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Abstract

The linker of nucleoskeleton and cytoskeleton (LINC) complex couples the nuclear lamina to the cytoskeleton. The LINC
complex and its associated proteins play diverse roles in cells, ranging from genome organization, nuclear morphology, gene
expression, to mechanical stability. The importance of a functional LINC complex is highlighted by the large number of
mutations in genes encoding LINC complex proteins that lead to skeletal and cardiac myopathies. In this review, the structure,
function, and interactions between components of the LINC complex will be described. Mutations that are known to cause
cardiomyopathy in patients will be discussed alongside their respective mouse models. Furthermore, future challenges for the
field and emerging technologies to investigate LINC complex function will be discussed.
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TAC Transverse aortic constriction
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Introduction

The nuclear envelope (NE) plays a critical role in dividing the
cytoplasm from the nucleus. The NE is comprised of the inner
nuclear membrane (INM) and the outer nuclear membrane
(ONM), which is contiguous with the endoplasmic reticulum
(Fig. 1). These membranes are separated by the perinuclear
space (PNS) and are periodically joined by nuclear pore com-
plexes (NPC) that allow bidirectional transport of macromol-
ecules across the NE (Brohawn et al. 2009; Gorlich and Kutay
1999; Grossman et al. 2012). Underlying the INM is an inter-
connected meshwork of intermediate filaments collectively
known as the nuclear lamina, which is made up of A-type
and B-type lamins. Lamins play essential roles in maintaining
nuclear structure, gene expression, and chromatin organiza-
tion (Burke and Stewart 2013; Gerace and Tapia 2018).
Furthermore, the nuclear lamina is functionally coupled to
the cytoskeleton via connections mediated by INM and
ONM proteins, termed the linker of nucleoskeleton and cyto-
skeleton (LINC) complex (Crisp et al. 2006; Sosa et al. 2013;
Stroud et al. 2014) (Fig. 1). The LINC complex structurally
supports the nucleus and plays a mechanosensory role to
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Fig. 1 The cardiomyocyte LINC complex: Magnified view of cardiac
myocyte nuclei (blue) in the circled region highlighting the nuclear enve-
lope (NE) and linker between nucleoskeleton and cytoskeleton (LINC)
complex. The LINC complex forms a continuous network of protein-
protein interactions between the nuclear lamins; lamins A/C, B1, B2;
and the various cytoskeletons. Inner nuclear membrane (INM) proteins
SUN1 and SUN2 form heterotrimeric complexes that interact via their
SUN domain with the KASH domain of the Nesprins that reside in the
outer nuclear membrane (ONM). The giant isoforms of Nesprins 1 and 2
may directly link the NE to the sarcomere by interacting with the Z-disk
(Z) or indirectly through intermediate binding partners(s). Nesprin 2 is
reported at A/l junctions in the sarcomere. Nesprin 12 interacts with
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kinesin 1, thereby linking the NE to the microtubule cytoskeleton and
Nesprin 3 indirectly links to the desmin intermediate filaments through
plectin. Many other proteins are associated with the LINC complex that
interact with lamins or SUN proteins including LAP2«, Emerin, MANT,
LEM2, Luma, and LAP1 and have been shown to play important roles in
cardiomyocytes. Heterochromatin directly interacts with lamin A/C and
indirectly with LEM domain proteins via barrier to autointegration factor
(BAF). Emerin binds the histone modification enzyme histone
deacetylase 3 (HDAC3). Lamin B receptor (LBR) interacts with lamin
B and heterochromatin via heterochromatin protein 1 (HP1). LAP2«x
interacts with nucleoplasmic lamin A/C. PNS indicates perinuclear space
and M, M-band
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translate mechanical cues and alterations in the extracellular Nesprin 10:2
matrix into biochemical signals (Banerjee et al. 2014; Haque HHOH-
et al. 2006; Padmakumar et al. 2005; Sosa et al. 2012; Starr Nesprin 1 Giant
and Fridolfsson 2010; Starr and Han 2002; Swift et al. 2013), 0000000000 o000000 000000000000 A0 00000000 Ao000a00000000000ONe
thereby allowing the cell to adapt to its surrounding environ- ) )
ment by modulation of cytoskeleton organization, gene ex- Nesprin 2 Giant
pression, nuclear organization, and structure (Jaalouk and " e
Lammerding 2009; Lombardi and Lammerding 2011). — Nesprin 3o
The importance of the LINC complex has been highlighted @ CH domain Spectrin repeat [ =

by the plethora of mutations in LINC complex-encoding
genes that are associated with skeletal and cardiac myopathies,
including dilated cardiomyopathy (DCM), arrhythmogenic
cardiomyopathy (AC), and Emery-Dreifuss muscular dystro-
phy (EDMD) (Dellefave and McNally 2010; McNally and
Mestroni 2017; Meinke and Schirmer 2016; Mejat and
Misteli 2010; Mendez-Lopez and Worman 2012; Worman et
al. 2010). Here, we will describe the roles of the LINC com-
plex and its associated proteins that have been identified in the
heart. The structural and functional interactions made between
nuclear envelope spectrin repeat proteins (Nesprins), SUN
proteins, Emerin, LAP1, LAP2, MAN1, LEM2, Luma, and
nuclear lamins will be discussed, and mutations that lead to
disease highlighted.

Nuclear envelope spectrin repeat proteins

Nesprins form the ONM component of the LINC complex
that connects the nuclear lamina to the cytoskeleton (Apel et
al. 2000; Crisp et al. 2006; Mislow et al. 2002b; Padmakumar
et al. 2004; Shanahan et al. 1993; Zhang et al. 2001). The
Nesprin family are comprised of four members (Nesprins 1—
4) (Zhang et al. 2002), of which Nesprins 1, 2, and 3 have
been detected in the heart (Banerjee et al. 2014; Ketema et al.
2013; Postel et al. 2011; Wilhelmsen et al. 2005) (Fig. 2).

Nesprins 1 and 2

Nesprin 1 is alternatively named synaptic NE-1 (Syne-1)
(Apel et al. 2000), Enaptin (Padmakumar et al. 2004), and
myocyte NE protein-1 (Myne-1) (Mislow et al. 2002b) be-
cause of its simultaneously discovery by independent groups.
Nesprin 2 is also known as Syne-2, or nucleus and actin
connecting element (NUANCE) (Zhen et al. 2002). Many
potential isoforms of Nesprins 1 and 2 exist, and they vary
greatly in size due to alternative transcription initiation, termi-
nation, and RNA splicing of SYNE-1 and SYNE-2 genes,
respectively (Rajgor et al. 2012). The largest, or giant (G),
isoforms of Nesprins contain N-terminally paired calponin
homology (CH) domains that bind actin, a spectrin repeat-
containing rod domain, and a C-terminal Klarsicht, ANC-1,
and Syne homology (KASH) domain that interacts with Sad1/

N ) Nesprin 33
< >KASH domain ——

| =]

Fig. 2 Nesprin family members and isoforms reported in
cardiomyocytes. Nesprin 12 contains an isoform-specific spectrin repeat
(pink) followed by 6 other spectrin repeats (red) and a KASH domain
(yellow). Nesprin 1 giant contains N-terminal tandem calponin homology
(CH) domains (purple) that bind actin, spectrin repeats (orange), and a C-
terminal KASH domain. Nesprin 2 giant contains tandem CH domains,
abutted to spectrin repeats (orange) and a KASH domain. Nesprin 3« is
comprised of an isoform-specific spectrin repeat (green) that binds plectin
followed by 7 spectrin repeats (blue) and a KASH domain. Nesprin 3f3 is
organized similarly to Nesprin 3¢, but the isoform-specific spectrin re-
peat found in 3¢

UNC-84 (SUN) proteins (Padmakumar et al. 2004; Sosa et al.
2012) (Fig. 2). Other Nesprin isoforms exist that lack either
the N-terminal CH domains, C-terminal KASH domain, or
have a varying number of spectrin repeats (Warren et al.
2005).

