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Abstract

Spherical deconvolution (SD) of the white matter (WM) diffusion-attenuated signal with a fiber 

signal response function has been shown to yield high-quality estimates of fiber orientation 

distribution functions (FODFs). However, an inherent limitation of this approach is that the 

response function (RF) is often fixed and assumed to be spatially invariant. This has been reported 

to result in spurious FODF peaks as the discrepancy of the RF with the data increases. In this 

paper, we propose to utilize response function groups (RFGs) for robust compartmentalization of 

diffusion signal and hence improving FODF estimation. Unlike the aforementioned single fixed 

RF, each RFG consists of a set of RFs that are intentionally varied to capture potential signal 

variations associated with a fiber bundle. Additional isotropic RFGs are included to account for 

signal contributions from gray matter (GM) and cerebrospinal fluid (CSF). To estimate the WM 

FODF and the volume fractions of GM and CSF compartments, the RFGs are fitted to the data in 

the least-squares sense, penalized by the cardinality of the support of the solution to encourage 

group sparsity. The volume fractions associated with each compartment are then computed by 

summing up the volume fractions of the RFs within each RFGs. Experimental results confirm that 

our method yields estimates of FODFs and volume fractions of diffusion compartments with 

improved robustness and accuracy.

1 Introduction

Diffusion magnetic resonance imaging (DMRI) is a powerful imaging modality due to its 

unique ability to extract microstructural information by utilizing restricted diffusion to probe 

compartments that are much smaller than the voxel size. One important goal of DMRI is to 

estimate axonal orientations, tracing of which will allow one to gauge connectivity between 

brain regions. For estimation of axonal orientations, a widely used method, constrained 

spherical deconvolution (CSD) [1], estimates the fiber orientation distribution function 

(FODF) by deconvolving the measured diffusion-attenuated signal with a spatially-invariant 

kernel representing the signal response function (RF) of a single coherent fiber bundle. 

Unlike the multi-tensor approach, CSD does not require the specification of the number of 
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tensors to fit to the data. However, it has been recently reported that a mismatch between the 

kernel used in CSD and the actual fiber RF can cause spurious peaks in the estimated FODF 

[2]. Although CSD has been recently extended to include RFs of not only the white matter 

(WM), but also the gray matter (GM) and the cerebrospinal fluid (CSF) [3], these RFs 

remain spatially fixed and similar shortcomings as reported in [2] apply.

In this paper, we propose to estimate the WM FODF and the volume fractions of the GM 

and CSF compartments by using response function groups (RFGs). Each RFG is a collection 

of exemplar RFs aimed at capturing the variations of the actual RFs. Unlike the conventional 

approach of using fixed RFs, the utilization of RFGs will allow tolerance to RF variations 

and hence minimize estimation error due to RF and data mismatch. Several RFGs are 

included to cater to the WM, GM, and CSF compartments. The WM is represented by a 

large number of directional RFGs with orientations distributed uniformly on the unit sphere. 

Each WM RFG consists of a set of unidirectional axial-symmetric diffusion tensors with a 

range of typical axial and radial diffusivities. The GM and CSF RFGs consist of isotropic 

tensors with diffusivities of GM RFs set lower than CSF RFs, consistent with what was 

reported in [3]. The FODF and compartmental volume fractions for each voxel are estimated 

by solving a group cardinality (i.e., l0-“norm”) penalized least-squares problem that aims to 

preserve the group structure of the RPGs while at the same time encourage sparsity. Our 

work is an integration of concepts presented in [3–5] with a novel estimation framework.

Recently, Daducci et al. [6] linearize the fitting problem of ActiveAx and NODDI to 

drastically speed up axon diameter and density estimation by a few orders of magnitude. 

They achieve this by solving an l1 minimization problem with a design matrix containing 

instances of the respective biophysical models generated with a discretized range of 

parameters. The results reported in [6] are supportive of the fact that variation of diffusion 

signals should be explained not only in terms of varying volume fractions but also in terms 

of varying model parameters. Similar to [6], we observe that by using RFGs containing RFs 

of varying parameters, the data can be explained with greater fidelity than by using RFs with 

a single fixed set of parameters. Dissimilar to [6], our work (i) is not limited to single fiber 

populations and explicitly considers fiber crossings, (ii) solves a cardinality penalized 

problem instead of the l1 problem, and (iii) explicitly considers the natural coupling between 

RFs via sparse-group estimation, similar but not identical to [7].

