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Abstract

In this work, we have used the Soil & Water Assessment Tool (SWAT) to examine streamflow 

variability of the Lower Mekong River Basin (LMRB) associated with changes in the Upper 

Mekong River Basin (UMRB) inflows. Two hypothetical experiments were formulated and 

evaluated for the LMRB, where we conducted runoff simulations with multiple inflow changes 

that include upstream runoff yield increase and decrease scenarios. Streamflow variability of the 

LMRB was quantified by two streamflow metrics that explain flow variability and predictability, 

and high flow disturbance. The model experiments were performed for the Lower Mekong River 

Basin with identical climate, soil, and other watershed characteristics data. Remote sensing 

precipitation (Tropical Rainfall Measurement Mission, TRMM, and Global Precipitation 

Measurement mission, GPM), meteorological data as well as spatial data that include a digital 

elevation model, newly developed soil information (Harmonized World Soil Database, HWSD), 

and land use and land cover were processed as input to the LMRB model simulations. Observed 

daily streamflow data along the Lower Mekong River from Chiang Sean, Thailand to Kratie, 

Cambodia were used for calibration and validation. Our work results suggest that the Lower 

Mekong River streamflow is highly variable and has a low predictability (Colwell index of about 

32%). We found that releasing more water from upstream Mekong during rainfall months by 30% 

would result in a reduction in the Lower Mekong streamflow predictability by about 21%. This 

reduction in predictability is mainly attributed to a decrease in the Contingency index. Our work 
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shows that the ability to predict floods/droughts at the Lower Mekong River would be reduced if 

there is any anticipated change (i.e., increase/decrease) from UMRB releases. Our results also 

show that releasing more flows from the upstream Mekong would also affect flood duration and 

the frequency of flood occurrences downstream. The results of this work thus help to quantify the 

sensitivity of streamflow variability at the Lower Mekong River Basin to upstream anthropogenic 

changes.
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1. Introduction

Freshwater availability is necessary to promote economic growth through agriculture, 

fisheries, transport, environmental health, and social equity (Haddeland et al., 2006; Mekong 

River Commission, 2017; Milly et al., 2005; Veilleux and Anderson, 2016; Wang, 2017; Ziv 

et al., 2012). Water resources are becoming increasingly limited in availability across the 

globe. Water shortages may be simplistically attributed to droughts, regulatory cutbacks in 

deliveries, and demands that outpace new infrastructure and expansion of supply (Grafton et 

al., 2013; Räsänen et al., 2017; Zhang et al., 2014). Water resources planning efforts are 

complicated by uncertainty stemming from patterns of economic growth, changes in water 

use patterns, land use change, and climate change (DeFries and Eshleman, 2004; Dudgeon et 

al., 2006; Gleick, 2000; Grafton et al., 2013; Jacobs, 2002; Milly et al., 2008; Vörösmarty et 

al., 2010; Winemiller et al., 2016). While these processes directly increase demands, or 

decrease supply, research has demonstrated that there are complex processes and dynamic 

feedbacks among physical processes, biological, biochemical and human-mediated 

processes that determine change in the water system (Ceola et al., 2014; Heistermann, 2017; 

Hester and Doyle, 2011; Montanari et al., 2013; Mosley, 2015).

Agriculture is one of the most important aspects to the society and economy and has an 

enormous impact on the well-being of the countries in the Lower Mekong River Basin 

(LMRB) such as Vietnam, Thailand, Laos People’s Democratic Republic (PDR) and 

Cambodia (Mainuddin and Kirby, 2009; Mekong River Commission, 2009b). The Mekong 

River Basin has experienced large variations in precipitation and hence agricultural 

productivity (Mainuddin and Kirby, 2009). In order to understand these variations over large 

spatial scales and long-time periods, a better understanding of (i.e., observation and 

prediction) the hydrologic cycle is necessary – hence use of satellite data and models is 

warranted (Hoang et al., 2016; Kite, 2001; Lakshmi, 2004; Lyon et al., 2017; Piman et al., 

2013b; Wang et al., 2016; Wild and Loucks, 2014).