Many antibodies have been raised against Nesprins 1 and 2
to different regions and domains (Potter et al. 2017; Randles et
al. 2010; Razafsky and Hodzic 2015). Nesprin 1 epitopes have
been reported at the NE and the Z-disc in both human and
mouse skeletal and cardiac tissue (Apel et al. 2000; Holt et al.
2016; Mislow et al. 2002b; Nikolova-Krstevski et al. 2011;
Zhang et al. 2002). Nesprin 2 epitopes have been reported at
the NE, Z-disc, and A/I junction in human skeletal muscle,
and at both NE and striations in mouse cardiac tissue
(Banerjee et al. 2014; Zhang et al. 2005). However, it should
be noted that the specificities of some of the antibodies de-
scribed to date have not been thoroughly validated in suitable
knockout animal models. Furthermore, the lack of isoform-
specific sequences in the various Nesprin proteins make the
generation of specific antibodies challenging.

In humans, several mutations in Nesprins 1 and 2 are asso-
ciated with cardiomyopathy (Haskell et al. 2017; Puckelwartz
et al. 2009, 2010; Zhang et al. 2007a; Zhou et al. 2017).
However, the limited number of patients and small family
pedigrees make it difficult to ascertain the critical Nesprin
isoforms and whether the identified mutations in Nesprins 1
and 2 are the unequivocal cause of disease. Therefore, to un-
derstand the role of Nesprins 1 and 2 in the mammalian heart,
several mouse models have been developed.

The initial Nesprin 1 mutant mouse models to study
Nesprin 1 function either replaced the KASH domain
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(Nesprin 1"KASH) o1 deleted it (Nesprin AKASH) (Puckelwartz
et al. 2009; Zhang et al. 2007b). Around half of Nesprin
1481 mutant mice died perinatally due to respiratory failure
and the surviving mice developed progressive muscle weak-
ness and cardiomyopathy including cardiac conduction de-
fects (Puckelwartz et al. 2009, 2010). The replacement of
the KASH domain with 61 unrelated C-terminal amino acids
prevents Nesprin 1 from binding SUN proteins, thereby
disrupting the LINC complex. Notably, cardiomyocyte nuclei
were elongated and heterochromatin levels were reduced in
the Nesprin 1™S" mice. These results mirrored what had
been shown previously in lamin A/C mutant cardiomyocytes
and point to the importance of LINC complex integrity
(Nikolova et al. 2004).

In contrast to Nesprin mice, Nesprin
tants were viable and able to breed as normal. However, mice
in which Nesprin 2’s KASH domain was also deleted (Nesprin
12KASH/Nesprin 224%45H) died of respiratory failure 20 min
after birth. The cardiac function of the Nesprin
was not reported, and it was unclear whether KASH domain-
less Nesprin 1 isoforms were expressed in these mice that may
have obscured the phenotype (Zhang et al. 2007b). Similarly
to Nesprin 145" Nesprin 145" mice had altered nuclear
positioning and shape in skeletal muscle, but these parameters
were not reported in cardiomyocytes.

As noted above, Nesprin 1 isoforms lacking KASH do-
mains exist; therefore, strategies to replace or delete the
KASH domain may still be able to express these Nesprin 1
isoforms. To overcome this, Zhang et al. inserted LoxP sites
either side of an exon in SYNEI that is common to both
KASH domain-containing and KASH domain-less isoforms
to allow generation of Nesprin 17~ mice (Zhang et al. 2010).
Akin to the Nesprin 15" model, Nesprin 17~ mice had
reduced survival rates, exhibiting 60% perinatal lethality,
growth restriction, and compromised exercise capacity. In
agreement with the other studies of Nesprin 1 function, nucle-
ar morphology and positioning in skeletal muscle were abnor-
mal. However, no changes in cardiac contractile function were
observed up to 12 months of age, suggesting that there may be
some compensatory mechanism occurring in these mice.

Along these lines, Banerjee et al. reasoned that Nesprin 2
may be compensating for loss of Nesprin 1 in the heart and
therefore took an approach to conditionally ablate Nesprin 1
expression in cardiomyocytes on a Nesprin 2-null background
(hereafter called Nesprin 1/2 cKO) (Banerjee et al. 2014).
Cardiac-specific deletion of Nesprin 1 was achieved by cross-
ing Nkx2.5-Cre mice (McFadden et al. 2005) with the floxed
Nesprin 1 mouse line used to generate Nesprin 17~ mice.
Conditional ablation of Nesprin 1 or global deletion of
Nesprin 2 alone did not alter cellular or cardiac function.
Conversely, Nesprin 1/2 ¢cKO mice developed cardiomyopa-
thy at 10 weeks and displayed altered nuclear positioning,
shape, and chromatin positioning. Furthermore, Nesprin 1/2

1 rKASH 1 AKASH

mu-
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¢KO mice had impaired gene expression changes in response
to biomechanical load. These data suggest that Nesprins 1 and
2 play critical roles in normal cardiomyocyte function, thereby
enabling the heart to adapt appropriately to mechanical de-
mands. Failure to do so resulted in aberrant apoptosis, cardiac
remodeling, fibrosis, and eventually heart failure, which are
also observed in patients with mutations in Nesprins 1 and 2
(Haskell et al. 2017; Puckelwartz et al. 2010).

These studies highlight the power of using mouse models
to understand mammalian cardiac function and the importance
of a functional LINC complex. However, because the Nesprin
1 floxed allele (Zhang et al. 2010) would remove all Nesprin 1
isoforms, a key question that remained unanswered in the field
was which of the Nesprin 1 isoforms was important for normal
cardiac function?

Because Nesprin 1G and Nesprin 1o2 are the predominant
isoforms of Nesprin 1 expressed in striated muscle (Duong et
al. 2014; Padmakumar et al. 2004; Randles et al. 2010), we
generated two novel mouse lines in which either the actin-
binding domain of Nesprin 1G or the actin-binding domain of
Nesprin 162 was ablated (Nesprin 1°“"' and Nesprin 127",
respectively) (Stroud et al. 2017). Surprisingly, Nesprin 12"
mice were born at Mendelian ratios, displayed no perinatal
lethality nor loss in bodyweight compared to wildtype litter-
mates. Furthermore, they lived normal lifespans, with no evi-
dence of cardiac dysfunction up to 18 months of age. These
data demonstrate that actin binding by Nesprin 1 is dispensable
for viability and that the lack of actin binding in Nesprin 1G is
not sufficient to explain the perinatal lethality observed in
Nesprin 17~ mice. We therefore postulated that Nesprin 102
might be the critical isoform. Similarly to the Nesprin 1~ mice,
Nesprin 1«2 mice exhibited perinatal lethality and nuclear
mispositioning in skeletal muscle fibers. Components of the
LINC complex were largely unaffected, apart from SUNI,
which was mislocalized from the NE and its levels slightly
reduced, suggesting Nesprin 1&2 may preferentially bind to
SUNI. Isolation of embryonic hearts from Nesprin 12 at
embryonic day 18.5 (E18.5) revealed normal heart weight/body
weight ratios and histological analyses revealed no gross mor-
phological defects. To understand whether Nesprin 1x2 was
critical for normal heart development and function, cardiac-
specific knockout mice were generated, but they exhibited nor-
mal heart function up to 14 months of age (unpublished data).
These data are in agreement with previous findings that showed
simultaneous deletion of Nesprins 1 and 2 is required to perturb
cardiac function and suggest that Nesprin 2 expression in the
heart may compensate for loss of Nesprin 1x2 (Banerjee et al.
2014).

