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Abstract

It has been known for several decades that mutations in genes that encode for proteins involved in the control of actomyosin
interactions such as the troponin complex, tropomyosin and MYBP-C and thus regulate contraction can lead to hereditary
hypertrophic cardiomyopathy. In recent years, it has become apparent that actin-binding proteins not directly involved in the
regulation of contraction also can exhibit changed expression levels, show altered subcellular localisation or bear mutations that
might lead to hereditary cardiomyopathies. The aim of this review is to look beyond the troponin/tropomyosin mechanism and to
give an overview of the different types of actin-associated proteins and their potential roles in cardiomyocytes. It will then discuss

recent findings relevant to their involvement in heart disease.
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Introduction

Two major different types of cardiomyopathy can be defined
in human patients, hypertrophic cardiomyopathy (HCM) and
dilated cardiomyopathy (DCM; for review, see Seidman and
Seidman 2001). While HCM shows obvious signs of myocyte
disarray in conventional histology, the phenotype of DCM is
more subtle and can usually only be elucidated by immuno-
histochemistry and electron microscopy (Pluess and Ehler
2015). The major changes in DCM appear to occur at the
intercalated disc, the specialised cell-cell contact between
cardiomyocytes. These changes lead to an altered molecular
composition and include an increased expression of actin-
anchoring proteins (Ehler et al. 2001). In addition, signalling
molecules such as PKCalpha are recruited to the intercalated
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disc (Lange et al. 2016). While about 75% of mutations that
lead to hereditary HCM are found in the genes encoding for
sarcomeric myosin heavy chain (MYH7) and myosin-binding
protein-C (MYBPC3; McNally et al. 2013), other components
of the myofibrils can be mutated such as the troponins and
alpha-tropomyosin (Tardiff 2011). Initially, it was believed
that HCM was a disease of the sarcomere. However, with
the identification of mutations in more genes that encode for
proteins that do not stably associate with myofibrils (Geier et
al. 2008), this was probably an over-simplification. Similarly,
the hypothesis that hereditary DCM is caused solely by mu-
tations in cytoskeletal proteins had to be abandoned, since
mutations in genes that encode for sarcomeric proteins result
in this disease phenotype, too (McNally et al. 2013). It may be
more the position of the mutation in the molecule or the com-
bination with mutations in other genes that results in a HCM
versus a DCM phenotype (McNally and Mestroni 2017;
Tardiff 2011).

As far as components of the thin (actin) filaments are con-
cerned, mutations were described for tropomyosin, troponin
T, troponin I and troponin C as well as for cardiac actin itself
(Hoffmann et al. 2001; Kimura et al. 1997; Olson et al. 1998;
Watkins et al. 1995). However, more recently, it was also
shown that mutations in actin-interacting proteins that are
not directly involved in contraction or its regulation, such as
FHOD3, alpha-actinin or filamin C, can cause hereditary car-
diomyopathies (Arimura et al. 2013; Girolami et al. 2014;
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Tucker et al. 2017; Wooten et al. 2013). These reports
prompted the writing of this review on actin and its associated
proteins beyond the sarcomere.

Actin is a highly conserved eukaryotic protein that exists as
six distinct isoforms: alpha-cardiac, alpha-skeletal, alpha-
smooth muscle, beta-cytoplasmic, gamma-cytoplasmic and
gamma-smooth muscle actin (Vandekerckhove and Weber
1978). Actin monomers (G-actin) can associate to form fila-
ments (F-actin; see Fig. 1) that have the appearance of two
helically entwined pearl strings (Hanson and Lowy 1963).
However, this is an energetically unfavourable process, which
is massively enhanced by factors that promote actin filament
formation such as the Arp2/3 complex or members of the
formin family (Chesarone and Goode 2009). Once filaments
are formed, they can be stabilised laterally via the association
of tropomyosin in one of its numerous isoforms (Gunning et
al. 2015). Based on their distinct dynamics, the ends of an
actin filament are termed plus end (where incorporation of
new actin monomers happens; also called barbed end based
on the decoration with myosin heads) and minus end (also
called pointed end, where actin monomers are lost in the pro-
cess of treadmilling). These ends can be protected by the as-
sociation of capping proteins such as CapZ at the barbed end
or tropomodulin and leiomodin at the pointed end (Fig. 2). In
addition, actin filaments can be crosslinked to meshworks or
bundled to parallel filaments and there are severing proteins
that lead to their disassembly (for a landmark review on actin-
binding proteins, see Pollard and Cooper 1986, and for a more
recent review, see dos Remedios et al. 2003).