We propose here to directly minimize the cardinality penalized problem instead of resorting 

to reweighted ℓ1 minimization as performed in [8]. By doing so, we (i) overcome the 

suboptimality of reweighted minimization, and (ii) improve estimation speed greatly by 

avoiding having to solve the l1 minimization problem (especially the sparse-group problem 

[7]) multiple times to gradually improve sparsity. We will describe in this paper an algorithm 

based on iterative hard thresholding (IHT) to effectively and efficiently solve the cardinality 

penalized sparse-group problem.
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2 Proposed Approach

2.1 Response Function Groups (RFGs)

At each voxel, the diffusion-attenuated signal S(b, g), measured for diffusion weighting b and 

at direction g, can be represented as a mixture of N models: 

S(b, g) = ∑i = 1
N f iSi(b, g) + ε(b, g), where fi is the volume fraction associated with the i-th 

model Si and ε(b, g) is the fitting residual. In the current work, we are interested in 

distinguishing signal contributions from WM, GM, and CSF and choose to use the tensor 

model Si(b, g) = S0exp( − bgTDig), where S0 is the baseline signal with no diffusion weighting 

and Di is a diffusion tensor. This model affords great flexibility in representing different 

compartments of the diffusion signal. Setting D = λI, the model represents isotropic 

diffusion with diffusivity λ. When λ = 0 and λ > 0 the model corresponds to the dot model 

and the ball model, respectively [9]. Setting D = (λ − λ⊥)vvT + λ⊥I, λ > λ⊥, the model 

represents anisotropic diffusion in principal direction v with diffusivity λ║ parallel to v and 

diffusivity λ⊥ perpendicular to v. When λ⊥ = 0 and λ⊥ > 0 the model corresponds to the 

stick model and the zeppelin model, respectively. In our case, each of these tensor models is 

a representation of an RF.

The solution to SD [1] can be obtained in discretized form by including in the mixture 

model a large number of anisotropic tensors uniformly distributed on the unit sphere with 

fixed λ║ and λ⊥ and solving for {fi} by minimizing the error in the least-squares sense with 

some appropriate regularization, giving us the FODF. In this work, instead of fixing λ║ and 

λ⊥, we allow them to vary across a range of values. Therefore, each principal direction is 

now represented by a group of RFs, forming a RFG. Additional isotropic RFGs are included 

to account for signal contributions from GM and CSF. Formally, the representation can be 

expressed as

S(b, g) = ∑
i = 1

NWM
Si

WM(b, g) + SGM(b, g) +SCSF(b, g)

S(b, g)

+ ε(b, g), (1)

where we have NWM WM RFGs, a GM RFG, and a CSF RFG with 

Si
WM(b, g) = ∑ j = 1

KWM f i, j
WMexp( − bgTDi, j

WMg), SGM(b, g) = ∑ j = 1
KGM f j

GMexp( − bgTD j
GMg), 

SCSF(b, g) = ∑ j = 1
KCSF f j

CSFexp( − bgTD j
CSFg) and 

Di, j
WM = (λ , j

WM − λ ⊥ , j
WM )vivi

T + λ ⊥ , j
WM I, D j

GM = λ j
GMI, D j

CSF = λ j
SCFI. Given the signal S(b, g), we 

need to estimate the volume fractions f i, j
WM , f j

GM , and f j
CSF . Note that we have 

dropped S0 here because it can be absorbed into the volume fractions. The normalized 

volume fractions can be recovered by dividing the unnormalized volume fractions by S0. It 

is easy to see that if we take a Fourier transform of (1), these volume fractions are in fact 

weights that decompose the ensemble average propagator (EAP) of the overall signal as a 

Yap et al. Page 3

Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2018 August 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



weighted sum of the EAPs of the individual tensors. The overall volume fractions associated 

with WM, GM, and CSF are f
WMi = ∑ j = 1

KWM f i, j
WM, f GM = ∑ j = 1

KGM f j
GM, 

f CSF = ∑ j = 1
KCSF f j

CSF. The set f
WMi over i gives the WM FODF. For notation simplicity, we 

group the volume fractions into a vector f = [f
WM1; …; f

WMNWM; fGM; fCSF].

2.2 Estimation of Volume Fractions

To obtain an estimate of the volume fractions, we solve the following optimization problem: 

minf ≥ 0 ϕ(f) = ‖S(b, g) − S(b, g)‖2
2 + αγ‖f‖0 + (1 − α

)γ ∑i = 1
NWMℐ(‖f

WMi‖2) + ℐ(‖fGM‖2) + ℐ(‖fCSF‖2)

, where ℐ(z) is an indicator function 

returning 1 if z ≠ 0 or 0 if otherwise. The l0-“norm” gives the cardinality of the support, i.e., 

||f||0 = |supp(f)| = |{k : fk ≠ 0}|. Parameters a ∈ [0, 1] and γ > 0 are for penalty tuning, 

analogous to those used in the sparse-group LASSO [7]. Note that α = 1 gives the l0 fit, 

whereas α = 0 gives the group l0 fit. The problem can be written more succinctly in matrix 

form: minf ≥ 0 ϕ(f) = Af − s 2
2 + αγ f 0 + (1 − α)γ∑g ∈ Gℐ( fg 2) , where fg denotes the 

subvector containing the elements associated with group 

g ∈ G = WM1, …, WMNWM
, GM, CSF . If s is the signal vector acquired at D (b, g)-points, A 

= [AWM|AGM|ACSF] is a D × N matrix (N = NWM KWM + KGM + KCSF) with columns 

containing all the individual WM, GM, and CSF tensor models sampled at the 

corresponding D points. To the best of our knowledge, the solution to this problem has not 

been described elsewhere. We will therefore provide next the details of our algorithm.