It would be interesting to investigate whether Nesprin 1G
and Nesprin 12 play similar or different roles in the heart by
crossing the Nesprin 1™ ”* and Nesprin 102" with a cardiac-
specific Cre on a Nesprin 2-null background. Alternatively,
approaches to induce physiological or pathological cardiac
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hypertrophy in the Nesprin 12 or Nesprin 1o2 ¢KO mice
may be necessary to elicit a phenotype. Clearly, further work
is needed to understand whether the cardiomyopathy-
associated mutations in Nesprin 1 actually lead to cardiac
dysfunction in mammalian hearts. With the advent of
CRISPR/Cas9 technology to generate point mutations,
knock-in mice that mimic human mutations will enable further
exploration of Nesprins 1 and 2 function.

Nesprin 3

In contrast to the many Nesprin 1 and 2 isoforms, Nesprin 3
exists as two isoforms; 3o (108 kDa) or 33 (99 kDa), with 3
the predominant isoform in the heart (Wilhelmsen et al. 2005)
(Fig. 2). Both Nesprin 3 isoforms contain a C-terminal KASH
domain that binds SUN 1/2 and localizes Nesprin 3 to the
nuclear envelope in cardiac tissue (Ketema et al. 2013). The
N-terminus of Nesprin 3« interacts with the ABD domain of
plectin, which in turn interacts with intermediate filaments
(Ketema et al. 2007).

In terms of Nesprin 3 function in vivo, there are currently
no mutations described in Nesprin 3 associated with cardio-
myopathy. Furthermore, ablation of Nesprin 3 expression in
both zebrafish and mouse models resulted in no baseline phe-
notype (Ketema et al. 2013; Postel et al. 2011). It would be
interesting to test whether Nesprin 3 KO mice have an abnor-
mal cardiac response to stress because knockdown of Nesprin
3 in vitro leads to defects in cell migration and morphology
(Khatau et al. 2012; Morgan et al. 2011; Petrie et al. 2014).
However, these effects may be masked by the presence of
Nesprins 1 and 2 and therefore may require ablation of all
three Nesprin genes.

SUN proteins

SUN proteins are named after their C-terminal SUN domain
that was first identified in fission yeast protein Sadl and C.
elegans protein UNC-84 (Hagan and Yanagida 1995; Malone
et al. 1999). In mammals, five SUN proteins have been iden-
tified (Starr and Fridolfsson 2010). SUNI1 and SUN2 were
cloned from human brain cDNA (Malone et al. 1999) and
are ubiquitously expressed, whereas SUN3, SUN4, and
SUNS are tissue restricted in the testes (Frohnert et al. 2011;
Gob et al. 2010; Xing et al. 2004). Importantly, SUNI and
SUN?2 are expressed in the heart and skeletal muscle (Crisp et
al. 2006; Puckelwartz et al. 2009; Zhang et al. 2010) and
therefore will be discussed in more detail in this review. We
refer readers elsewhere for a broader overview of SUN do-
main proteins in other cell types and tissues (Rothballer et al.
2013).

At the mRNA level, six different isoforms of SUN1 are
potentially expressed in the heart (Gob et al. 2011; Nishioka
et al. 2016). All of these isoforms are predicted to contain the
SUN domain, stalk region, transmembrane (TM) domain, but
vary in the length that the N-terminus protrudes into the nu-
cleoplasm. There are potentially 6 and 12 isoforms of SUN2
that are expressed in mouse and human heart, respectively
(www.ensembl.org). However, it remains to be elucidated
whether the shorter SUN1 and SUN2 isoforms are translated
into protein, and indeed whether they play different functional
roles. Both SUN1 and SUN2 are type 2 membrane proteins
and have similar domain architectures. The largest isoform of
human SUN 1 is around 90 kDa and SUN2 is ~80 kDa.
Overall, they are highly similar and share 64% homology
(Haque et al. 2006). SUN1 and SUN2 comprise an N-
terminal region that interacts with lamins inside the nucleus
(Crisp et al. 2006; Haque et al. 2006; Nishioka et al. 2016;
Sosa et al. 2013), followed by single TM domain that spans
the INM. Adjacent to the TM domain is the ‘stalk’ region that
is structurally made up of coiled-coil repeats necessary for
trimerization (Hennen et al. 2018; Jahed et al. 2018; Sosa et
al. 2012; Wang et al. 2012; Zhou et al. 2012). The most con-
served region between SUN proteins is the C-terminal SUN
domain that interacts with the KASH domain of Nesprins
(Sosa et al. 2012; Wang et al. 2012; Zhou et al. 2012).

The integral nature of SUN proteins in the LINC complex
makes it surprising that compared to other LINC components,
relatively few mutations in SUN1 and SUN2 are associated
with cardiomyopathy (Meinke et al. 2014). It appears that
SUN proteins play a role as genetic modifiers because disease
phenotypes are only observed in patients when mutations in
SUN proteins are combined with other mutations in
cardiomyopathy-associated genes. For example, the R453W
mutation in LMNA normally results in a mild form of EDMD
(Brown et al. 2001; Colomer et al. 2002; Fidzianska and
Hausmanowa-Petrusewicz 2003; Raffaele Di Barletta et al.
2000; Voit et al. 1988; Vytopil et al. 2003); however, when
combined with a W377C mutation in SUNI, it resulted in
cardiac abnormalities followed by heart failure at age 34
(Meinke et al. 2014). Further evidence of their role as genetic
modifiers comes from dystrophic (LMNA ") and progeric
(LMNA“?) laminopathy mouse models, as well as from
patient-derived fibroblasts. SUN1 was shown to be dramati-
cally upregulated in these mouse models. Interestingly, abla-
tion of SUN1 in both of these models extended lifespan and
ameliorated the phenotypes observed (Chen et al. 2012).
Specifically, cardiac function as assessed by ejection fraction
was restored to near wildtype levels of ~70% in DKO mice
compared to ~50% in LMNA™" mice. Furthermore, the no-
ticeable increase of sarcoplasmic vacuoles and number of in-
flammatory cells in the LMNA ™~ mice were reduced in DKO
mice. The underlying molecular mechanisms behind the path-
ogenesis are unknown, but the authors noted that the
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cytotoxicity may be due to the excessive accumulation of
SUNI in the Golgi apparatus.

In mice, global ablation of SUN1 expression resulted in
sterility due to an essential role of SUNI in gametogenesis
(Ding et al. 2007); however, no changes in cardiac or skeletal
muscle function were noted. Unlike SUN1 KO mice, SUN2
KO mice were normal presumably due to functional redun-
dancy between SUN proteins (Lei et al. 2009). Conversely,
global ablation of SUNI and SUN2 resulted in perinatal le-
thality, likely because of respiratory defects. Interestingly, the
perinatal lethality observed in these mice could be rescued by
overexpressing SUN1 with a neural-specific promoter.
Furthermore, it is intriguing that the DKO mice have a similar
phenotype to the Nesprin 12 KO and Nesprin 1/2 DKO
mice. Taken together, these data suggest that SUN1 may play
unique, non-redundant roles in neurons and the reproductive
organs. Whether SUN1 and SUN2 play essential, non-
redundant roles in the heart remain unknown.

