rather than as minor
variants of each other (Yang et al. 2016). Alternative splicing
is therefore a post-transcriptional mechanism to generate pro-
tein diversity from individual genes, which greatly expands
the functional abilities of cells.

The most common type of alternative splicing consists of a
single cassette exon that is either included or skipped in the
mature mRNA (Kim et al. 2008). Cassette exons can also be
spliced or skipped in tandem or spliced in a mutually exclu-
sive manner as shown in Fig. 1. Another form of alternative
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splicing is intron retention whereby (part of) introns are
retained in the mature mRNA which are either translated or
end up in the non-sense-mediated decay pathway (Vanichkina
et al. 2018). Alternative 5’ or 3’ splice site selection results in
short and long forms of an exon, thereby creating alternative
open reading frames, that when translated, result in different
protein isoforms. Lastly, back-splicing has emerged as rela-
tively new category of alternative splicing which results in the
formation of circular RNAs (circRNAs). Nigro and colleagues
first described them in 1991; however, this species of RNA
molecules was largely ignored due to their unusual splicing
behaviour in which exons are joined at consensus splice sites,
but in a shuffled order relative to the primary transcript (Nigro
et al. 1991). Only decades later with the evolution of next-
generation sequencing, the vast expression of circRNAs be-
came evident (Jakobi et al. 2016; Jeck and Sharpless 2014;
Khan et al. 2016; Memczak et al. 2013; Salzman et al. 2012;
Tan et al. 2017; Werfel et al. 2016).

The first functional studies on circRNAs revealed a possi-
ble role in gene expression regulation. Circular RNAs can act
as efficient miRNA antagonists (microRNA “sponges™)
(Hansen et al. 2013; Memczak et al. 2013; Zheng et al.
2016), whereby the circRNA harbours dozens of highly con-
served sequences that can efficiently bind specific
microRNAs and thereby strongly suppress microRNA activi-
ty. CircRNAs have also been shown to facilitate transcription
of their host gene by directly associating with RNA polymer-
ase II (Zhang et al. 2013) or form platforms for protein inter-
actions (Du et al. 2016). Interestingly, emerging evidence sug-
gests that some circRNAs contain open reading frames that
can be translated into proteins (Legnini et al. 2017; Pamudurti
et al. 2017; Yang et al. 2017).

Splicing is carried out by the spliceosome, a large ribonu-
cleoprotein (RNP) complex found primarily within the splic-
ing speckles of the cell nucleus. The spliceosome is comprised
of more than a hundred core proteins (Jurica and Moore 2003)
and five small nuclear RNAs (snRNAs Ul, U2, U4, U5, and
U6). The core splicing signal in precursor RNAs includes
three elements that are present in every intron: the 5’ splice
site (which includes the GU nucleotides), the 3" splice site
(which includes the AG nucleotides and the polypyrimidine
tract), and the branch point sequence (Wang and Burge 2008).

Alternative splicing regulation is mediated by cis-regulato-
ry sequences found in the exon and in neighbouring introns.
Cis-regulatory sequences can facilitate inclusion or exclusion
of an exon by recruiting RNA-binding proteins that bind the
RNA molecule and act as trans-regulatory factors (House and
Lynch 2008). Exonic splicing enhancer (ESE) and intronic
splicing enhancers (ISE) recruit splice factors that subsequent-
ly facilitate the inclusion of an exon in the mature transcript.
While exonic splicing silencers (ESS) and intronic splicing
silencers (ISS) facilitate the exclusion of an exon in the mature
transcript (Fig. 2).
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Fig. 1 Different processes of alternative splicing

In general, splicing enhancers bind Ser/Arg-rich domain-
containing splice factors (SR proteins), which facilitate
spliceosome assembly, whereas splicing silencers recruit pro-
teins of the hnRNP family, which can interfere with recruit-
ment of the spliceosome or SR proteins. SR proteins are
characterised by the presence of at least one RNA recognition
motif (RRM) and a serine/arginine-rich domain (RS domain).
The RNA recognition motif domain is required for RNA-
binding, whereas the RS domain functions as a protein inter-
action domain.