Adult cardiomyocytes mainly express the alpha-cardiac ac-
tin isoform, which is found almost exclusively in the
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myofibrils, although cytoplasmic actin isoforms are expressed
at very low levels and can be detected in the vicinity of mem-
branes and at the Z-disc (Benz et al. 2013; Dwyer et al. 2012;
Kee et al. 2009; Tondeleir et al. 2009, Fig. 2). In the early
embryonic heart, alpha-cardiac and alpha-smooth muscle ac-
tin are co-expressed in the same thin filaments (Ehler et al.
2004). Confocal microscopy suggests that while the length of
the cardiac actin filaments is determined quite early, there
exists a population of actin filaments that extends beyond
the I-band, which may be mainly composed of alpha-smooth
muscle actin (Ehler et al. 2004). Currently, it is unknown
whether there are mixed actin filament populations and wheth-
er the length-determining factor is functional rather than mo-
lecular, since tropomodulin and leiomodin are absent at the
pointed ends or not expressed at this developmental stage
(Ehler et al. 2004; Tsukada et al. 2010). Similar to other foetal
marker genes, an upregulation of alpha-smooth and even
alpha-skeletal muscle actin can be detected in hypertrophic
cardiomyopathy (Copeland et al. 2010; Suurmeijer et al.
2003). An inbred mouse strain, the Balb/c mouse, also has a
higher expression level of alpha-skeletal actin and shows in-
creased contractility (Hewett et al. 1994).

Actin filament assembly and maintenance
in cardiomyocytes

As mentioned above, since actin filament assembly is an in-
efficient process, there is a need for factors that might promote
it, especially as the half-life of actin and its associated proteins
in a cardiomyocyte range from 3 to 10 days (Martin 1981).
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Fig.1 Overview of actin-binding proteins and their effect on actin. Actin-
binding proteins can enhance the formation of filaments from G-actin
monomers, can stabilise and crosslink these filaments and can also disas-
semble them. The end of the filaments are termed barbed (plus end) and
pointed (minus end) and dissociation of G-actin is prevented by different
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Fig. 2 Overview of the different types of actin filaments and subcellular
localisation of different actin-associated proteins in a cardiomyocyte.
Only one corner of the cell is shown. The legend below shows the

The cell migration field has pioneered this research and two
main basic ways were identified: (1) filament assembly by the
Arp2/3 complex of proteins, which tends to support the for-
mation of filaments at an angle to the mother filaments and (2)
filament assembly by members of the formin family, which
promote the formation of linear filaments (Chesarone and
Goode 2009). Not much is known about Arp2/3 in the heart,
but in the skeletal muscle, a role for an Arp2/3 family member,
Arpc5SL, was shown for the coordination between gamma-
actin filaments, the desmin cytoskeleton and nuclear position-
ing (Roman et al. 2017). More and more of the 15 members of
the formin family are characterised as having a role in the
heart (Li et al. 2011; Rosado et al. 2014; Taniguchi et al.
2009; reviewed in Randall and Ehler 2014).

Knockout mice for the formin Daam1 mainly reveal a more
general role in heart morphogenesis with a noncompaction
phenotype and septal defects (Ajima et al. 2015; Li et al.
2011). This is especially interesting, since a recent report
showed a potential association of a deletion of a DAAMI
copy with congenital heart disease (Bao et al. 2012).
Myofibrils are assembled, but are disorganised, and there
may be a problem with their maintenance (Ajima et al.
2015). The major phenotype is seen at the intercalated discs,
where cardiomyocyte attachment is severely impaired (Ajima
et al. 2015). This is in agreement with localisation data for
Daaml close to the plasma membrane and its potential role
in the Wnt effector Dishevelled and thus the planar cell polar-
ity signalling pathway (Li et al. 2011). The phenotype is more

Barbed end capping proteins
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different types of complexes, which are mostly represented in a very
simplified fashion. Chevrons indicate the orientation of the actin
filaments

severe in Daam1-Daam?2 double knockout mice, suggesting a
certain redundancy between these proteins.