The seasonal variations in the Mekong River’s flow typically follow a dry season (December 

to May) and a wet season or a flood season (July to October). The Mekong River streamflow 

regime changes have been studied in multiple studies (Cochrane et al., 2014; Delgado et al., 

2010; Kummu and Sarkkula, 2008; Li et al., 2017; Lu Xi Xi and Grundy-Warr, 2008; 

Mekong River Commission, 2009a; Piman et al., 2013a; Räsänen et al., 2012; Räsänen et al., 
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2017; Thanh et al., 2015). These studies summarized the observed Mekong River 

streamflow regime change as streamflow reduction during wet seasons and streamflow 

increase in dry seasons. Studies cited above have tried to discern the causes for such 

alterations in the Mekong River streamflow regimes. It has been found that the main causes 

for streamflow alterations in the Mekong River were attributed to human activities and 

climate change effects (Hoang et al., 2016; Wang et al., 2017a). Studies on flow regime 

characterization have been examined via metrics that describe the magnitude, frequency, 

duration, timing and rate of change for streamflow (Poff, 1996; Poff et al., 1997). Human 

activities occurring in the Upper Mekong River Basin (UMRB) altering the Mekong flows 

have recognizable impacts on Lower Mekong streamflow regimes as seen in aquatic 

ecosystems species, nutrient delivery, water temperatures, riparian livelihoods, sediment 

movement, and floodplain interactions. Recent studies on the Lower Mekong River 

highlighted the critical need for specifying and implementing flow regimes to address trade-

offs between socioeconomic activities (e.g., fishery), ecological needs, and energy security 

(Poff and Olden, 2017; Sabo et al., 2017).

This work has integrated multiple satellite-based earth observation systems and spatial data 

with the Soil & Water Assessment Tool (SWAT) hydrologic model employed in the Mekong 

Basin region to explore water availability, based on both hydrologic flows and total water 

demands/use using and enhanced remotely sensed products. The scarcity and the 

incompleteness of many gauge data observations make it imperative to use remote sensing 

data in modeling the LMRB. From this work, a comprehensive suite of hydrologic data 

products has been developed and used to improve water accounting and floodplain 

management using the hydrological cycle variables such as air temperature, 

evapotranspiration, and precipitation in the LMRB. The main objective of this work is the 

better understanding of the hydrological cycle of the LMRB, and the floodplain management 

over the basin. We explore the streamflow variability of the Lower Mekong River by 

examining the impacts associated with changes in the UMRB inflow. The UMRB inflow to 

the Lower Mekong changes are generally due to reservoir construction for hydropower 

development. Overall, our work aims to assess the value-added information of simulating 

hydrological processes in the LMRB by using a hydrological model (SWAT) with 

climatological forcing data of satellite-based earth observation as an alternative to scarce in-

situ data.

2. Methods

2.1. Study Site

The Mekong River originates in the high altitude of the Tibetan Plateau in China and flows 

south through five countries (Myanmar, Laos PDR, Thailand, Cambodia, and Vietnam) 

ending in a large delta before exiting to the South China Sea. The Mekong River Basin is 

divided into the Upper and the Lower basins. The Lower Mekong River Basin begins when 

the Mekong River leaves the Chinese province of Yunnan and enters the Golden Triangle 

where the country borders of Thailand, Laos PDR, China and Myanmar come together 

(Figure 1).
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2.2. Spatial Data

A digital elevation model (DEM) with 1 arc-sec grid resolution for the study area was 

obtained from the Advanced Spaceborne Thermal Emission and Reflection Radiometer 

(ASTER) Global Digital Elevation Model (https://doi.org/10.5067/ASTER/ASTGTM.002). 

The DEM map with 90-meter resolution was used to derive slope and aspect grids for the 

LMRB model input. The slope class of 2%—8% covers about 40% of the watershed area.

The study area soil information data was obtained from the Harmonized World Soil 

Database, HWSD (FAO et al., 2012). The LMRB soil texture is mainly sandy clay loam and 

covers approximately 42% of the basin.

The Land Use/Land Cover (LULC) data was obtained from a 2010 LULC map at a spatial 

resolution of a 0.25 kilometer for the Lower Mekong Basin using 2010 Moderate Resolution 

Imaging Spectroradiometer (MODIS) monthly normalized difference vegetation index 

(NDVI) data as the primary data source (Spruce et al., 2017). The study watershed LULC 

areas are mainly forest and agricultural lands. The rice crop is farmed on about 26% of the 

watershed area, while forest land covers constitute about 30% of the watershed area (Spruce 

et al., 2017).