However, it has been shown that these splice factors can
have a dual role as splicing enhancer or repressor depending
on the context (Sun et al. 2012; Wang et al. 2012; Zhang et al.
2010). This highly complex splicing machinery and in-depth
molecular mechanisms of alternative splicing are reviewed

Mutually exclusive exons

Alternative 5’ splice site

Alternative 3’ splice site

Intron retention

mRNA

elsewhere (House and Lynch 2008; Lee and Rio 2015; Wahl
et al. 2009; Wang and Burge 2008; Will and Luhrmann 2011).

Alternative splicing in the heart
Alternative splicing in heart development

In addition to its central role in increasing transcriptome com-
plexity and proteomic diversity, alternative splicing also
drives decisive physiological changes. The physiological
changes that occur before and after birth are critical as the
foetal heart adapts to birth and converts to adult function to
meet the demands of increased workload in the developing
organism (Olson 2006). These developmental and postnatal

5" splice site Branch site Poly Y tract 3’ splice site
GURAGU |_| Il YNCURAC Y (n) YAG
u 5 L|
ESE ISE ISS ESS

Fig. 2 Cis-regulatory sequences necessary for splicing. The four basic
splicing sequences are located in the 5’ splice donor site, the 3" splice
acceptor site, the branchpoint sequence, and the polypyrimidine tract
(poly Y tract). RNA-binding proteins of the spliceosome bind to these
sequences and catalyse the splicing reaction. Exonic and intronic splicing

enhancers and silencers (ESE, ISE, ESS, ESI) determine the efficiency of
exon inclusion. The branchpoint sequence is located approximately 30 bp
upstream of the 3’ splice site while the poly Y tract is located between the
branch point sequence and the 3 splice site. (N, any nucleotide; Y, C/U;
R, A/G)
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changes are accomplished through transcriptional and post-
transcriptional networks, including alternative splicing.

The importance of alternative splicing in the heart has been
pioneered by the study of individual developmentally regulat-
ed splice events in genes such as cardiac troponin T (cTnT)
(Cooper and Ordahl 1985). In the embryonic heart, exon 5 of
cTnT is predominantly included in mRNAs but is excluded in
cTnT mRNAs expressed in the adult heart (Cooper and
Ordahl 1985). Exon 5 encodes a ten amino acid protein do-
main, which makes embryonic cTnT-containing myofibrils
more sensitive to calcium than adult ¢cTnT myofibrils and
thereby influences the contractile properties of embryonic
myocardium (Godt et al. 1993; McAuliffe et al. 1990).

Other critical genes in the heart such as myomesin
(Myoml) (Schoenauer et al. 2011), titin (ttn) (Lahmers et al.
2004), and LIM domain-binding 3 (Ldb3) (Huang et al. 2003)
have been shown to have developmentally regulated isoforms
with distinct functions.

The extent of developmentally regulated alternative splic-
ing became clear when Kalsotra and colleagues (Kalsotra et al.
2008) were the first to study transcriptome-wide changes in
alternative splicing during heart development using exon ar-
rays. The study revealed 63 alternative splicing events, which
were associated with enriched motifs for the splicing factors
CUGBP Elav-like family member (CELF) and muscle blind-
like splicing regulator (MBNL). While CELF proteins de-
crease during cardiac development, MBNL increases.
Manipulation of CELF and MBNL expression in the adult
heart to replicate their levels in the embryo results in reactiva-
tion of the embryonic splicing pattern. In a later study, the
same group demonstrated that the developmental downregu-
lation of CELF proteins CUG-binding protein 1 and 2
(CUGBP1 and 2) in the heart is mediated by microRNAs
(Kalsotra et al. 2010). In addition, a large-scale RNA sequenc-
ing study revealed that alternative splicing transitions occur
during late embryonic and postnatal mouse heart develop-
ment, and demonstrated that protein isoform switches are im-
portant regulatory components of postnatal cardiac develop-
ment (Giudice et al. 2014). Altogether, they identified a highly
conserved and highly regulated programme of alternative
splicing that supports postnatal growth and maturation of the
developing mouse heart.