The formin FHOD3 seems to play a role in early heart
development and subsequently in myofibril maintenance.
FHOD3 knockout mice did not survive beyond E12.5 and
showed hypokinetic ventricles with myofibrillar disarray and
Z-disc malformations (Kan-o et al. 2012a). However, a con-
ditional knockout of FHOD3 expression in adult mice did not
lead to a lethal phenotype, but just to a mild impairment of
cardiac function (Ushijima et al. 2018). Experiments with
knockdown of FHOD?3 expression in cultured cardiomyocytes
also demonstrated a failure to maintain myofibrils and reduced
expression levels in samples from human heart failure patients
(Iskratsch et al. 2010). Currently, the exact role of FHOD3 in
cardiomyocytes is as unclear as its subcellular localisation. We
and others detected FHOD?3 exclusively at the Z-discs of iso-
lated adult cardiomyocytes and in adult heart tissue from mice
and humans (Iskratsch et al. 2010; Rosado et al. 2014), which
would fit well with a role as barbed-end facilitator of actin
assembly, while others have reported a broader localisation,
which overlaps the A-band (Kan-o et al. 2012b). In our hands,
this kind of FHOD3 localisation is only detected in the em-
bryonic heart and in cultured neonatal rat cardiomyocytes that
are adapting to life in two dimensions in a culture dish
(Iskratsch et al. 2010). On the other hand, a recently identified
interaction between FHOD3 and MyBP-C, which associates
with a subset of the myosin heads, favours the A-band
localisation (Matsuyama et al. 2018). Patients with mutations

@ Springer



1124

Biophys Rev (2018) 10:1121-1128

in the FHOD3 gene can develop HCM or DCM (Arimura et
al. 2013; Wooten et al. 2013). Potentially, FHOD?3 is not firm-
ly integrated into the sarcomere and exerts its role by influenc-
ing MyBP-C, which is a regulator of the thick filament on-off
state (Kampourakis et al. 2014), or it may affect the ratio of
available actin monomers. This could explain its detrimental
effect on the activation of the transcription factor SRF in the
case of the DCM mutant (Arimura et al. 2013).

What happens at the anchorage sites
of the myofibrils, the intercalated discs?

As mentioned above, the major subcellular changes observed
in DCM occur at the intercalated disc. Both in mouse models
for this disease and in human DCM samples, we observed
increased expression of all proteins involved in anchoring of
actin filaments (i.e. the myofibrils in the cardiomyocytes): the
transmembrane cadherins, and at the cytoplasmic face the
catenins and N-RAP (Ehler et al. 2001; Pluess et al. 2015).
The increased width of signal for these proteins that was seen
at the intercalated disc by confocal microscopy was due to a
higher degree of membrane convolution, as demonstrated by
ultrastructural analysis (Wilson et al. 2014). Analysis of the
actin signal using the F-actin stain phalloidin in 0.25-pum-thick
cryosections also revealed a higher intensity at the intercalated
disc in mouse models for DCM, suggesting that the increased
amount of actin-anchoring proteins mirrors an increased pres-
ence of filamentous actin there (Ehler et al. 2001). Currently, it
is not known which protein is involved in generating more
filamentous actin at the intercalated disc, but the observation
that the formin FHOD1 locates to this subcellular domain (Al
Haj et al. 2015) and its signal is also increased in DCM
(Dwyer et al. 2014) makes it a promising candidate. FHOD1
was thought to be unable to promote the formation of actin
filaments and to act just as an actin capper and actin bundler
(Schonichen et al. 2013). However, FHODI participates in the
nucleation of actin filaments from early integrin clusters in
fibroblasts and is associated with integrins in cardiomyocytes
(Al Haj et al. 2015; Iskratsch et al. 2013). Recent evidence
also shows that FHOD1’s actin polymerising activity depends
on the actin isoform and that while it is inactive with sarco-
meric actins (which most people use for in vitro polymerisa-
tion assays), it does promote filament formation with cytoplas-
mic actin isoforms (Patel et al. 2018). Filamentous actin lead-
ing up from the transitional junction to the intercalated disc
does not seem to contain alpha-cardiac actin (Bennett et al.
2006) and may well be composed of cytoplasmic actins (Benz
et al. 2013). Thus, FHODI1 could be an important controlling
factor. FHODI1 at the intercalated disc is in an active state,
since it can be stained with an antibody against a phosphory-
lated epitope at T1141. However, it remains to be shown
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whether it indeed plays a role in excessive actin filament syn-
thesis in DCM (Dwyer et al. 2014).

What happens at the ends of the thin
filaments?