2.3 Optimization

The problem we are interested in solving has the following form: minf≥0{ϕ(f) = l(f)+r(f)}, 

where in our case l(f) = Af − s 2
2 is smooth and convex and 

r(f) = αγ f 0 + (1 − α)γ∑g ∈ Gℐ( fg 2) is non-convex, non-smooth, and discontinuous. Note 

that the solution is trivial, i.e., f* = 0, when γ ≥ s 2
2
. We will solve this problem using an 

algorithm called non-monotone iterative hard thresholding (NIHT), as described in the 

following.

Non-monotone Spectral Projected Gradient—Choose factor τ > 1, step size 

constants Lmin < Lmax, line search constant η > 0, stopping tolerance ∊ > 0, and integer-

valued non-monotone descent parameter M > 0. For iteration k = 0, set L0
(0) = 1 and initial 

solution to f(0). Then proceed with the following steps to obtain the solution:

1. Set L(k) = L0
(k).

1a) Solve the subproblem
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f k + 1 ∈ Arg minf ≥ 0 l f(k) + ∇l f(k) T f − f(k) + L(k)
2 f − f(k)

2
2 + r(f) .

1b) If ϕ f k + 1 ≤ max
[k − M]+ ≤ i ≤ k

ϕ f i − η
2 f k + 1 − f k

2
2
 is satisfied, 

then go to Step 2.

1c) Set L(k) ← τL(k) and go to Step 1a.

2. If |ϕ(f(k+1)) − ϕ(f(k))|/max(ϕ(f(k+1)), 1) < ε is satisfied, then return f(k+1) as a 

solution. Otherwise, go to Step 3.

3.
Set L0

k + 1 = max Lmin, min Lmax, ΔlTΔf
Δf 2

2 , where Δf = f(k+1) − f(k) and Δl = 

∇l(f(k+1)) − ∇l(f(k)).

4. Set k ← k + 1 and go to Step 1.

The algorithm above seeks the solution via gradient descent using a majorization-

minimization (MM) formulation of the problem. Step 1a minimizes the majorization of the 

objective ϕ(·) at f(k). It can be shown that the minimization involves a gradient descent step 

with step size 1/L(k) (more details in the next section). The parameters Lmin and Lmax 

constrain the step size so that it is neither too aggressive nor too conservative (Step 3). We 

choose the initial step size 1/L0
(k) as proposed by Barzilai and Borwein in [10], using a 

diagonal matrix 1/L0
(k) I to approximate the inverse of the Hessian matrix of l(f) at f(k) (Step 

3). A suitable step size is determined via backtracking line search, where the step size is 

progressively shrunk by a factor of 1/τ (Step 1c). Parameter η makes sure that the 

backtracking line search results in a sufficient change of the objective. Since the problem is 

non-monotone, i.e., the objective function is not guaranteed to decrease at every iteration, we 

require the objective to be slightly smaller than the largest objective in M previous iterations 

(Step 1b). For M > 0, the algorithm may increase the objective occasionally but will 

eventually converge faster than the monotone case with M = 0. Parameter ε controls the 

stopping condition (Step 2). We divide |ϕ(f(k+1)) − ϕ(f(k))| by max(ϕ(f(k+1)), 1) to compute 

the relative change or the absolute change of the objective, whichever is smaller. In this 

work, the following parameters were used: Lmin = 1 × 10−2, Lmax = 1 × 108, η = 1 × 10−4, τ 
= 2, = 1 × 10−3, and M = 10.

Solution to Subproblem—The subproblem is group separable and can be shown to be 

equivalent to solving the problem separately for each group g ∈ G. With some algebra, the 

subproblem associated with group g can be shown to be equivalent to 

fg
k + 1 ∈ Arg minfg ≥ 0 ϕg fg = fg − zg

k
2
2 + 2

L k r f , where z(k) = f(k) − ∇l(f(k))/L(k) = f(k) 

− 2AT(Af(k) − b)/L(k) and zg
k  is a subvector of z(k) associated with group g. If we let 

γ∼1
k = 2αγ/L(k), and γ∼1

k = 2 1 − α γ/L(k), the solution to the problem can be obtained by hard 
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thresholding. If z∼ = hard+ zg
k , γ∼1

k , where hard+ (z, γ)i = zi if if zi > γ and 0 otherwise, the 

solution to the subproblem is fg
k + 1 = z∼ if z∼ 2

2 > γ∼1
k z∼ 0 + γ∼2

k  and 0 otherwise. Note that 

the sparse-group LASSO [7] can be implemented in a similar fashion by replacing the above 

solution with a soft-thresholding version.