In a more recent study, Wang and colleagues performed
genome-wide profiling of alternative splicing transitions be-
tween human foetal and adult hearts for the first time using
RNA-seq data (Wang et al. 2016). The difference in alterna-
tive splicing was mainly observed in protein-coding genes
rather than in long non-coding RNAs. Interestingly, intron
retention occurred more frequently in the foetal hearts than
in the adult hearts, indicating that intron retention may be
involved in human heart development. The foetal- and adult-
specific alternative splicing events were enriched in mainly
cell proliferation functions and energy-specific categories,
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respectively. Such splicing transitions during human heart de-
velopment have also been observed in mouse and chicken
heart development (Giudice et al. 2014).

Alternative splicing in heart failure
and cardiomyopathy

Genes that are important for cardiac function can be mis-
spliced in heart disease (Anderson et al. 1991; Neagoe et al.
2002; Schoenauer et al. 2011), but the extent of mis-splicing
has only become clear in the past decade with the technolog-
ical advances in microarrays and RNA sequencing. It has now
been established that altered splicing contributes to a large
number of human disease (Scotti and Swanson 2016).

In cardiomyopathy, abnormal splicing of sarcomeric and
ion channel genes has been reported in several studies.
These changes can ultimately alter the normal internal archi-
tecture and homeostasis of the heart leading to heart failure
(Lara-Pezzi et al. 2013; Noyes et al. 2017; van den Hoogenhof
et al. 2016; Zhu et al. 2017).

Kong and colleagues demonstrated for the first time that
alternative splicing is broadly altered in human heart failure
(Kong et al. 2010). Using exon arrays, they evaluated RNA
splicing in left ventricles of patients with ischemic cardiomy-
opathy compared to control left ventricles. This revealed ab-
errant splicing of several sarcomere genes such as cardiac
troponin T, cardiac troponin I, filamin C, and 3-myosin heavy
chain, which have all been implicated in cardiomyopathies
before. Next to ischemic cardiomyopathy, these splicing
events could be confirmed with RT-PCR in dilated cardiomy-
opathy and aortic stenosis left ventricular tissue. Interestingly,
the splicing changes preceded the onset of heart failure in
aortic stenosis samples, which is often accompanied by left
ventricular hypertrophy. Furthermore, the authors demonstrat-
ed that the identified mRNA splicing patterns accurately clas-
sified samples by diagnostic label, providing proof of concept
that mRNA splicing profiles may have utility as diagnostic or
prognostic markers in heart disease (Kong et al. 2010).

Previous studies have shown that the foetal cardiac gene
programme is reactivated in cardiac hypertrophy induced by
pressure overload (Barry et al. 2008; Olson 2006; Rajabi et al.
2007). These genes typically play roles in metabolic and con-
tractile functions of the heart and are regulated by a set of
transcription factors, which play critical roles in heart devel-
opment (Oka et al. 2007; Taegtmeyer et al. 2010). These find-
ings led to the question whether the reactivation of a foetal
gene programme in cardiac hypertrophy also involves a
“foetal RNA splicing” programme.

Park and colleagues where the first to perform a systematic
genome-wide approach to systematically define gene expres-
sion and alternative splicing profiles in cardiac hypertrophy in
comparison with embryonic and postnatal stages of heart de-
velopment in the mouse (Park et al. 2011).



