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Abstract

The chance discovery of hydroxymethylglutaryl (HMG)-CoA reductase inhibitors has 

revolutionized the care of patients with cardiovascular disease. The unexpected finding that these 

cholesterol-lowering drugs (or ‘statins’) also posses pleiotropic immunomodulatory properties, has 

opened a new area of research which investigates the anti-inflammatory and anti-proliferative 

properties of statins. In this brief commentary, we discuss the potential application of these drugs 

in asthma, where metabolic pathways pertinent to lung inflammation, in addition to the 

mevalonate cascade, may be targeted. We review mechanisms of action, discuss the potential 

therapeutic use of statins in asthma, share some preliminary data from our laboratory, discuss 

results from recent clinical trials in asthma, and propose a new target asthma subpopulation that 

could potentially benefit. We conclude our essay by highlighting the mevalonate-dependent and –

independent pathways that may be modulated by statins, including the emerging area of 

cholesterol, sphingolipid, and lipid raft biology in lung disease. In this is an opportunity to develop 

new treatments for asthma, where innovative therapies are urgently needed to prevent acute 

exacerbations and alter disease progression.
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A GROUNDBREAKING DISCOVERY

The discovery of compactin (now known as mevastatin) by Dr. Akira Endo in 1973, led to 

the development of the ‘statin’ class of drugs. In the last two decades these medications have 

revolutionized the care of patients with cardiovascular disease. Endo’s work on cholesterol 

metabolism in fungi revealed that Penicillium citrinum can produce organic molecules, i.e. 

the statins, which naturally inhibit hydroxymethylglutaryl (HMG)-CoA reductase (HMGR) 
via competitive inhibition. Subsequent studies on cholesterol homeostasis and the low 
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density lipoprotein (LDL) receptor by Drs. Joseph L. Goldstein and Michael S. Brown 

garnered them the Nobel Prize in 1985 and lay the foundation for the use of statins in 

clinical trials. The relatively recent realization that statins also have anti-inflammatory and 

immunomodulatory properties has resulted in a new and intriguing avenue of research 

relevant to lung diseases such as asthma and chronic obstructive pulmonary disease (COPD).

MECHANISMS AND BIOLOGICAL IMPLICATIONS

The statins directly inhibit HMGR, the rate-limiting step in the cholesterol biosynthesis 

pathway in the mevalonate (MA) cascade (Fig. 1). Depletion of MA by statins affects critical 

downstream intermediates, such as the isoprenoids farnesyl- and 

geranylgeranylpyrophosphate (FPP and GGPP). These lipid metabolites post-translationally 

modify the small guanosine triphosphatases (GTPases) Rho, Ras, Rac, and Cdc42, which 

can then associate with the cell membrane leading to intracellular signal transduction [1, 2]. 

These GTPases are important in a variety of key biological activities that include recruitment 

of inflammatory cells, cellular proliferation and transmigration, vesicular trafficking, 

cytoskeletal dynamics, apoptosis and phagocytosis, antigen uptake and processing, and cell 

cycle regulation [3]. Thus, the MA cascade is a major metabolic pathway that regulates 

manifold cellular processes important to many diseases beyond cardiovascular disease [4]. 

The statins modulate this pathway in different cell types which has created an opportunity 

for novel and innovative investigations in several fields outside of cardiovascular medicine.

THERAPEUTIC POTENTIAL

We are interested in the therapeutic potential of statins in lung disease, in particular 

inflammatory airway diseases such as asthma and COPD. We and others have demonstrated 

that simvastatin in the allergic mouse model attenuates eosinophilic airway inflammation [5, 

6] via inhibition of HMGR in the MA pathway [7]. Interestingly, improvements in airway 

hyperreactivity (AHR) and lung compliance appeared to be MA- or HMGR-independent [7]. 

This suggests other statin targets exist beyond the HMGR enzyme (Fig. 1).

Although systemic treatment with simvastatin has a known potent anti-inflammatory effect 

in our asthma model (Fig. 2), additional work in our lab will explore lung-targeted 

modalities of delivering statins. Beyond the asthma model, simvastatin also attenuates the 

production of cytokines important in neutrophilic recruitment and airway remodeling [8]. 