Actin-capping proteins determine the length of thin fil-
aments in healthy cardiomyocytes both at the barbed
end at the Z-disc and at the pointed end near the inner
edges of the H-zone (reviewed by Dwyer et al. 2012;
Fowler and Dominguez 2017).

CapZ binds to the barbed ends of thin filaments (Casella et
al. 1987) and its dynamics in myocytes is increased by exer-
cise and during hypertrophy (Lin et al. 2013; Lin et al. 2016).
Among the signalling pathways that affect CapZ dynamics are
PIP2 (phosphatidylinositol-4,5 bisphosphate), phosphoryla-
tion by PKC (protein kinase C) and acetylation (Hartman et
al. 2009; Lin et al. 2016). CapZ transgenic hearts that express
reduced amounts of CapZ are protected against ischemia-
reperfusion injury and show alterations in PKC signalling
(Yang and Pyle 2012). In addition to its adaptive dynamic
behaviour upon cardiomyocyte stress, CapZ also interacts
with classical stress signals such as the co-chaperone BAG3
and the small heat shock protein Hsc70 (Hishiya et al. 2010).

Gain of function (overexpression of tropomodulin) and loss
of function experiments (interfering with tropomodulin bind-
ing) have shown that the tight control of thin filament length at
its pointed end is crucial for a healthy cardiomyocyte (Fritz-
Six et al. 2003; Gregorio et al. 1995; Sussman et al. 1998) and
tropomodulin seems to be the major protein responsible for
capping the pointed ends. However, in recent years, a related
protein, called leiomodin, was described, which is also needed
to maintain myofibrils (Chereau et al. 2008) and results in a
DCM phenotype with early postnatal death in knockout mice
(Pappas et al. 2015). Interestingly, there seems to be crosstalk
between tropomodulin, leimodin2 and an actin-monomer-
binding protein, Hspb7, that was reported to be mutated in
DCM (Stark et al. 2010). Knockout mice for Hspb7 have
longer thin filaments in their sarcomeres that even seem to
connect two neighbouring Z-discs and are crosslinked by al-
pha-actinin. Lmod?2 expression is upregulated, suggesting that
its uncontrolled activity contributes to the excessive actin fil-
ament synthesis and the signal for tropomodulin becomes dif-
fuse (Wu et al. 2017).

What happens at the Z-discs?

Mutations in several Z-disc proteins are associated with a
HCM phenotype (Bos and Ackerman 2010). For example,
missense mutations in the gene ACTN2 were described,
which encodes the actin-crosslinking protein alpha-actinin,
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the marker protein for Z-discs (Chiu et al. 2010). Thorough
molecular characterisation of these mutations is still under
way, but first results indicate that at least in the case of
A119T and G111V mutations, the dynamic behaviour of
alpha-actinin and its readiness to incorporate into the Z-disc
may be affected (Haywood et al. 2016). A second major Z-
disc-associated actin-binding protein that was shown to cause
cardiomyopathy when mutated is filamin C. Missense muta-
tions of filamin C cause familial restrictive cardiomyopathy
and lead to a loss of filamin C signal at the Z-disc (Tucker et
al. 2017). Truncating variants of filamin C and its co-
chaperone BAG3 are associated with DCM (Janin et al.
2017). Interestingly, BAG3 stimulates filamin transcription
and also spatially regulates mTORCI signalling to simulta-
neously induce autophagy of damaged filamin and activate
protein synthesis upon mechanical stress in cardiomyocytes
(Kathage et al. 2017). Again, these results indicate that actin-
associated proteins are not just static glue at their respective
sites but closely interweave with signalling pathways that are
relevant for the cardiomyocyte stress response.

Proteins involved in actin filament turnover
and their role in cardiac disease and repair