Biophys Rev (2018) 10:1061-1071

1065

They found that cardiac hypertrophy induced by trans-
verse aortic constriction involves widespread mRNA iso-
form changes. While some isoform changes were hypertro-
phy-specific, other events were associated with develop-
ment, particularly for the events regulated at the early stage
of hypertrophy, suggesting activation of a foetal post-
transcriptional programme in the heart in response to pres-
sure overload. Gene Ontology analysis indicated that reg-
ulated alternative splicing events are biased to genes with
functions in cell adhesion and cell morphology, suggesting
an important role of alternative splicing in remodelling the
heart. Their analysis also indicated that downregulated ex-
pression of Forkhead box protein 1 (Fox-1) during cardiac
hypertrophy may play a role in establishing the foetal
splicing programme in the hypertrophied heart. This sug-
gests that mRNA isoform regulation plays critical roles in
remodelling the heart under pressure overload. The con-
cept that hypertrophy is characterised with re-expression
of a foetal splice variant programme was later confirmed
by Ames and colleagues in a rat model of cardiac hyper-
trophy (Ames et al. 2013). Interestingly, almost half of the
observed alternative splice variants in hypertrophy were
normally expressed in the foetal heart. These findings sug-
gest that cardiac hypertrophy shares post-transcriptional as
well as transcriptional regulatory mechanisms with foetal
heart development.

Cardiac hypertrophy is generally categorised in physio-
logical hypertrophy and pathological hypertrophy.
Physiological hypertrophy is activated by exercise training
and can lead to increase cardiac size that is characterised
by normal cardiac morphology with a normal and/or en-
hanced cardiac function (Ooi et al. 2014). Pathological
hypertrophy compensates for increased workload; howev-
er, its progression generally leads to adverse cardiac re-
modelling and cardiac dysfunction often leading to heart
failure. The underlying molecular mechanisms responsible
for the different types of hypertrophic adaptations remain
unclear. In an attempt to elucidate some of the molecular
mechanism differentiating pathological hypertrophy from
physiological hypertrophy, Song et al. performed deep
RNA sequencing on mouse models of pathological and
physiological hypertrophy of the heart (Song et al. 2012).
They found 513 exons to be differentially expressed in
pathological hypertrophy, while 414 exons were differen-
tially expressed in physiological hypertrophy. The changes
in alternative splicing were mostly related to gains or
losses of functional domains, changes in activity, and lo-
calization of the encoded proteins. Further bioinformatics
analysis of the differentially spliced genes revealed that the
signalling pathways involved in physiological hypertrophy
were strikingly different from pathological hypertrophy.
The identification of highly specific transcriptomic signa-
tures related to physiological and pathological hypertrophy

respectively could provide useful insights into understand-
ing the mechanisms underlying both conditions.

To gain more insight into the cis- and trans-regulatory
factors involved in pressure-overloaded cardiac hypertro-
phy, the same group employed a systematic approach to
identify cis-regulatory elements in differentially spliced
genes of their previously published RNA-seq data set.
Bioinformatics analysis revealed binding motifs in the
intronic regions involved in exon exclusion and inclusion,
which predicted the binding of splicing factors such as
muscleblind-like (MBNL), splicing component 35 kDa
(SC35), serine/arginine-rich splicing factor 1 (SRSF1), ep-
ithelial splicing regulatory protein (ESRP), polypyrimidine
tract binding protein (PTB), and CUG-binding protein 2
(CUGBP2). They could experimentally confirm that pro-
tein levels of a subset of these predicted splicing factors
were significantly altered during cardiac hypertrophy. This
suggests that chronic pressure-overloaded hypertrophy is
closely associated with distinct alternative splicing due to
altered expression of splicing factors (Kim et al. 2014).

To date, most transcriptome-wide alternative splicing
studies have been performed on mouse models of cardiac
disease. To establish whether the alternative splicing pro-
files discovered in mouse models are conserved in humans,
more studies are needed on clinically relevant heart
samples.