2.3. Meteorological Data

Recent works have evaluated the accuracy of satellite-based precipitation in the Mekong 

River Basin and found that satellite-based precipitation advances hydrological studies in the 

Mekong region (He et al., 2017; Wang et al., 2017b). For this work, daily cumulative 

precipitation data was obtained from the Global Precipitation Measurement mission (GPM) 

and the Tropical Rainfall Measurement Mission (TRMM) remote sensing data and used as 

inputs for the LMRB model. The Integrated Multi-Satellite Retrievals for GPM (IMERG) 

dataset used for this work was the GPM_3IMERGDF (https://pmm.nasa.gov/data-access/

downloads/gpm). Since IMERG data products are only available from 12 March 2014 to 

present, then we used the TRMM rainfall data (3B42RT) for time periods earlier than 12-

March-2014. A nearest neighbor methodology was used in filling the IMERG data points 

with the TRMM data points as an approximation during the 01 March 2000 to 11 March 

2014 time period, because TRMM and IMERG data do not have the same spatial resolution 

(i.e., 0.25 and 0.1 degree respectively).

Minimum and maximum daily air temperature data was calculated from air temperature 

record obtained from the Global Land Data Assimilation System (GLDAS) simulation data 

products (Rodell et al., 2004). For this work, we used the GLDAS_NOAH025_3H.2.1 data 

products retrieved from https://disc.gsfc.nasa.gov/. Wind speed, relative humidity, and solar 

radiation data needed for our modeling work were estimated using the global reanalysis 

weather data from the National Centers for Environmental Prediction (NCEP) http://

www.ncep.noaa.gov/, and the Climate Forecast System Reanalysis (CFSR). Aggregated 

weighted average annual precipitation, and minimum and maximum air temperature time 

series for the LMRB are shown in Figure 2. A tool (nasaaccess) has been developed and 

presented in Appendix A.2 to access and process remote sensing data obtained from various 

NASA servers needed for setting up SWAT model or any other rainfall/runoff model.
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2.4. Flow Regime Metrics

In this paper, we examine two streamflow classes and how they change with the UMRB 

developments at various sites along the LMRB. The streamflow classes studied in this work 

are flow variability and predictability, and high flow disturbance. A summary of the 

streamflow regime metrics used to assess UMRB flow change impacts along the LMRB is 

listed in Table 1. We used the Mann Kendall trend analysis (Helsel and Hirsch, 2002) for 

trends analyses in flow regime data. Flow variability and predictability streamflow metrics 

used in this work include a coefficient of variation (DAYCV) variable, flow reversals 

variable (FLOWREV), and three flow variables defining the Colwell index which are 

Predictability (P), Constancy (C) and Contingency (M) (Colwell, 1974). High flow 

disturbance streamflow metrics used in this work include a flood duration (FLDDUR) 

variable, and a seven-day maximum flow (7QMAX) variable. Further details on streamflow 

classes used are discussed in Appendix A.3.

Streamflow data for this work was obtained from the Mekong River Commission (MRC, 

www.mrcmekong.org). Updated streamflow data was interpolated from recent observed 

level data obtained from the Asian Preparedness Disaster Center (ADPC, personal 
communication).

For this work, we used the rescaled range analysis R/S  to calculate the Hurst (1951) 

exponent. Hurst (1951) observed that the difference between largest surplus and the greatest 

deficit gives the capacity that a reservoir must have to maintain a constant release equal to 

the mean of the river without overflows or deficits during the record period years (n). This 

transitory behavior is widely known as the Hurst phenomenon. Kottegoda and Rosso (1997) 

summarize the rescaled range analysis as:

R* n
s n = cnH (1)

where, s(n) is the standard deviation of the discharge sample of n values, c is a constant equal 

to π /2 0.5, H is the Hurst coefficient, R* n  is the adjusted range difference between 

maximum Dn
+ and minimum Dn

− of the accumulated departures from the discharge mean, Xn. 

R* n  is explained as:

R* n = max
1 ≤ i ≤ n

∑
j = 1

i

X j − iXn − min
1 ≤ i ≤ n

∑
j = 1

i

X j − iXn = Dn
+ − Dn

− (2)

2.5. Hydrological Model – SWAT

The SWAT is a conceptual watershed-scale hydrological model designed to address water 

management, sediment, climate change, land use change, and agricultural chemical yields 

related challenges (Arnold and Fohrer, 2005; Arnold et al., 2012; Arnold et al., 1998; 
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Douglas-Mankin et al., 2010; Gassman et al., 2007; Srinivasan et al., 1998b). The SWAT 

applications range from field scale to watershed scale (Daggupati et al., 2015) to continental 

scale (Abbaspour et al., 2015; Srinivasan et al., 1998a). The SWAT model components are 

hydrology, weather, sedimentation, soil temperature, crop growth, nutrients, pesticides, and 

agricultural management. The hierarchical structure for modeling units in SWAT is set to be 

multiple sub-watersheds, which are then further subdivided into hydrologic response units 

(HRUs) that consist of homogeneous land use, management, and soil characteristics. The 

SWAT simulates the overall hydrologic balance for each HRU and model output is available 

in daily, monthly, and annual time steps. SWAT meteorological inputs include daily 

precipitation, maximum and minimum temperature, solar radiation, humidity and wind 

speed. The version of SWAT used in this work is SWAT2012 rev. 635 (Arnold et al., 2013). 