Ongoing studies will test the anti-inflammatory and anti-remodeling effects of simvastatin 

and lovastatin in a rat model of cigarette smoke-induced inflammation. Our preliminary data 

lead us to believe that statins affect a profound inhibition of Th1/Th2/Th17 cytokine and 

chemokine expression in both mouse and human airway epithelial cells (Fig. 3), where the 

epithelium is known to play a central role in asthma mucosal immunity [9].

EMERGING CLINICAL TRIAL DATA

Recent observational studies have linked statin use with improvements in lung health (e.g. 

exacerbations, COPD mortality, and decline in forced expiratory volume in the first second 
(FEV1)), the largest studies being done in COPD and asthma [10–13]. A recent large 

Zeki et al. Page 2

Drug Metab Lett. Author manuscript; available in PMC 2018 August 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



retrospective study found that statin exposure in patients with asthma using inhaled 

corticosteroids (ICS) was independently associated with a significant reduction in asthma-

related hospitalizations and emergency room events over 12 months [14]. However, no 

human randomized clinical trials have definitively reproduced the benefits seen in animal 

models.

Several ongoing clinical trials are investigating exacerbation rates, lung function, 

inflammatory markers, and quality of life in asthmatics treated with statins compared to 

placebo (www.clinicaltrials.gov). So far, four small clinical trials in asthma have been 

reported, three using simvastatin [15–17] and one using atorvastatin [18]. Overall, the results 

are mixed where in one study an anti-inflammatory effect (as measured by sputum markers, 

e.g. macrophage count and leukotriene B4) was observed absent clinical benefit [18]. And in 

another study, despite a lack of a steroid-sparing effect, there were some improvements in 

asthmatic symptoms, lung function (as measured by FEV1), and the number of sputum 

eosinophils (in those who reached the 0 μg/day inhaled corticosteroid dose) [16]. However, 

in a recent double-blinded study, simvastatin (10 mg daily for 8 weeks) was given as add-on 

therapy to low-dose inhaled budesonide (200 μg) in patients with mild asthma. Simvastatin 

enhanced the anti-inflammatory effect of budesonide where sputum eosinophil counts were 

significantly reduced by the combined therapy (budesonide and simvastatin) compared to the 

control group (budesonide and placebo) (p=0.02) [17]. Although the study was not powered 

to detect changes in lung function, there was a trend toward higher FEV1 in the budesonide 

and simvastatin group compared to the control population. A major limitation of these trials 

is that these were small, relatively short-term studies (4-8 weeks [15, 17, 18]), and 3 months 

[16]) where the subpopulation of asthmatics was not defined beyond allergic asthma.

It is important to remain cautious with these results given no definitive improvement in 

clinical outcomes as of yet. However, the observation that statins attenuate airway 

inflammation in asthma as measured by sputum markers is noteworthy. Whether this 

translates into reduced exacerbations and improved lung function remains an open and 

worthwhile research question. It also raises the following question: What would happen if 

the statin was given for a longer period of time and/or at a higher dose? This has 

implications for an aspect of severe asthma that remains without a viable treatment – 

irreversible airway remodeling.

Thus, the hypothesis that the statins may have benefit in a subpopulation of asthmatics has 

not been adequately tested in clinical trials of longer-term duration, where effects on asthma 

pathogenesis (e.g. chronic inflammation and remodeling) and clinical outcomes (e.g. acute 

exacerbations) require additional evaluation.

PROPOSED TARGET ASTHMA POPULATION

Why is asthma a potential disease target for statins? Asthma being a heterogeneous disease 

presents particular difficulties for clinical trials designed to test novel therapies. However, in 

this limitation is a hidden opportunity. Although one can propose many different arguments 

for why statins could benefit patients with asthma, we choose to focus on a subpopulation 

that may be underappreciated.
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Epidemiologic studies have linked obesity with asthma [19–22]. Obesity is also strongly 

associated with metabolic syndrome, where a link to asthma is also emerging [23]. Using 

multidimensional cluster analyses, an obese subgroup of female asthmatics has been 

described [24]. The Severe Asthma Research Program has also described a cluster of older 

obese women with late onset non-atopic asthma [25]. Obesity being linked to systemic 

inflammation [26, 27], dyslipidemia, and metabolic syndrome [28] (where statins may be 

indicated) [29, 30], presents a unique opportunity for those with the obese-asthma 

phenotype. This subpopulation of asthmatics could potentially benefit from statins – a safe 

and widely used treatment that would also treat other comorbidities (e.g. cardiovascular 

disease, dyslipidemia). Adding to this complexity, emerging epidemiologic data link serum 

cholesterol levels with asthma risk in U.S. populations [31].