3 Experimental Results

3.1 Data

For reproducibility, diffusion weighted (DW) data from the Human Connectome Project 

(HCP) were used. The 1.25 × 1.25 × 1.25 mm3 data were acquired with diffusion weightings 

b = 1000, 2000, and 3000 s/mm2 each applied in 90 directions. 18 baseline images with low 

diffusion weighting b = 5s/mm2 were acquired.

3.2 Diffusion Parameters

The parameters of the RFGs were set to cover the typical values of the diffusivities of the 

WM, GM, and CSF voxels in the above dataset: λWM = 1 × 10−3mm2/s, 

λ⊥
WM = 0.1:0.1:0.3 × 10−3mm2/s, λGM = [0.00 : 0.01 : 0.80] × 10−3 mm2/s, and λCSF = 

[1.0 : 0.1 : 3.0] × 10−3 mm2/s. The notation [a : s : b] denotes values from a to b, inclusive, 

with step s. Note that in practice, these ranges do not have to be exact but should however 

cover the range of possible parameter variation. The WM RFGs are distributed evenly on 

321 points on a hemisphere, generated by subdivision of the faces of an icosahedron.

3.3 Comparison Methods

We compared the proposed method (L200-RFG) with the following methods: L0-RF: l0 

minimization using a single RF each for WM, GM, and CSF [3]. Similar to [3], WM-GM-

CSF segmentation was used to help determine the parameters for the RFs. The axial and 

radial diffusivities of the WM RFs were determined based on WM voxels with fractional 

anisotropy (FA) greater than 0.7. The diffusivity of the isotropic GM/CSF RF was 

determined based on GM/CSF voxels with FA less than 0.2. L211-RFG: Sparse-group 

LASSO [7] using RFGs identical to the proposed method. Similar to [8], we executed 

sparse-group LASSO multiple times, each time reweighing the l21-norm and the l1-norm so 

that they eventually approximate their l0 counterparts. The tuning parameter γ was set to 1 × 

10−4 for all methods. In addition, we set α = 0.05 for the proposed method.

3.4 Results

Volume Fractions—The top row of Fig. 1 shows that the proposed method, even with no 

spatial regularization, is able to produce WM, GM, CSF volume fraction estimates that 

match quite well with the anatomy shown by the T1-weighted image. The second row of the 

figure shows color-coded volume-fraction images generated by convex combinations of 

green, blue, and red using the WM, GM, and CSF volume fractions, respectively, as the 

weights. The results confirm the benefits of using RFGs over just RFs for the WM, GM, and 

CSF compartments. Compared with l1 penalization, our method based on cardinality 

penalization yields cleaner volume fraction estimates especially for cortical GM.
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Fitting Residuals—The last row of Fig. 1 indicates that using only a RF for each 

compartment is inadequate for explaining the data sufficiently, resulting in large fitting 

errors for some voxels. This also indicates that there is a mismatch between the RFs and the 

data. By using RFGs, the fitting residuals are smaller and relatively uniform spatially.

FODFs—The FODFs at the WM-GM interface are significantly affected by partial volume 

effect, with the signal being a mixture of contributions from WM and GM. Fig. 2 shows an 

example of the WM FODFs estimated at a WM-GM interface. The GM and CSF 

compartments are discarded and not shown. The proposed method in general yields FODFs 

that penetrate deeper into the GM when compared with L0-RF and that have a smaller 

amount of false-positive peaks when compared with L211-RFG. These observations indicate 

that the proposed method is able to effectively extract directional information that is buried 

within confounding signals.

4 Conclusion

We have shown that the estimation of the WM FODF and the GM and CSF volume fractions 

can be improved by using response function groups in a cardinality-penalized estimation 

framework. Our method provides the flexibility of including different diffusion models in 

different groupings for robust microstructural estimation. Future work includes 

incorporating complex diffusion models [9] for estimation of subtle properties such as 

axonal diameter. We will also apply our method to the investigation of pathological 

conditions such as edema.
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Fig. 1. 
(Top) Volume fractions of WM, GM, and CSF obtained by the proposed method. The T1-

weighted image is provided for reference. (Middle) Color-coded volume fraction images 

and (Bottom) fitting-residual images obtained by the various methods.
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Fig. 2. 
WM FODFs at WM-GM interface. The glyphs are normalized to have unit integral.
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