Recently, a large-scale RNA sequencing study on hearts
of 97 patients with dilated cardiomyopathy and 108 non-
diseased controls revealed 1212 exons that were signifi-
cantly different between DCM patients and donor control
hearts (Heinig et al. 2017). Of the 899 differentially spliced
genes, 11 were established genes implicated in DCM.
Furthermore, the differentially spliced genes were enriched
for the GO terms “MAPK binding”, “actin filament
organisation”, “Z disc”, and “I band”. This suggests that
most alternative splicing changes were affecting the con-
tractile machinery of the cardiomyocyte, thereby contrib-
uting to the DCM phenotype. However, whether the splic-
ing profile resembled that of foetal stages was not investi-
gated. Interestingly, utilising a combination of genotype
SNP arrays and RNA sequencing on each sample revealed
an important role for genetic variation in determining RNA
splicing profiles (Heinig et al. 2017). This suggests that
RNA splicing differences in dilated cardiomyopathy are
in part controlled by genetic factors.

Altogether, the transcriptome-wide studies of the past
decade established a strong association of mis-splicing of
critical cardiac genes with hypertrophy, dilated cardiomy-
opathy, and heart failure. Whether these widespread chang-
es have a significant contribution in disease onset or pro-
gression to heart failure is not clear. Therefore, it is impor-
tant to understand the regulation of alternative splicing that
is largely mediated through RNA-binding proteins.
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Splicing factors implicated in cardiomyopathy

Mouse models of splicing factor-related
cardiomyopathy

Myocardial expression of many RNA-binding proteins chang-
es in heart failure, both in human patients and in mouse
models, following a general downregulation of splicing-
related factors (Felkin et al. 2011; Kong et al. 2010; Park et
al. 2011). This suggests that downregulation of splice factors
in the heart could have a major role in the acetiology of disease.
Indeed, cardiac-specific knockout of a splicing factor has been
shown for the first time to cause DCM by Ding and colleagues
(Ding et al. 2004). Cardiomyocyte-specific knockout of the
SR splicing factor splicing component 35 kDa (SC35) led to
the development of DCM around 5 weeks of birth. The same
group demonstrated a year later that cardiomyocyte-specific
knockout of another SR protein family member alternative
splicing factor 2 (ASF/SF2) (also known as SRSF1) results
in the development of DCM by week 6 after birth and rapidly
progression in heart failure, where mice die around week 8
(Xu et al. 2005). The authors identified a subset of function-
ally important genes to be mis-spliced: calcium/calmodulin-
dependent kinase II delta, cardiac troponin T, and Cypher.
Cardiomyocytes deficient in ASF/SF2 display a hypercontrac-
tile phenotype due to a defect in postnatal splicing switch of
CaMKII®. This failure results in mis-targeting of the kinase to
sarcolemmal membranes, causing severe excitation-
contraction coupling defects.

SRp38 (also known as SRSF10) null mice were embryon-
ically lethal due to cardiac defects including atrial and ventric-
ular septal defects. Furthermore, knockout of SRp38 resulted
in mis-splicing of triadin, a cardiac protein that functions in
regulating calcium release from the sarcoplasmatic reticulum
during excitation-contraction coupling (Feng et al. 2009).

One of the few muscle-specific splicing factors RNA-
binding motif protein 24 (Rbm24) was recently shown to
be a major regulator of heart and skeletal muscle splicing
(Yang et al. 2014). Rbm24 knockout mice were lethal and
died between E12.5 and E14.5 showing multiple cardiac
malformations, including ventricular septum defect, re-
duced trabeculation and compaction, and dilated atria.
Strikingly, the formation of sarcomeres was almost
completely absent in cardiomyocytes. This suggests a cru-
cial role for Rbm24 in sarcomerogenesis, which was in line
with a previously published zebrafish model where rbm24
was knocked down using morpholinos (Poon et al. 2012).
Sixty-eight Rbm24-dependent splicing events were identi-
fied, of which most genes have a previously described crit-
ical role in cardiac development, cardiomyopathy, and
sarcomerogenesis (Yang et al. 2014). Furthermore, the ma-
jority of the alternative splicing events was exon exclu-
sions, which indicates that Rbm24 is a splicing activator.
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A more recent study demonstrates a novel molecular mech-
anism whereby hypoxia-induced upregulation of the splicing
factor SF3B1 (Splicing factor 3B subunit 1) causes mis-
splicing of ketohexokinase and triggers the onset of cardiac
hypertrophy by enforcing fructolysis (Mirtschink et al. 2015).
Interestingly, cardiomyocyte-specific ablation of SF3B1 or
ketohexokinase prevents the metabolic switch and protects
from pathological cardiac growth.