The generation of floxed alleles of these genes will enable
targeted deletion of specific isoforms in specific tissues to
further our understanding in cardiomyocytes. Furthermore,
armed with the knowledge that SUN proteins likely play key
roles as genetic modifiers, it would be interesting to sequence
SUNI and SUN2 genes in patients with cardiomyopathy in
which other LINC complex mutations have been identified
that may not fully explain the resulting phenotype. This may
reveal clues as to why certain strong cardiomyopathy/EDMD
phenotypes in the clinic are not well recapitulated in mouse
models that are designed to mimic the exact mutation found in
humans (Ozawa et al. 2006; Stroud et al. 2018).

Emerin

Emerin is ubiquitously expressed in tissues and localizes to
the NE in both cardiac and skeletal muscle (Manilal et al.
1996; Nagano et al. 1996; Stroud et al. 2018, 2017). Emerin
is a type Il membrane protein in which the nucleoplasmic N-
terminus is adjacent to a TM domain that traverses the INM
followed by a short luminal region that resides in the PNS
(Manilal et al. 1996; Nagano et al. 1996). The interaction
between Emerin and A-type lamins is thought to be important
for its retention at the INM (Cartegni et al. 1997; Holaska et al.
2002; Manilal et al. 1996; Nagano et al. 1996). Other binding
partners exist and include SUN1, SUN2, Nesprin 1«,
HDACS3, and BAF, the latter two providing a link between
Emerin and heterochromatin (Berk et al. 2014; Demmerle et
al. 2012; Haque et al. 2010; Lee et al. 2001; Mislow et al.
2002a). For an extensive list of Emerin-binding partners, we
refer the reader here (Berk et al. 2013).

At the cellular level, Emerin-null mouse embryonic fibro-
blasts (MEFs) have abnormal nuclear shape, altered NE plas-
ticity, and impaired response to mechanical stimulation
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(Lammerding et al. 2005; Rowat et al. 2006). These data sug-
gest that Emerin may regulate gene expression to enable the
cell to adapt to mechanical load. In support of this, Emerin has
been shown to indirectly regulate the localization of the
mechanosignalling transcription factor megakaryoblastic leu-
kaemia 1 (MKL1) by modulating actin dynamics (Ho et al.
2013). MKL1, also known as myocardin-related transcription
factor a (MRTF-A), is a co-activator of serum response factor,
which is a master regulator of cytoskeletal proteins such as
vinculin and actin.

Mutations in Emerin lead to X-linked EDMD, cardiac con-
duction defects, DCM, and skeletal muscle defects (Bione et
al. 1994, 1995; Nagano et al. 1996; Nigro et al. 1995; Vohanka
et al. 2001; Yamada and Kobayashi 1996). For an extensive
overview of disorders caused by Emerin mutations, we refer
the reader to recent reviews (Astejada et al. 2007; Holaska
2008). The majority of these mutations are predicted to result
in loss of Emerin expression (Manilal et al. 1996; Nagano et
al. 1996). Therefore, Emerin KO mice were generated to study
its function in the heart and skeletal muscle (Lammerding et
al. 2005; Melcon et al. 2006; Ozawa et al. 2006; Stubenvoll et
al. 2015). Surpisingly, Emerin-null mice have no overt skele-
tal myopathy and a mild atrioventricular conduction defect
that is age-related (Melcon et al. 2006; Ozawa et al. 20006).
Interestingly, a recent study revealed that Emerin KO mice
have a mild, albeit significant reduction in ejection fraction
that was observed using functional magnetic resonance imag-
ing (MRI) at 12 weeks (Stubenvoll et al. 2015). Furthermore,
Emerin KO mice challenged with transverse aortic constric-
tion (TAC)-induced pressure overload showed a decline in
ejection fraction and increase in end-systolic volume at
6 months after TAC compared to wildtype controls
(Rockman et al. 1991; Stubenvoll et al. 2015). This study
revealed that Emerin-null hearts contain an increased number
of small cardiomyocytes that was likely due to aberrant (3-
catenin signaling during development, which resulted in an
increase in cell proliferation at embryonic day 12.5 (E12.5).
These data suggest that Emerin plays a role in the heart under
baseline conditions and is necessary to cope with the conse-
quences of pressure-induced cardiac overload.

Despite these conflicting findings about Emerin’s function
in the heart, it is clear that Emerin-null mice do not develop a
severe skeletal muscle myopathy as might be expected from
patient data. To explain this difference, Shin et al. recently
showed that the disparities observed between mouse and
humans are likely due to the differential expression of
Emerin between the two species. Specifically, Emerin levels
in human skeletal muscle were found to be much higher than
in the equivalent mouse tissue, suggesting that other protein(s)
may be able to functionally compensate (Shin et al. 2013).
Indeed, the authors found the expression levels of Emerin’s
binding partner, lamina-associated polypeptide 1 (LAP1),
were higher in mouse than in human. In line with LAP1
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playing an important role in muscle, conditional ablation of
LAP1 in mouse skeletal muscle (LAP1 scKO) led to muscular
dystrophy resulting in premature death.

Furthermore, the authors wanted to understand whether
there was a functional interaction between Emerin and
LAP1, and therefore crossed LAP1 scKO with Emerin-null
mice to generate LAP1 scKO/Emerin " (herein named
DKO). Strikingly, DKO mice had an exacerbated myopathy
and their median survival was reduced to more than half com-
pared to LAP1 scKO mice. These data suggest that Emerin
and LAP1 both physically and functionally interact in skeletal
muscle (Shin et al. 2013).

Lamina-associated polypeptide 1

Lamina-associated polypeptide 1 (LAP1) consists of three
isoforms (A, B, C) that are the result of alternative mRNA
splicing of the TOR1AIP1 gene. Initially discovered in rat
liver nuclear envelope extracts (Senior and Gerace 1988), they
have recently been described in mouse cardiac and skeletal
muscle (Shin et al. 2014, 2013). LAP1B and LAPI1C are
expressed in human hearts, with LAP1B thought to be the
predominant isoform (Rebelo et al. 2015; Santos et al. 2014).

LAPI1A, LAPIB, and LAPI1C have predicted molecular
weights of 75, 68, and 55 kDa, respectively (Senior and
Gerace 1988). All LAP1 isoforms are type II membrane pro-
teins. The N-terminus is located on the nucleoplasmic side of
the INM and interacts with nuclear lamins and Emerin
(Foisner and Gerace 1993; Shin et al. 2013). Emerin binding
has been shown to be essential for normal skeletal muscle
function (Shin et al. 2013). The C-terminus interacts with
the Torsin AAA+ ATPase family members Torsin A, B, 2,
and 3 (Goodchild and Dauer 2005; Jungwirth et al. 2010;
Kim et al. 2010). Interestingly, global ablation of LAP1 was
sufficient to exactly phenocopy both the nuclear blebbing and
perinatal lethality observed in Torsin A KO mice, which sug-
gests the interaction may have functional importance in neu-
rons (Kim et al. 2010). Whether there is a similar functional
interaction between the Torsin family member enriched in the
heart, Torsin B, and LAP1 remains to be elucidated.