The Penman–Monteith method was used to simulate potential evapotranspiration for this 

work. The SWAT Calibration and Uncertainty Procedures (SWAT-CUP) software package 

with the Sequential Uncertainty Fitting (SUFI2) method (Abbaspour et al., 2007) was used 

in model calibration. Watershed stream network and sub-basins were generated using the 

Arc SWAT software (http://swat.tamu.edu/software/arcswat/) watershed analysis module 

(Watershed Delineator) with a contributing area threshold of 253.5km2 resulting in 1,138 

sub-basins. Applying the HRU module in Arc SWAT software with 10% land use percentage 

over sub-basin area, 10% soil class percentage over land use area, and 10% slope class 

percentage over soil area, we obtained 10,096 HRUs for the LMRB model.

3. Results

3.1. LMRB Streamflow Statistics

Table 2 gives various statistical measures for the Lower Mekong River annual streamflow 

using calendar years at different gauges along the main river stem and upstream tributaries. 

Upper basin inlet streamflow record for the years 2008 and onward, needed for our 

modeling work, has been regressed from the nearby station (Chiang Sean) streamflow 

record. The Vientiane (Laos, PDR), station # 011901, the longest monitoring available 

record compared with other stations studied (1913–2016), has a mean annual streamflow of 

4,476 m3/sec. Minimum, maximum, different quantiles, standard deviation, and coefficient 

of variation values for annual streamflow at different stations are presented. Streamflow 

stations skewness values suggest the location and the shape of probability distribution (i.e., 

positive or negative). In Table 2, we also give the Hurst coefficient (Hurst, 1951; Weron, 

2002). The Hurst coefficient is an indicator of a serial correlation or dependence for the 

annual streamflow time series studied. Across the multiple streamflow stations studied at the 

lower Mekong the Hurst coefficient for annual flows is greater than 0.5 suggesting that high 

flows most likely will be followed by another high flow in the future. Multiple works have 

presented various LMRB streamflow statistics (Lacombe et al., 2014; Rossi et al., 2009). 

However, Table 2 adds a new information - the coefficient of variation, skewness, and 

persistence and autocorrelation explained by the Hurst coefficient for the Lower Mekong 

River.
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3.2 Calibration and Validation of the LMRB model

SWAT uses many parameters to describe typical soil, plant growth, land cover, reservoir, and 

agricultural management characteristics. In this work, the LMRB model was calibrated to 

daily streamflow and monthly average streamflow at the LMRB sub-basin outlets during the 

2005 and 2006 with few parameters as outlined in Table 3. Validation of the LMRB model 

was performed at the LMRB sub-basin outlets during the time period of 2001–2004, and 

2007–2015. Parameters used and suggested range values for the LMRB model calibration 

were consulted and obtained from SWAT developers (R. Srinivasan, personal 
communication) and previous works of Neitsch et al., (2002) and Rossi et al., (2009). All 

other parameters in the LMRB model were left at their default values. Our LMRB model 

showed higher sensitivity to parameters related to correction factors for precipitation inputs. 

In general, we found that running our model without remote sensing precipitation data 

adjustments tend to overestimate simulated streamflow by about 13%. Therefore, we used a 

separate precipitation correction factor for each sub-basin watershed.

Figure 3 gives observed and simulated daily streamflow at the LMRB (six sub-basins) 

during the calibration years. The LMRB model is able to explain about 84% of the variance 

seen in daily streamflow across the Lower Mekong River Basin during the calibration years. 