Thus, we believe that future clinical trials to assess the potential therapeutic use of statins in 

asthma should focus on the obese asthmatic as one target subpopulation or phenotype that 

could potentially benefit. Albeit the underling mechanisms in this specific population have 

not yet been fully described, we feel that parallel work in animal models and humans may 

accelerate the application of this innovative therapy.

ROLE OF THE MEVALONATE PATHWAY: FERTILE GROUND AND FUTURE 

DIRECTIONS

The MA pathway is important not only for its regulation of small GTPases, but also for the 

biosynthesis of cholesterol which is the precursor to many crucial metabolites and is a 

critical component of cell membranes. Numerous cholesterol products have emerging roles 

in asthma (and possibly other lung diseases), including vitamin D [32], steroid hormones, 

lipid rafts [33], and lipoproteins [34, 35]. Cholesterol itself may have a role in allergic lung 

inflammation [36] and lung host defense [37] which may be important in the pathogenesis of 

asthma.

Beyond this and given the pleiotropic effects of statins [38], an opportunity also exists to 

investigate HMGR- or MA-independent pathways thereby unraveling other important 

mechanisms. Emerging data suggest that statins can also inhibit LFA-1 [39], HDAC activity 

[40], and PKCα inactivation of PPARα [41], while potentially activating vitamin D 

receptors [42] or increasing serum vitamin D levels [43] (Fig. 1, see for Abbreviations). 

Omega-3 fatty acids may also inhibit HMGR [44] independently of statins, indicating 

crosstalk among different metabolic pathways with the attendant dietary considerations. This 

highlights the broad-ranging, pleiotropic statin effects and alternative metabolic pathways 

which may be relevant to asthma or other lung diseases.

Finally, the potential for statins to modulate cell signaling and subsequent immune responses 

by altering cholesterol content in lipid rafts [45] remains a relatively unexplored area in lung 

biology. Lipid raft trafficking and stabilization of receptor-to-ligand binding, a fundamental 

event in cellular inflammation and proliferation, is an area of intense exploration with direct 

relevance to asthma [46, 47]. In addition to cholesterol, the sphingolipids are also a key 

component of lipid rafts [48], where they may play a role in cigarette smoke-induced lung 

injury [49, 50] and asthma [51]. Thus, the statins, the pathways they affect, and cholesterol/ 

Zeki et al. Page 4

Drug Metab Lett. Author manuscript; available in PMC 2018 August 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



sphingolipid biology [52, 53] emerge as a fertile ground for investigation in lung diseases, 

particularly in asthma where targeted, novel, and innovative therapies are urgently needed.
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Fig. 1. 
The statins may inhibit or activate various other pathways beyond the MA cascade. Direct 

HMGR inhibition depletes cellular MA and downstream metabolites (cholesterol, FPP, and 

GGPP) – i.e. the classical target of statins, while HMGR-independent pathways represent 

novel statin targets. (Abbreviations: phosphatidylinositol 3-kinase (P13K), peroxisome 

proliferators-activated receptor (PPAR), protein kinase C (PKC)α, mevalonate (MA), 

hydroxymethylglutaryl (HMG)-CoA reductase (HMGR), histone deacetylase (HDAC), 

leukocyte function antigen-1 (LFA-1), farnesylpyrophosphate (FPP), 

geranygeranylpyrophosphate (GGPP)).
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Fig. 2. 
Lung histology of ovalbumin (OVA)-sensitized/exposed BALB/c mice (H&E statin at 100× 

magnification). Panel (A) shows the influx of peribronochiolar inflammatory cells in the 

OVA control group. Panel (B) shows a marked reduction of peribronchiolar inflammation in 

OVA mice treated with simvastatin (40 mg/kg) intraperitoneally.
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Fig. 3. 
Eotaxin-3 expression in primary human airway epithelial cells. Simvastatin (5 uM and 25 

uM, abbreviated as S(5) and S(25), respectively) attenuated IL-13-induced eotaxin-3-

expression (IL-13 dose = 20 ng/mL) (*p<0.05). Co-stimulation with IL-17 did not alter the 

effect of IL-13 on eotaxin-3 gene expression.
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