In humans, several mutations in the LAP1 gene are associ-
ated with cardiac defects (Dorboz et al. 2014; Kayman-
Kurekei et al. 2014). For example, a nonsense frameshift mu-
tation c.186delG in the TOR1AIP1 gene was identified in a
three-generation family diagnosed with autosomal recessive
limb-girdle muscular dystrophy with joint contractures
(Kayman-Kurekei et al. 2014). Notably, one of the family
members presented with reduced cardiac function as mea-
sured by echocardiography with an ejection fraction of 57%
but had normal sinus rhythm as assessed by electrocardiogram
analysis. Ultrastructural analysis of muscle biopsies revealed
that the sarcomeres were intact, but the nuclei were

fragmented and nuclear envelope disrupted. As expected,
Western blot analysis of muscle tissue from the affected pa-
tient revealed the loss of the LAP1B band at 68 kDa, but noted
the upregulation of a band at ~ 50 kDa. With the recent iden-
tification of LAP1C in humans (Santos et al. 2014), others
have speculated that this ~50 kDa band might be LAP1C
(Rebelo et al. 2015). Whether this band is indeed LAP1C
remains to be determined. Nevertheless, it is apparently un-
able to completely rescue the phenotype caused by loss of
LAPIB. It is also possible that the 50 kDa protein may par-
tially compensate for the loss of LAP1B because deletion of
all LAP1 isoforms in mice results in a much more severe form
of skeletal myopathy with cardiac involvement (Shin et al.
2013). Further support for this hypothesis is from evidence
of a missense mutation in LAP1 that changes glutamic acid
482 to alanine (E482A) and was identified in a patient with
progressive dystonia, cerebellar atrophy, and DCM (Dorboz et
al. 2014). Unlike the nonsense mutation c.186delG described
above, the E482A mutation led to a more severe form of DCM
that resulted in death at age 17. Western blot and immunoflu-
orescence analysis of patient fibroblasts revealed a drastic re-
duction of all three LAP1 isoforms. Interestingly, the ultra-
structure of the nuclear envelope in fibroblasts appeared nor-
mal. Whole exome sequencing was used to reveal this muta-
tion, but it was unclear whether other mutations in genes that
are strongly associated with DCM, such as LMNA (encoding
lamin A/C), were investigated.

LAPI1 function has also been investigated using mouse
models (Kim et al. 2010; Shin et al. 2014, 2013). As men-
tioned above, deletion of all LAP1 isoforms in mouse striated
muscle resulted in severe skeletal and cardiac myopathy (Shin
et al. 2013). However, the specific role of LAP1 in the heart
remained elusive. To investigate this, Shin et al. made use of
their LAP1 floxed mice to generate a cardiomyocyte-specific
knockout of LAP1 (herein referred to as LAP1 ¢cKO) (Shin et
al. 2014). LAP1 cKO mice were born at the expected
Mendelian ratios and appeared overtly normal at 20 weeks;
however, echocardiography revealed a significant reduction in
cardiac function as measured by fractional shortening.
Furthermore, levels of the fetal genes ANP and BNP as well
as the pro-fibrotic markers collagen lal, collagen 1a2, and
fibronectin 1 were all significantly upregulated in LAP1
cKO hearts. Mutant mouse models generated to study the
function of LAPI1’s interaction partners lamin A/C
(LMNAH222P /H222P ) and Emerin (EMDf/ ) have previously
shown activated extracellular signal-regulated kinase 1/2
(ERK1/2), c-Jun N-terminal kinase (JNK), and p38alpha
branches of the mitogen-activated protein kinase (MAPK)
signaling pathways (Muchir et al. 2007a, b). Therefore, the
authors investigated whether these were affected in the
LAPI1 cKO mice. Interestingly, they found that ERK1/2 and
JNK pathways were activated, but not p38alpha. The authors
speculate that the extent of activation of these pathways may
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depend on the severity of the phenotype. For example, the
LMNAH222PH222P hice (which develop significant DCM at
20 weeks) have all three pathways activated, whereas only
ERK1/2 were activated in Emerin-null mice.

With regard to recent evidence from human data, suggest-
ing that LAP1C might be upregulated and partially compen-
sate for LAP1B loss, it would be interesting to generate LAP1
isoform-specific knockout mice. This would shed light on
which LAP1 isoform(s) are critical for heart development
and function.

Lamina-associated polypeptide 2

Due to alternative splicing of the lamina-associated polypep-
tide 2 (LAP2) gene, there are six potential isoforms of LAP2.
Five of which have been observed in both mouse and human
hearts (LAP2x, LAP2[3, LAP2y, LAP26, LAP2¢) (Gotic et
al. 2010; Harris et al. 1994; Taylor et al. 2005).

LAP2, also known as thymopoietin (TMPO), is one of the
founding members of the LAP2, Emerin, and MAN1 (LEM)
domain-containing family of proteins (Lin et al. 2000). All
LAP2 isoforms contain an N-terminal LEM-like domain
followed by the LEM domain that interacts with barrier to
autointegration factor (BAF), which in turn binds to hetero-
chromatin and double-stranded DNA (Montes de Oca et al.
2011). Whereas the N-termini of the LAP2 isoforms share
high degrees of homology, their C-termini vary both in terms
of length and the domains contained (Berger et al. 1996).
Compared to the other isoforms of LAP2, LAP2« lacks a
TM domain but contains an extended C-terminus that is im-
portant for its interaction with lamin A/C and mostly localizes
to the nucleoplasm (Dechat et al. 1998, 2000). Conversely,
LAP2{3 contains a TM domain and binds to B-type lamins
at the nuclear envelope (Foisner and Gerace 1993; Furukawa
et al. 1998). Presumably, the other TM domain-containing
isoforms of LAP2 localize similarly to LAP2f3.

LAP2« is the best characterized isoform of LAP2 and has
been studied in both human and mouse hearts and will there-
fore be discussed in detail. In terms of LAP2«x function, a
missense mutation in LAP2« has been associated with a se-
vere form of DCM that was diagnosed in two brothers at ages
33 and 22 (Taylor et al. 2005). The mutation identified chang-
es arginine 690 to cysteine (R690C) in the C-terminus of
LAP2« in a region that interacts with lamin A/C. Functional
analysis of the R690C mutant in vitro revealed that the ability
of LAP2x to interact with lamin A/C was reduced by around
50-75% compared to wildtype.

Since no patient biopsies were available, it was unclear
whether LAP2x was expressed at normal levels in the myo-
cardium. Therefore, to understand LAP2«’s function in vivo,
loss of function mouse models were generated (Gotic et al.
2010; Naetar et al. 2008). Although the LAP2o" mice were
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grossly indistinguishable from their littermates and lived nor-
mal lifespans, they had significantly reduced cardiac function
as measured by fractional shortening at 10 weeks of age.
LAP20¢ mice had normal heart weight:body weight ratios,
but 18% of older mice developed extensive subendocardial
fibrosis of the left ventricle. At the molecular level, master
cardiac transcription factors MEF2c and GATA4 as well as
their downstream targets were deregulated in LAP2o¢ ™~ mice.
LAP20c"” mice showed a blunted response to chronic infu-
sion of isoproterenol to induce hypertrophy likely due to
downregulation of the beta-adrenergic receptor 3,AR. To fur-
ther investigate the role of LAP2« in striated muscle cells
(including cardiomyocytes), LAP2«x floxed mice were
crossed with mice expressing Cre recombinase under control
of the muscle creatine kinase promoter. However, these mice
did not develop systolic dysfunction, suggesting that LAP2
may play a more critical role during early stages of heart
development. In support of this, LAP2x expression levels
were higher during embryonic heart development (E12 and
E14) and were downregulated at postnatal day 2 (Gotic et al.
2010).

Given the timing of LAP2x expression in embryonic
cardiomyocytes, it would be interesting to ablate LAP2«x ex-
pression using an earlier cardiomyocyte-specific Cre, such as
XMLC2v that is expressed at E7.5 (Breckenridge et al. 2007).
This will be important to understand whether the cardiac de-
fects in the germline deleted LAP2&™/ mice were
cardiomyocyte-autonomous or due to loss of LAP2«x expres-
sion in other cell types. In addition, the role of other LAP2
isoforms remains unexplored in terms of cardiac function.