In addition, the average percent error (Qerr) between daily simulated and observed 

streamflow across the basin is about 0.86% (Figure 3). We also observe that the Qerr and the 

Nash–Sutcliffe performance metric (NSE) in calibration of our model at monthly results 

varies between −1.9% and 4.76% and 0.91 and 0.96 for the six sub-basins, respectively 

(Figure 4). The calibrated value for the soil evaporation compensation factor parameter 

(ESCO = 0.6) is found to be lower than previous values reported by Rossi et al., (2009) for 

the LMRB. Generally, as the value for ESCO is reduced the SWAT model is able to extract 

more of the evaporative demand from lower soil layers. We argue here that the newer soil 

data used in this work has influenced a newer value of ESCO for the LMRB different than 

the default one previously used (i.e., ESCO = 0.95). The parameters listed in Table 3 are 

among many parameters that describe the SWAT soil physical characteristics and influence 

the movement of water and air through the soil profile and shallow aquifer underneath it, 

thus they have a major impact on the cycling of water within the SWAT modeling unit 

(HRU).

Figure 5 gives monthly observed and simulated streamflow for the study watershed in 

validation of the LMRB model during 13 years. In general, the model captured the timing of 

onset and end of seasonal streamflow but was slightly off in some estimates of peak flows. 

The NSE metric during validation time period for our model varies between 0.86 and 0.95. 

The model has about 3.85% error on average in estimating monthly flows during the 

validation time period. Our LMRB model evaluation results are similar to previous attempts 

presented by Rossi et al., (2009) who reported a Nash-Sutcliffe flow monthly efficiency 

values ranging between 0.8 and 1.0 at mainstream monitoring stations.

3.3 LMRB Flow Regime

In this study, the experiment we performed covered the LMRB model scenario analyses. 

Hypothetical scenarios of reducing and increasing the UMRB flow inputs during June, July, 
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August, and September months by up to 30% of the existing flows conditions have been 

examined and tracked downstream. Lower Mekong flow records at these specific months 

(June, July, August, and September) are usually very high compared with other flow records 

during the year (Figure 6). Figure 6 gives the streamflow daily variation at Vientiane (Sub-

basin 3) during 1913 to 2016.

The Mekong River historical streamflow data suggests that the river has a high streamflow 

variability. The DAYCV at Sub-basin 7 and Sub-basin 8 river sections varies between 117% 

to 154%. Results showed that the downstream river section Sub-basin 6 has a higher 

DAYCV compared with upstream river section Sub-basin 1 (Table 4). We attribute this 

phenomenon to the fact that the Mekong River is a highly regulated river system with many 

reservoirs that have different operation plans. This complexity in managing the river sections 

has resulted in a trend of DAYCV increase as we move downstream the Mekong River. 

Upon examination of the streamflow variability (DAYCV) with changes in upstream releases 

to the Lower Mekong, we found that flow variability is pronounced at SB1 and decreases as 

we go downstream till SB6. Sub-basin 1 DAYCV varies between 20% to −2%, while Sub-

basin 6 DAYCV varies between 1–2% (Table 4). We infer here that the streamflow 

coefficient of variation changes would be clearly seen at the upper part of the Lower 

Mekong specially when more flows are released from the upstream Mekong River.

Analysis of the Lower Mekong River historical streamflow data during 2001–2015 using the 

Colwell index metrics indicates that the flow has a low predictability (average of P ≈ 32%). 

The Constancy (C) at the observed historical predictability is on average of 26%. This 

suggests that the Mekong River streamflow gauges predictability are due to high constancy 

of streamflow which varies little among months and years studied (Figure 7 and Figure 8). 

Therefore, the streamflow discharge at the Lower Mekong (which never varies across 

seasons during years studied) is perfectly predictable with all the predictability deriving 

from the constancy component.

Upon changing the inflow input from upstream, the downstream streamflow predictability 

has been reduced further. In Figure 7, we give at three sub-basins (SB4, SB5, and SB6) the 

percent change in predictability (P) as a result of upstream input flow changes. We realize 

that any change in input flow, whether it is increase or decrease in input flow, reduces the 

predictability at the LMRB. However, upstream input flow increases affect the Colwell 

predictability more than upstream input flow decreases. This corroborates with the expected 

flooding in LMRB as a result of upstream higher input flows. For example, in Figure 7, SB4 

sensitivity results (top panel) suggests that increasing the upstream flow by 30% more than 

existing current conditions would result in reducing the predictability (P) by about 33% to be 

0.23 (current P at SB4 is equal to 0.34).

Looking at Kratie, Cambodia (SB6) in Figure 8, we see that releasing more water from 

upstream Mekong during raining months by 30% would mean a reduction in predictability 

by 21%. This reduction in predictability is mainly attributed to a reduction in the 

Contingency index. Since Contingency represents the degree to which time determines state, 

or the degree to which they are dependent on each other. This can be translated to a change 

in flooding occurrence times. This streamflow predictability findings can be generalized at 
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the whole Lower Mekong by saying that our ability to predict floods/droughts in general 

would be reduced if there is any change (i.e., increase/decrease) anticipated from upstream 

Mekong releases.