Cofilin-2 is a member of the ADF/cofilin family of pro-
teins that acts preferentially at the pointed ends of actin
filaments and increases the off-rate by 30-fold (for a
review, see dos Remedios et al. 2003). In cultured
cardiomyocytes, cofilin-2 was shown to localise towards
the M-band region of the sarcomeres, where the pointed
ends are found (Kremneva et al. 2014). In a healthy car-
diomyocyte in situ, cofilin-2 should not affect the structure
of thin filaments too much, since the pointed ends are
protected by tropomodulin or leiomodin and cofilin’s
depolymerising activity is known to be inhibited by the
presence of tropomyosins (dos Remedios et al. 2003).
However, when cofilin-2 expression is knocked down in
cultured cardiomyocytes, a marked elongation of thin fila-
ments is observed and proper I-band striations are lost
(Kremneva et al. 2014). In a mouse model for DCM, the
calsarcin knockout mouse, cofilin-2 expression was in-
creased due to a decrease in miRNA miR-301a expression
and was subsequently shown to be a direct target for this
miRNA (Rangrez et al. 2017). Cofilin-2 function is regu-
lated by phosphorylation, and fasudil, an inhibitor of
ROCK (Rho kinase), which has a protective effect against
cardiac dysfunction, prevents its phosphorylation and pro-
motes the organisation of actin filaments (Lai et al. 2017).
In human idiopathic DCM, aggregates of cofilin-2 in its
phosphorylated state were detected in the heart samples
of patients (Subramanian et al. 2015). To model reduced
cofilin-2 activity, a heterozygous cardiac specific cofilin-2

knockout mouse was generated, which expressed only
40% of cofilin-2 compared to wild-type littermates.
These mice displayed dilation and wall thinning of the left
ventricle (Subramanian et al. 2015). The reduced contrac-
tile function was attributed to disorganised sarcomeres in
the heterozygous cofilin-2 mice (Subramanian et al. 2015).
These data suggest that cofilin-2 has a regulatory role also
in cardiomyocytes and that its expression must be tightly
controlled to prevent cardiomyopathy.

Profilin is a protein that sequesters actin monomers and
governs their ATP-associated state, leading to a higher affinity
for the barbed ends (for a review, see dos Remedios et al.
2003). Interestingly, the barbed ends are classically assumed
to be the major site of activity of formins. Formins are
characterised by two formin homology (FH) domains, FH1
and FH2. The FH2 domains of two formins dimerise into a
doughnut-like structure that forms the business end for
formin-promoted actin assembly (Goode and Eck 2007),
while the FH1 domain interacts with profilin and may help
to shunt profilin-bound actin monomers to the neighbouring
FH2 domain. Since profilin dissociates from actin in the pres-
ence of PIP and PIP2, the environment of the Z-disc, which is
enriched in PIP2 (Pyle et al. 2006; Ribeiro et al. 2014), would
be an ideal location to release the actin from profilin and make
it available for polymerisation. A recent study has demonstrat-
ed that the expression of profilin is increased in a variety of
rodent models for hypertrophy in situ and in vitro, but de-
creased in end-stage heart failure patients (Kooij et al. 2016).
In vivo experiments in Drosophila showed that overexpres-
sion of profilin leads to longer thin filaments than in control
strains and results in a functional phenotype resembling dilat-
ed cardiomyopathy (Kooij et al. 2016). Knockdown of
profilin expression in cultured cardiomyocytes prevented their
hypertrophic response, probably by impaired activation of
ERK1/ERK2 signalling (Kooij et al. 2016). In conclusion,
profilin appears likely to be crucial for hypertrophic growth
in the heart, potentially by delivering actin monomers for as-
sembly by members of the formin family.

Another small actin monomer-binding protein, thymosin
beta 4 (Tbeta4), has recently entered the limelight by its ability
to enhance cardiac repair in the adult heart following injury
(Smart et al. 2011). Tbeta4 was administered to the mice by
intraperitoneal injection and somehow seemed to activate a
population of stem cells in the epicardial surface of the heart
that differentiated into blood vessels but also to a much lower
extent into cardiomyocytes. The exact role of Tbeta4 in
cardiomyocytes is somewhat unclear at the moment, since
Tbeta4 knockout mice had no cardiac phenotype (Banerjee
et al. 2012). Therefore, its contribution to improved cardiac
repair may be mainly due to its enhancement of vascularisa-
tion of the injured heart. On the other hand, another group
reported shorter sarcomere length, expression of shorter titin
isoforms and a limited contractile reserve in their Tbeta4
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knockout mice, suggesting that Tbeta4 may be somehow in-
volved in the regulation of alternative splicing of titin, poten-
tially via RBM20 (Guo et al. 2012; Smart et al. 2017).

Concluding remarks

With the advance of next-generation sequencing, it can be
expected that many more point mutations will be identified
in actin-associated proteins in patients with cardiomyopathy,
whose contribution to the observed functional phenotypes will
have to be validated. However, it is obvious that the actin
cytoskeleton is dynamic and that subtle changes that affect
this dynamics and its amount will alter the function of a
cardiomyocyte.
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