MAN1

Human MANTI, also known as LEM domain-containing pro-
tein 3 (Lemd3), is an 82.3 kDa INM protein that comprises an
N-terminal LEM domain, two TM domains followed by
MAN1-Srcl-p C-terminal (MSC) domain and an RNA recog-
nition motif (RRM) (Lin et al. 2000). MANI is ubiquitously
expressed and has been found at the RNA level in human
hearts (Lin et al. 2000). It has been shown to interact with
lamin A/C, BAF, Smads 2 and 3, PPM1A (Smad2/3 phospha-
tase) and to regulate transforming growth factor 3 (TGF-f3)
and bone morphogenetic protein (BMP) signaling pathways
through its interaction with Smads (Bourgeois et al. 2013;
Cohen et al. 2007; Ishimura et al. 2006; Lin et al. 2005;
Osada et al. 2003; Pan et al. 2005; Raju et al. 2003).
Specifically, Smads 2 and 3 are phosphorylated downstream
of TGF-[3/BMP receptor signaling and translocate to the nu-
cleus (Bourgeois etal. 2013; Lin et al. 2005; Osada et al. 2003;
Pan et al. 2005; Raju et al. 2003). Once inside the nucleus, the
C-terminus of MAN1 binds to Smads 2 and 3 and sequesters
them at the nuclear envelope. This interaction is thought to
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compete for binding with transcription activator complexes,
thereby regulating expression of gene downstream of TGF-f3
signaling.

In humans, several mutations have been described in
MANI that lead to defects in the bone and skin (Hellemans
et al. 2004). To our knowledge, no mutations have been de-
scribed that result in skeletal or cardiac myopathy. However,
several studies have been performed to uncover the role of
MANI in model organisms. Global deletion of MANI1 using
a genetrap approach led to embryonic lethality at E10.5 in
mice. This was likely due to aberrant TGF-{3 signaling and
vasculogenesis in the embryonic yolk sac (Ishimura et al.
2006; Cohen et al. 2007). Further analysis of the mutant hearts
revealed pericardial edema in 31 of 32 embryos and defects in
left-right axis formation of the heart (Ishimura et al. 2008).
Further adding to a potential role of MANI in the heart,
knockdown of MANI1 using a morpholino approach in
Xenopus also led to cardiac defects (Reil and Dabauvalle
2013). Whether these findings were due to altered cardiomyo-
cyte function or other confounding factors such as knocking
down MANI in all tissues remain to be explored.
Nevertheless, the expression of MANI during early stages
of heart development makes studying MANT1 function in
cardiomyocytes an interesting prospect.

LEM domain-containing 2

LEM domain-containing 2 (Lem2) localizes to the INM and
interacts with heterochromatin, A-type lamins, and BAF
(Brachner et al. 2005; Cai et al. 2001, 2007; Liu et al. 2003).
Lem? is widely expressed in adult human and mouse tissues,
with levels enriched in both the heart and skeletal muscle
(Brachner et al. 2005; Chen et al. 2006) Similarly to MANT,
Lem?2 contains an N-terminal LEM domain followed by a TM
domain and a MSC domain at its C-terminus. Both LEM and
MSC domains are reported to bind to heterochromatin in yeast
(Barrales et al. 2016). These domains are highly conserved,
suggesting they play an important role in Lem2 function.
Lem?2 interacts with the repressive histone modifications
H3K9Me2 and H3K9Me3 in nematodes (Towbin et al.
2012), and in yeast, the loss of Lem2 led to the reduction of
H3K9Me2, suggesting that it may play a role in establishing
or maintaining this repressive mark (Barrales et al. 2016). As
well as interacting with histone modifications, the LEM do-
main binds to the chromatin protein BAF, which itself directly
binds to double-stranded DNA and directly to histones and
influences histone modifications (Margalit et al. 2007,
Montes de Oca et al. 2011, 2005, 2009; Tapia et al. 2015).
Given the localization of Lem?2 to the INM and proximity to
heterochromatin as well as its interaction with A-type lamins,
these properties make Lem?2 a good candidate for regulating
gene expression. In support of this, Lem2 has been shown to

regulate ERK signaling in mouse myoblasts (Huber et al.
2009), is critical for nematode development (Barkan et al.
2012; Liu et al. 2003), and was found to be important for
skeletal muscle regeneration after cardiotoxin injury (Tapia
et al. 2015).

In humans, an autosomal recessive mutation in the LEM
domain of Lem2 was recently identified that substitutes leu-
cine 13 to arginine and leads to juvenile cataracts (Boone et al.
2016). Notably, some of these patients also died from sudden
cardiac death; however, the cause of this was unclear and
warrants further investigation.

In terms of mouse models to investigate Lem2 function,
global loss of Lem2 resulted in embryonic lethality between
E10.5 and E11.5. Although many normal hallmarks were ob-
served in E10.5 knockout embryos, most of the tissues were
substantially smaller in size. Furthermore, multiple MAP ki-
nase pathways were upregulated, including ERK1/2, JNK,
and p38 as well as AKT. As noted earlier, MAN1 KO mice
display a similar timepoint of lethality at E10.5.
However, the Lem2 KO embryos show a distinct phe-
notype from the MANI KO with no defects in
vasculogenesis of the yolk sac, or changes in TGF-f3
signaling. Furthermore, Lem2 lacks the region used by
MANTI to interact with Smads (Caputo et al. 2006).

Luma

Luma, alternatively known as transmembrane protein 43
(TMEM43), is associated with the LINC complex and was
initially identified with a proteomics screen for INM proteins
in neuroblastoma cells (Dreger et al. 2001). Luma is widely
expressed in tissues including the heart (Bengtsson and Otto
2008; Dreger et al. 2001; Schirmer et al. 2003; Stroud et al.
2018) and is highly conserved throughout metazoans. It con-
tains four TM domains and localizes to the INM, where it
interacts with lamins A/C, B1, Emerin, and SUN2
(Bengtsson and Otto 2008; Liang et al. 2011).

Several mutations in Luma have been identified as the
cause of arrhythmogenic cardiomyopathy (AC) (Christensen
et al. 2011; Haywood et al. 2013; Hodgkinson et al. 2013;
Honda et al. 2016; Merner et al. 2008; Milting et al. 2015).
The best characterized is a missense, autosomal dominant mu-
tation that changes serine 358 to leucine and was identified as
the unequivocal cause of arrhythmogenic right ventricle car-
diomyopathy type 5 (ARVCS) in humans (Christensen et al.
2011; Hodgkinson et al. 2013; Merner et al. 2008). The S358L
mutation is in the third TM domain of Luma and was origi-
nally mapped in an extended eight-generation family in
Newfoundland, Canada. The S358L mutation was subse-
quently identified in a German family, which shares a com-
mon haplotype with those from Newfoundland, suggesting
that the mutation originated in Europe (Milting et al. 2015).
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ARVCS is a fully penetrant, lethal, sex-influenced disorder,
in which men have a median lifespan of 41 compared to 83 in
the control group and women have a median lifespan of 71.
The disorder is fully penetrant at the age of 63 and 76 in men
and women, respectively. The prominent features of ARVCS
are ventricular tachycardia, fibrofatty replacement of
cardiomyocytes, premature ventricular contractions (PVCs),
and left ventricular dilation resulting in heart failure and sud-
den cardiac death. The available therapies for ARVCS patients
are limited and include the use of implantable cardioverter
defibrillator (ICD) devices. ICDs have shown to be more ef-
fective in ARVCS patients particularly when used in men as a
primary prophylaxis (before incidence of sustained ventricular
tachycardia) versus secondary prophylaxis (after sustained
ventricular tachycardia) (Hodgkinson et al. 2016).