The other streamflow variability pattern we studied in this work was flow reversals 

(FLOWREV). We found that flow reversals are showing a notable increasing trend across 

the LMRB (Figure 9). We think that this observation of striking increase in flow reversal 

days is mainly due to the effect of flow regulations in the Mekong River Basin (Upper and 

Lower). Upon examining flow reversals trends when input releases from upstream Mekong 

are changed, we found that in general flow reversal days are increasing. This means a higher 

flow variability would be experienced upon changing input releases.

Our analysis of high flow disturbance for the Lower Mekong River streamflow regime 

covered seven-day maximum flow and flood duration variables. Mann Kendall trend 

analysis for seven-day maximum flow (7QMAX) was used to examine whether any trends in 

maximum flows were statistically significant. Table 5 gives Mann Kendall trend analysis 

results for the historic seven-day maximum flow as well as seven-day maximum flow when 

input flow releases from upstream Mekong were adjusted. In general, we found that there is 

decreasing trend of 7QMAX across the whole lower Mekong during time period studied 

(e.g., 2001–2015) with an average 7QMAX value varies from 3 to 6 millimeters per day at 

Sub-basin 1 and Sub-basin 6. We correlate the observed decreasing trend of 7QMAX and 

the increasing trend of 7QMIN (results not shown) to the increased number of flow reversals 

seen earlier in Figure 9. That means increased number of flow reversals are increased 

number of days with low flow changes.

Another high flow disturbance variable studied in this work was flood duration (FLDDUR). 

Generally, flood durations within the LMRB are long and more frequent specially at 

Mukdahan, Thailand and southward (Figure 10). For instance, on 2011 the streamflow gauge 

discharge record at Mukdahan recorded 13 days with discharges equal to or exceed a 

threshold of 30,400 m3/sec (equivalent to 12.6 meters as a stage height). Our results reveal 

that releasing more flows from the UMRB (i.e., 30% increase) at the same year of 2011, 

would have caused the same streamflow gauge to record 16 days of discharges equal to or 

exceed the flood threshold. Our results also show that releasing more flows from the UMRB 

would also affect the frequency of flood occurrences. Therefore, changing flow releases 

from upstream Mekong need to be carefully examined since not only flood duration is going 

to change but also flood occurrences is going to change too.

4. Discussion

SWAT is the choice of watershed model by many stakeholders in the Mekong Basin region 

for their decision framework, including the Mekong River Commission, and has been 

identified in the SERVIR-Mekong Regional Needs Assessment (NASA, 2014). We have 

used multiple satellite-based earth observation systems and a spatial data to build up a 

hydrologic model (SWAT) for the Lower Mekong River Basin. Our objective to develop a 

physically based hydrological model at the LMRB was to better understand the impacts 

associated with UMRB water changes on the LMRB streamflow variability, and flood 
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frequency and duration. Multiple streamflow regime variables were examined across the 

Lower Mekong under different scenarios of UMRB water releases. Our modeling efforts 

presented are thought to be in line with a substantial body of literature that discusses the 

Lower Mekong River hydrological change under expected and on-going hydropower 

development and climate change effects (Li et al., 2017; Lyon et al., 2017; Piman et al., 

2016; Piman et al., 2013b). Growing populations, and the staggering effects of climate 

change that are seen in high temperatures, and variable precipitation patterns over the 

Mekong River raise the potential for shifts in the hydrological responses at the Lower 

Mekong Basin. Having updated statistics on streamflow information at the LMRB is then 

needed given the ongoing regional development occurring at the basin in terms of 

agricultural expansion and infrastructure development.

The Lower Mekong flow variability and predictability conditions will be directly affected in 

terms of increased flow variability and decreased flow predictability due to changing input 

flow releases from the UMRB. Releasing more water from the UMRB during rainy season 

(for instance by 30%) would imply a further reduction in the Lower Mekong streamflow 

predictability (i.e., Colwell index reduces to 25%). Stream ecologists such as Resh et al., 
(1988) and Lazzaro et al., (2013) are often interested in studying streamflow regime because 

of its relation to channel disturbance. Our work suggested that flow releases increase from 

the UMRB would mean more flooded days as well as higher frequency of flood occurrences 

specially at Mukdahan (Thailand), Pakse (Laos), and Kratie (Cambodia). This is an alarming 

finding since the fate of many people and properties will be at stake.