Members of the FOX-protein family are also dysregulated
in heart disease. Downregulation of RBFOX1 (RNA-binding
protein, fox-1 homologue) is associated with heart failure in
humans and mouse models, and the loss of Rbfox1 exacer-
bates pressure overload-induced heart failure in mice (Gao et
al. 2016). It was shown that Rbfox1 controls the splicing of
the myocyte enhancer-2 (Mef2) family members by regulating
the splicing of the mutually exclusive exons «1 and «2, which
interferes with the transcriptional activity of Mef2 family
members. Finally, induction of Rbfox1 expression in murine
pressure overload models substantially attenuated cardiac hy-
pertrophy and progression to heart failure (Gao et al. 2016).

Expression of Rbfox2 is also decreased in the pressure-
overloaded mouse heart, and conditional deletion of Rbfox2
leads to dilated cardiomyopathy and heart failure (Wei et al.
2015). Splicing analysis of both pressure-overloaded hearts
and Rbfox2 knockout hearts revealed enrichment in develop-
mentally regulated splicing events.

Altogether, the splicing factors described above seem to
each control the alternative splicing of a specific subset of
genes, which when disturbed leads to cardiac defects or a
cardiomyopathy phenotype. It would therefore be interesting
to start investigating the clinical relevance of these splicing
factors by including them in routine genetic screens for famil-
ial cardiomyopathies.

Splicing factors in human cardiomyopathies

One of the best-known splicing-associated diseases is myo-
tonic dystrophy, which is a neuromuscular disease
characterised by dilated cardiomyopathy, cardiac conduction
defects, and skeletal muscle weakness (Liquori et al. 2001;
Pelargonio et al. 2002). Type I myotonic dystrophy (DM1)
is caused by a mutational expansion of a repetitive trinucleo-
tide sequence (CUG) in the 3'-untranslated region of the
DMPK gene (myotonic dystrophy protein kinase gene).
Generally, 5-34 CUG repeats are observed in normal alleles
but their number reaches 502000 in DM1. The less frequent
type 2 myotonic dystrophy (DM2) is caused by CCUG ex-
pansion in an intron of the zinc finger protein 9 (ZFN9) gene.

In DM, the widespread alternative splicing changes are a
result of the CUG expansions that act as a molecular sponge
for the MBNL splicing factors (Philips et al. 1998). These
mutant RNAs alter the activities of RNA processing factors,
including MBNL proteins, leading to re-expression of foetal
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isoforms in adult tissues and DM1 pathology (Fardaei et al.
2002; Thomas et al. 2017).

To date, there is only one splicing factor that has been
identified as a direct cause of cardiomyopathy. Mutations in
RNA-binding motif protein 20 (RBM20) were shown to cause
an early onset and clinically aggressive form of DCM
(Beqqali et al. 2016; Brauch et al. 2009; Li et al. 2010;
Refaat et al. 2012). Next-generation sequencing in a large
cohort of idiopathic DCM (iDCM) patients revealed that titin
(TTN) is the most frequently affected gene in DCM.
Interestingly, RBM20 was found among the most frequently
mutated genes in DCM (Haas et al. 2014). Studies in rodents
demonstrated that RBM20 is highly enriched in the heart and
regulates the alternative splicing of a set of genes as a splicing
repressor of which titin (TTN) is its most prominent splicing
target (Dauksaite and Gotthardt 2018; Guo etal. 2012; Lietal.
2013; Maatz et al. 2014).

TTN is a giant sarcomeric protein, which acts as a molec-
ular spring in the sarcomere, and as such, defines the passive
stiffness of the cardiomyocyte. Titin-based passive stiffness is
mainly adjusted by isoform switching through alternative
splicing between the longer titin N2BA isoform and the
N2B isoform. A perinatal switch in titin isoforms from the
foetal compliant titin N2BA to the less compliant (stiffer)
N2B adult isoform occurs in the heart to adapt to the postnatal
cardiac load demands (Opitz et al. 2004).