Luma function was originally assessed in vitro using
cardiomyocytes and non-cardiomyocytes (Franke et al.
2014; Jiang et al. 2017; Rajkumar et al. 2012; Siragam et al.
2014). However, there was limited information as to the role
of Luma is cardiac development and function in vivo.
Therefore, we took genetic approaches to uncover the role of
Luma in cardiac function by generating several novel mouse
models (Stroud et al. 2018). Using a series of cell-type specific
antibodies and indicator mouse lines, Luma was expressed
sporadically in cardiomyocytes, pericytes, and endothelial
cells, whereas it was highly and uniformly expressed in fibro-
blasts and vascular smooth muscle cells (VSMCs).
Furthermore, Luma localization was consistent between
mouse and human myocardium as human myocardium from
non-failing adults showed the same localization to the nuclear
envelope. Importantly, the specificity of the Luma antibody
was validated using Luma KO mouse tissue for both Western
blots and immunofluorescence.

Because Luma was found in most cardiac cell types, a
global knockout approach was taken to try and understand
Luma’s role in heart function. Given the strength of data sug-
gesting that Luma as the unequivocal cause of AC in humans,
it was surprising that Luma KO mice appeared normal and
had no abnormalities in cardiac function at baseline up to
almost 2 years of age. Furthermore, no changes in the fetal
gene programme or pro-fibrotic genes were observed, further
supporting the notion that Luma KO hearts were normal. We
hypothesized that other LINC complex proteins may compen-
sate for loss of Luma, but the localization and levels of lamins
A/C, B1, Emerin, Sunl, and Sun2 were unchanged (Stroud et
al. 2018).

The LINC complex has been suggested to play a role in
mediating response to hypertrophic stimuli (Cupesi et al.
2010; Stubenvoll et al. 2015); therefore, Luma KO mice were
challenged with pressure overload using TAC. Similarly to
their wildtype littermates, Luma KO mice displayed a normal
hypertrophic response at 1-2 weeks, then progressively went
into failure by 4 weeks post-TAC. Furthermore, the contractile
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function of Luma KO mice was unaffected in response to
beta-adrenergic stimulation.

From these data, we concluded that ablation of Luma does
not affect cardiac development or function, and that the S358L.
mutation that causes ARVCS might be a gain of function
mutation. To test this hypothesis, Luma S358L knock-in mice
were generated using CRISPR/Cas9 technology to mimic the
mutation described in humans with ARVCS. Mice heterozy-
gous for the S358L mutation displayed no changes in cardiac
function up to 1 year of age. Other mouse models of human
autosomal dominant mutations exhibit a phenotype when both
alleles are mutated in mice (Arimura et al. 2005; Mounkes et
al. 2005). In contrast to other models, cardiac function in
Luma S358L homozygous mice was normal and mutant
Luma remained localized to the NE. A previous report sug-
gested that Luma expression was downregulated in human
myocardium from patients with the S358L mutation
(Christensen et al. 2011). However, immunofluorescence
and Western blotting revealed no changes between wildtype
and both S358L heterozygous and homozygous mice.

An intriguing finding from this study was that both in hu-
man and mouse myocardium, Luma is predominantly
expressed in fibroblasts and VSMCs. ARVC is normally con-
sidered a ‘disease of the desmosome’ (Zhang et al. 2015);
therefore, it is unusual for a protein that is expressed at low
levels in cardiomyocytes to result in ARVC. We therefore
speculate that paracrine crosstalk between fibroblasts,
VSMCs, and cardiomyocytes might be perturbed by the
Luma mutation in humans. However, the pathophysiological
mechanisms that occur as a result of the S358L. mutation re-
main unclear. Because patients with the mutation develop
ARVCS later in life, we speculated that aging the S358L mice
for longer might be necessary to elicit a phenotype.
Alternatively, stressing the S358L knock-in mice using ap-
proaches to induce physiological or pathological hypertrophy
may be required, as was shown for Luma’s binding partner,
Emerin (Stubenvoll et al. 2015). Another possibility is that
other yet-to-be-identified mutation(s) exist in modifier genes
that are within the vicinity of the Luma gene and are therefore
inherited in the same manner. Identification of these will re-
quire whole genome sequencing.

Nuclear lamins

Nuclear lamins were first described in the 1970s and are type
V intermediate filaments that readily self-associate to form
parallel coil-coil homodimers (Gerace et al. 1978). The
homodimers assemble higher-order filamentous structures to
form the nuclear lamina that resides beneath the INM. The
major components of the nuclear lamina in cardiomyocytes
are A-type lamins A and C (encoded by the LMNA gene) and
B-type lamins 1 and 2 (encoded by LMNB1 and LMNB?2,
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respectively) (Fisher et al. 1986; Hoger et al. 1990; Lin and
Worman 1995; McKeon et al. 1986). Lamins share a similar
structure that is comprised of an alpha helical rod that is abut-
ted to non-helical globular domains at the N- and C-termini
(Stuurman et al. 1998).

The LMNA gene is alternatively spliced to generate lamins
A and C, which are the major isoforms found in
cardiomyocytes (Fisher et al. 1986; McKeon et al. 1986).
Expression of A-type lamins is ubiquitous and developmen-
tally regulated as they are only detected in differentiated cells
(Broers et al. 1997; Rober et al. 1989; Solovei et al. 2013).
Conversely, B-type lamins are constitutively expressed and
are found in multiple tissues (Worman and Courvalin 2000).
For a comprehensive review of nuclear lamin discovery and
characterization, we refer readers elsewhere (Gerace and
Huber 2012).

Nuclear lamins have been shown to play multiple roles in
the cell, which are mediated via interactions at the nuclear
periphery and nucleoplasm (Prokocimer et al. 2009). They
are important for maintenance of nuclear structural integrity,
chromatin organization, gene expression regulation, nuclear
positioning, and cytoskeletal organization (Andres and
Gonzalez 2009; Broers et al. 2004; Dechat et al. 2008;
Folker et al. 2011; Lammerding et al. 2004) and interact with
a plethora of different binding partners that enable direct or
indirect interaction with chromatin through histones, lamin B
receptor, heterochromatin protein 1, Emerin, and BAF (Burke
and Stewart 2013; Mattout-Drubezki and Gruenbaum 2003;
Wagner and Krohne 2007; Wilson and Foisner 2010).

As intermediate filament proteins, lamins provide mechan-
ical stability to the nucleus (Lammerding et al. 2004). In sup-
port of this, nuclei from lamin A/C-null mouse embryonic
fibroblasts have increased nuclear deformation, defective
mechanotransduction, and impaired viability under mechani-
cal strain (Lammerding et al. 2004). These data fit with in vivo
data from lamin A/C-null mice in which cardiomyocyte nuclei
are misshapen (Nikolova et al. 2004). Lamin A/C levels have
been shown to scale with collagen 1 levels in tissues, whereas
lamin B levels remain constant (Swift et al. 2013). These data
suggest that lamin A/C may act as a ‘mechanostat’ and its
levels are regulated with regard to tissue stiffness. It is tempt-
ing to speculate that a more fibrotic and stiffer myocardium
may have elevated lamin A/C levels. However, the results
from meta-analysis of existing proteomic datasets from cardi-
ac tissue was inconclusive as to whether this is the case (Cho
et al. 2017). Further work using defined animal models of
cardiac fibrosis that can be tightly controlled and manipulated
will be required to understand if there is a correlation between
fibrosis and lamin A/C levels in the heart.