Models results are often uncertain. The model simulation efficiencies have to be considered 

in examining the results of this work. The uncertainty and limitations seen are due to the 

nature of modelling that could be related to error in model data inputs, parameters and 

process representation. It is worth to mention here that the LMRB models’ performance 

comparison was based on monthly flows output, so some amount of temporal and spatial 

aggregation may have masked individual event prediction or adds uncertainty. We do agree 

that model results such as the ones presented in this work should be thought and considered 

as tools used to efficiently and collaboratively guide decision makers. In conclusion, 

collaborative work and sharing information between the upstream and downstream Mekong 

River agencies and stakeholders is critically needed to successfully manage the precious 

Mekong River. Remote sensing data can aide and has achieved a nice job in addressing 

hydrologic modeling needs and requirements at the Lower Mekong River Basin.
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Appendix A

6.

6. A.1.: Dams Data

Data for existing dams within the Mekong Basin was obtained from the Greater Mekong 

Consultative Group for International Agricultural Research (CGIAR) Program on Water, 

Land and Ecosystems (WLE, 2017). In Figure 1, we depict dams within the Lower Mekong 

River Basin that are either already commissioned or still under construction and have a 

maximum reservoir area greater than or equal to 280 km2 similar to the MRC SWAT model 

setup. The surface area of the reservoirs behind the various dams that we have included in 

this study are listed in Table A. 1.

6. A.2.: nasaaccess

The ‘nasaaccess’ package with R software (R Development Core Team, 2017) current 

version (nasaaccess version 1.2) processes remote sensing data products (i.e., TRMM, GPM, 

and GLDAS) and creates weather input definition tables as well as stations data files in a 

format readable by SWAT model or any other rainfall/runoff model. The nasaaccess package 

can be expanded to include other remote sensing products needed in future. For the time 

being, nasaaccess generates daily rainfall and minimum and maximum air temperatures 

gridded data and gridded data definition files needed to serve as a setup for any basic SWAT/

other model run. The core functionality of the nasaaccess package access NASA Goddard 

Space Flight Center (GSFC) servers to download climate data, clip needed grids based on a 

user study watershed, handles temporal issues (e.g., GLDAS product has 3-hour temporal 

resolution), and then generates daily climate gridded data files and definition files 

compatible with SWAT/other models. The inputs needed for the various functions within the 

nasaaccess are: start and end dates for a user climate data simulation period, and a shapefile 

and a DEM grid for a study watershed.

6. A.3.: streamflow regime metrics

The coefficient of variation variable (DAYCV) is defined as the standard deviation of daily 

flows divided by the average of daily flows multiplied by 100 during a year. The annual 

coefficient of variation can be expressed as:

DAYCV = σ
μ × 100   , (A.3.1)

where (M) is the unbiased standard deviation (denominator is n − 1), and μ is the arithmetic 

mean during a year of flow records. The DAYCV describes overall the flow variability 

regardless of sequential flow variations. Generally, flow variability is lower in downstream 

than upstream river sections (Horwitz, 1978).
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Flow reversals (FLOWREV) are defined here from the daily streamflow as days when the 

trend (increasing or decreasing) from the previous days is reversed. Flow reversals are 

calculated by counting the days when flow records are higher (rising) or lower (falling) than 

previous day records. This can be explained as:

FLOWREV   is   counted   when

sign DQ j   is   positive   &   sign DQ j − 1   is   zero   or   negative

sign DQ j   is   negative   &   sign DQ j − 1   is   zero   or   positive
(A.3.2)

where DQ = di f f Q ,     di f f Q  is flow lagged differences, and Q is a daily flow vector, and 

sign DQ j  is the sign of the corresponding element in lagged difference vector DQ.

Colwell’s indices (Colwell, 1974) are flow predictability metrics developed to assess 

relevant measures of flow variability (e.g., biological). The principal value of the Colwell 

index used in our work is for comparison of the uncertainty of the variable river environment 

projected due to upper stream changes. The Colwell procedure is analogous to 

autocorrelation analysis and to some aspects of harmonic analysis. The Colwell’s 

predictability P  is the sum of constancy (C) and contingency (M). Constancy (C) is a 

measure of temporal invariance, and contingency (M) is a measure of periodicity. Constancy 

is defined similar to predictability, except that seasonal variability across periods is 

disregarded. Contingency is defined as the degree to which time period and value group are 

dependent on each other. The P, C, and M are scaled to range from 0 to 1. Further details on 

Colwell index are presented at Appendix B in Mohammed et al. (2015).