Altered splicing of 77N occurs in a number of cardiac
diseases such as heart failure, ischemic heart disease, and hy-
pertrophic cardiomyopathy (Chauveau et al. 2014). Studies
have shown a shift in expression from the stiff N2B isoform
of titin towards the compliant N2BA isoform in human car-
diomyopathies. This shift has been associated with reduced
myofibrillar stiffness in DCM patients (Makarenko et al.
2004; Nagueh et al. 2004), which has been proposed as a
mechanism to improve diastolic filling (Fukuda et al. 2003;
Methawasin et al. 2014). In addition, an increase in compliant
titin has also been suggested to impair systolic performance by
affecting the Frank-Starling mechanism (FSM), i.e., the ability
of the sarcomere to increase contractile force in response to
stretch (Beqqali et al. 2016; Methawasin et al. 2014).

Guo and colleagues were the first to demonstrate that
Rbm?20 is a major regulator of titin alternative splicing (Guo
et al. 2012). Loss of Rbm20 leads to aberrant inclusion of
many exons in the TTN transcript, resulting in the expression
of very large and compliant TTN isoforms in the heart, which
is believed to underlie the DCM phenotype in RBM20 muta-
tion carriers.

The same group has proposed that regulating titin splicing,
by means of modulating Rbm20 levels, could be beneficial for
the heart in the setting of heart failure with preserved ejection
fraction (HFpEF) (Guo and Sun 2018; Methawasin et al.
2014, 2016). Although it may be advantageous to modulate
Rbm20-dependent titin splicing to decrease passive stiffness

in certain types of heart disease where passive stiffness is
increased, the effect on other Rbm20 targets such as calcium
handling genes must be carefully evaluated.

A heterozygous loss of Rbm20 in mice is sufficient to
induce a shift in CamklIId isoforms, which leads to a disturbed
calcium handling in cardiomyocytes (van den Hoogenhof et
al. 2018). Importantly, patients with mutations in RBM20 of-
ten suffer from lethal arrhythmias that cannot be explained by
mis-splicing of titin alone. In addition to adapting titin isoform
expression and thus cardiac filling in diastole, RBM20 affects
a set of at least 30 genes, which have been implied in diastolic
function, sarcomere assembly, and ion transport. These genes
include sarcomeric genes such myomesin 1, but also Ca** and
ion handling genes such as calcium/calmodulin kinase 116
(Camk2d, ryanodine receptor 2 (Ryr2) and calcium voltage-
gated channel subunit alpha 1C (Cacnalc) (Guo et al. 2012;
Maatz et al. 2014). Aberrant splicing of CamkIId in Rbm20
KO mice results in a remarkable shift of CamkIId towards the
§-A isoform that is known to activate the L-type Ca** channel.
In line with this, an increased L-type calcium current, intra-
cellular Ca®* overload and increased sarcoplasmic reticulum
(SR) Ca”* content was found in Rbm20-depleted myocytes
(van den Hoogenhof et al. 2018). Therefore, the proposed
modulation of Rbm20 levels by Guo and colleagues in the
setting of HFpEF is likely to affect calcium handling (and
other important processes) in cardiomyocytes and lead to un-
desirable arrhythmias.

Intriguingly, RBM20 was also shown to play a role in the
formation of circular RNAs from the titin gene. It was
hypothesised that RBM20 is crucial for the formation of a
subset of circRNAs that originate from the I band of the titin
gene. Furthermore, by excluding specific exons from the pre-
mRNA, RBM20 provides the substrate to form this class of
RBM20-dependent circRNAs (Aufiero et al. 2018; Khan et al.
2016). It would be interesting to investigate the function of
these circular RNAs and their possible role in
cardiomyopathy.