As well as providing mechanical stability, lamin A/C also
plays a role in responding to mechanical force stimulation. For
example, lamin A/C hemizygous mice have an attenuated re-
sponse to TAC-induced pressure overload and impaired

activation of the mechanosensitive gene EGR-1
(Lammerding et al. 2004). Further evidence comes from
MEFs derived from lamin A/C-null or LMNAN!93K/NI9K
mice that showed impaired nuclear translocation of the
mechanosensitive transcription factor MKL1 (Ho et al.
2013). Cardiac sections from both mouse lines had signifi-
cantly reduced fractions of cardiomyocytes with nuclear
MKLI1. MKL1 is a co-activator of SRF, which is a master
regulator of genes encoding cytoskeletal proteins.

These data suggest that lamin A/C not only plays a me-
chanical role but also may regulate gene expression. In sup-
port of this, hearts from the LMNAM222PH222P 15556 model
for EDMD and cardiomyopathy have upregulated MAPK sig-
naling pathways, ERK 1/2, JNK, and p38-MAPK (Muchir et
al. 2007b, 2012). Notably, these signaling pathways are acti-
vated prior to the onset of cardiomyopathy, suggesting that
targeting these pathways with inhibitors may ameliorate car-
diac dysfunction in the LMNA"222"H222P Jaminopathy mod-
el. Indeed, beneficial effects to the heart have been observed in
mice when treated with various inhibitors of these pathways
(Muchir et al. 2009; Wu et al. 2011, 2010).

Other potential roles of lamins include regulating muscle
differentiation by differential binding of lamina-associated do-
main (LAD) regions of chromatin (Perovanovic et al. 2016).
LADs are typically gene-poor regions that are tethered to the
lamina in a constitutive or facultative manner (Pickersgill et al.
2006; van Steensel and Belmont 2017). Little is known about
LAD:s in the heart, but work from Eric Schirmer’s lab suggests
that tissue-specific nuclear envelope transmembrane proteins
may play a role in striated muscle differentiation by regulating
LAD:s at the NE (Robson et al. 2016). Whether LADs play a
similar role in the heart remain to be elucidated.

Since the identification of mutations in lamin genes that
cause cardiac and skeletal myopathies in the late 1990s and
early 2000s, coined ‘laminopathies’, the nuclear lamin field
has received considerable attention using cellular and mouse
models to try and uncover the pathophysiological mechanisms
(Bonne et al. 1999, 2000; Fatkin et al. 1999; Worman 2012;
Worman et al. 2009). Laminopathies present as a myriad of
different disorders including DCM (Fatkin et al. 1999), heart-
hand syndrome (Renou et al. 2008), autosomal dominant
(AD) EDMD (Bonne et al. 1999), limb-girdle muscular dys-
trophy (Muchir et al. 2000), lipodystrophies (Shackleton et al.
2000), and LMNA-related congenital muscular dystrophy
(Quijano-Roy et al. 2008). For an extensive list of
laminopathies we refer readers here (Captur et al. 2018).
With regard to cardiomyopathy, mutations in the LMNA gene
account for 5-8% of patients with genetic DCM (Hershberger
et al. 2013; McNally and Mestroni 2017). In contrast, no mu-
tations in B-type lamins have been identified that lead to car-
diomyopathy. This may be because the severity of the pheno-
type is not tolerated in mammals. Indeed, loss of function
models of both lamins B1 and B2 in mice results in embryonic
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lethality (Coffinier et al. 2010; Padiath et al. 2006; Vergnes et
al. 2004).

As mentioned above, many mouse models have been gen-
erated to understand the function of lamin A/C in the heart
(Arimura et al. 2005; Cattin et al. 2013; Kubben et al. 2011;
Lu et al. 2010; Mewborn et al. 2010; Mounkes et al. 2005;
Nikolova et al. 2004; Sullivan et al. 1999; Wang et al. 2006).
Interestingly, some of these mouse models (e.g. H222P,
N195K) need to be homozygous for the LMNA mutation to
elicit a phenotype, whereas in humans, the disease is normally
dominant. This could be due to unidentified mutations in
modifier genes or greater dosage sensitivity in humans. Thus
far, no approaches have been taken to ablate lamin A/C, B1, or
B2 expression in a cardiomyocyte-specific manner. This is
somewhat surprising given the robust phenotypes observed
with the global knockout mice. Combined with the data from
the global knockout mice, these data would lend new insights
on which cell-type expression of lamins A/C, B1, and B2 is
critical for normal heart function. Furthermore, the original
lamin A/C knockout mice produce a 54 kDa truncated version
of lamin A/C that arises as a result of an unforeseen splicing
event (Jahn et al. 2012; Nikolova et al. 2004). The truncated
version contains the N-terminal globular domain and rod do-
mains, whereas a large proportion of the C-terminal globular
domain is missing. Therefore, generation of LMNA floxed
mice would not only enable the original model to be validated
as a loss of function model but also allow tissue-specific
ablation.

Future directions

The importance of the LINC complex in fundamental cellular
processes has become apparent since the discovery of muta-
tions in LINC complex-encoding genes that cause cardiomy-
opathy (McNally and Mestroni 2017; Meinke and Schirmer
2016; Mejat and Misteli 2010; Worman et al. 2010). The
LINC complex structurally supports the nucleus and physical-
ly couples the nucleoskeleton to the cytoskeleton (Crisp et al.
2006; Sosa et al. 2013). Furthermore, it is hypothesized to act
as a mechanosensor that translates mechanical stimuli into
biochemical cues that mediate gene expression changes and
affect chromatin organization (Jaalouk and Lammerding
2009; Lombardi and Lammerding 2011). It is clear that the
structural and gene expression roles are not mutually exclu-
sive and that modulating one aspect of LINC complex func-
tion will likely influence the other. As a consequence, disrup-
tion of the LINC complex and its associated proteins affects
cellular function and contributes to cardiomyopathy as de-
scribed in this review.

Integrated approaches that combine mouse models, cell-
based assays, and biophysical analyses have contributed to
our progress in understanding LINC complex function.

@ Springer

Armed with the knowledge of the mutations in the LINC
complex that cause cardiomyopathy, the next steps will be to
uncover the pathophysiological molecular mechanism under-
lying disease.

As described in this review, many of the LINC com-
plex and its associated proteins have been studied using
global knockout mouse approaches, including Nesprins,
SUN proteins, Emerin, LAP1, LAP2, MANI, LEM2,
Luma, and nuclear lamins. Therefore, a lot remains to
be uncovered in terms of the tissue-specific roles in
cardiomyocytes as well as the function of the different
isoforms. Another challenge will be to identify the in-
teraction networks of the LINC complex proteins. Until
recently, this remained elusive, partly due to the insol-
ubility of the nuclear lamina and chromatin (Roux et al.
2012). However, with the advent of proximity proteomic
approaches, such as Bio-ID and APEX, the LINC com-
plex interactome can now be explored (Kim et al. 2016;
Kim and Roux 2016; Rhee et al. 2013; Roux et al.
2012). This approach has been mostly applied in cell
culture, but mouse lines are currently being engineered
to identify binding partners in an in vivo setting.

As well as taking these approaches, complementary
assessment of LINC complex function in human
cardiomyocytes generated using induced pluripotent
stem cell (iPSC) technology will be essential. Indeed,
next steps have been taken using this protocol from
laminopathy patients (Shimojima et al. 2017; Siu et al.
2012). Despite the question of cardiomyocyte maturity
in iPSC-derived cardiomyocytes, the field is rapidly
progressing thanks to the technology to generate
engineered heart tissue (Ronaldson-Bouchard et al.
2018; Zimmermann et al. 2006). Furthermore, the use
of CRISPR/Cas9 machinery to correct patient mutations
and generate isogenic controls will further strengthen
this technology. Not only will this approach enhance
our understanding of the fundamental biology of the
LINC complex, it will enable the development of novel
therapeutics to target the devastating effects of LINC
complex-associated cardiomyopathies.
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