In-depth reviews about the role of RBM20 in cardiomyop-
athy were recently published elsewhere (Ma et al. 2016;
Rexiati et al. 2018).

Conclusion and future perspectives

In the past decade, it has become clear that alternative splicing
is a tightly regulated process in the heart which when dis-
turbed leads to a variety of cardiomyopathies. Whole tran-
scriptome analysis by microarray and RNA sequencing has
revealed that the heart undergoes a critical perinatal switch
from foetal to adult splicing programme, which is reactivated
upon pathological hypertrophy. Although the reasons and mo-
lecular mechanisms underlying the reactivation of the splicing
programme are unclear, it is thought that a general
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downregulation of important splicing factors like RBFOX1
and MBNL is contributing to this. Whether this downregula-
tion of splicing factors is mediated by transcriptional mecha-
nisms or post-transcriptional mechanisms such as miRNAs is
yet to be determined. Further research is needed to gain more
insight into the contribution of mis-splicing to the progression
to heart failure and to develop strategies to reverse this mal-
adaptive process.

The recent reports on the functional contribution of mis-
spliced individual protein-coding genes in cardiomyopathies
such as titin and Camk2d are only small pieces of the puzzle,
as the majority of the transcriptome is comprised of non-
coding RNAs that are subject of extensive alternative splicing.

The functional consequences of alternative splicing in non-
coding RNAs, such as circular RNAs, remain to be investi-
gated. Unravelling the biogenesis, regulation, and function of
circRNAs in the heart will likely open a major new field in
molecular cardiology in the coming decade.

Although the functional consequences of mis-spliced genes
needs more research, the observation of specific splicing sig-
natures by itself can be very informative. It is of clinical rele-
vance to further investigate the potential of splicing profiles as
highly specific diagnostic and prognostic biomarkers of
cardiomyopathy.

It is now believed that up to 60% of disease causing-
mutations influence alternative splicing (Lopez-Bigas et al.
2005; Pagani and Baralle 2004). However, RBM20 is the only
identified splicing factor to be mutated in human cardiomyop-
athy. It is not known yet how many other RNA-binding pro-
teins are involved in splicing control in the heart, and we
expect that there are many more (alternative) splicing factors
to be discovered. It would therefore be interesting to design
unbiased approaches to identify the RNA-bound proteome of
the heart in different stages of development and disease. This
will allow us to identify novel critical post-transcriptional reg-
ulators that could be of clinical relevance. Utilising
crosslinking RNA immunoprecipitation methods combined
with LC-MS proteomics techniques can achieve this.
Furthermore, it would be helpful to start routine genetic
screening for mutations in newly identified splicing factors
like RBM24 and RBFOXI to investigate their role in human
cardiomyopathy.

Therapeutic strategies are currently being developed to res-
cue alternative splicing defects in several human diseases such
as use of antisense oligonucleotides (AONSs).

AONSs are designed to bind to a specific splicing RNA
sequence to manipulate splicing. Duchenne’s muscular dys-
trophy (DMD), caused by mutations in the dystrophin gene, is
the first disease in which AONs have been clinically tested.
The administration of AONs to DMD patients promoted exon
skipping of the mutated exon (to avoid premature truncation
of the protein) and modest improvements in exercise capacity
(Goemans et al. 2011).

@ Springer

Other AON strategies have been tested in preclinical
models of disease including progeria (LMNA gene) (Scaffidi
and Misteli 2005), spinal muscular atrophy (SMN2) (Hua et
al. 2011), and myotonic dystrophy (DMPK) (Wheeler et al.
2012). Although these strategies showed positive results, they
still need to be refined and more efficient as the beneficial
effects of these therapies remain modest.

Another strategy may involve re-introducing splicing fac-
tors by viral means to restore appropriate alternative splicing
as many cardiomyopathies are characterised by a downregu-
lation of splicing factors at the protein level.

Although therapeutic strategies are underway, further in-
sights into the molecular mechanisms of cardiac alternative
splicing are necessary to eventually enable us to manipulate
alternative splicing in the benefit of the patient.
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