Calculation of Colwell’s indices requires that streamflow values be binned into discrete 

groups. As with all information measures absolute values are dependent on this binning, but 

a consistent binning allows relative comparisons. Following Mohammed et al. (2015) and 

others, we used 7 bins ( < 0.5μ, 1.0μ, 1.5μ, 2.0μ, 2.5μ, 3.0μ, > 3.0μ), where μ is equal to the 

mean of daily streamflow values, to define groups for dry and flood seasons of the 

streamflow record. These two seasons represent the seasonal cycle for the LMRB and we 

counted the number of occurrences of daily streamflow values in states defined by groups 

(bins) and periods (seasons) to arrive at the Colwell’s indices. Dry season time period is 

from January 1st to May 31st and flood season time period is from June 1st to December 31st. 

Following Colwell, for a frequency matrix (contingency table) with t columns (times within 

a cycle) and s rows (state of the phenomenon). Let Ni j be the number of cycles for which the 

phenomenon was in state i at time j. Define the column totals X j , row totals Y i , and the 

grand total Z  as:
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X j = ∑
i = 1

s

Ni j,   Y i = ∑
j = 1

t

Ni j,   and   Z = ∑
i

∑
j

Ni j = ∑
j

X j = ∑
i

Y i

(A.3.3)

Then, the uncertainty with respect to time is:

H X = − ∑
j = 1

t
X j
Z log

X j
Z (A.3.4)

the uncertainty with respect to state is:

H Y = − ∑
i = 1

s
Y i
Z log

Y i
Z (A.3.5)

and the uncertainty with respect to the interaction of time and state is:

H XY = − ∑
i

∑
j

Ni j
Z log

Ni j
Z (A.3.6)

The predictability of a periodic phenomenon is maximal when there is complete certainty 

with regard to state (row) once the point in time (column) is specified. In terms of 

information theory, the conditional uncertainty with regard to state, with time given, is 

defined as: HX Y = H XY − H X  (Jelínek, 1968). When predictability is at its minimum, all 

states are equiprobable for all times. In this case H X = logt, and H XY = logst, so that 

HX Y = logs. To obtain measure of predictability P  with the range 0, 1 , define:

P = 1 −
HX Y
logs = 1 − H XY − H X

logs (A.3.7)

Constancy is maximized when all row totals equal to zero with the exception of a single row 

total being greater than zero; it is minimized when all row totals are equal. Since H Y  varies 

in precisely the opposite way, and its maximum value is log s, a measure of constancy C
with range 0, 1  is given by:
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C = 1 − H XY
logs (A.3.8)

Contingency represents the degree to which time determines state, or the degree to which 

they are dependent on each other. In information theory, contingency is measured by a 

quantity called average mutual information (Jelínek, 1968). Colwell (1974) cites 

contingency as the average amount of information about the state of the phenomenon 

provided by time or I XY = H Y − HX Y = H Y + H X − H XY  Colwell (1974) gives an 

adjusted measure of contingency M , with range 0, 1  as:

M = H X + H Y − H XY
logs (A.3.9)

Flood duration (FLDDUR) is usually calculated as the average number of days per year 

when flow equals or exceeds flood threshold flow. Since the LMRB is a complex system, 

estimating the magnitude of daily return flow that we can use in calculating flood duration 

periods is quite challenging. Upon compilation of several MRC weekly flood situation 

reports (http://ffw.mrcmekong.org/), we extracted the flood stage height threshold and then 

estimated the daily return flow using the stage-flow relation along the LMRB. The flood 

stage heights along the LMRB are: 11.8 meters at Chiang Sean (station # 010501), 18 meters 

at Luang Prabang (station # 011201), 12.6 meters at Vientiane (station #011901), 12.6 

meters Mukdahan (station # 013402), 12.0 meters at Pakse (station # 013901), and 23.0 

meters at Kratie (station # 014901). These stage heights correspond to the following flows 

18,535; 17,950; 22,399; 30,400; 38,930; 58,256 m3/sec respectively. We used these flood 

thresholds at each sub-basin outlet to calculate flood duration periods for this work.

Seven-day maximum flow (7QMAX) is the average across years of 7-day maximum 

streamflow. For each year in the period of record, the maximum 7-day mean is found from 

the daily mean streamflow and the maximum is the 7-day maximum flow for that year.

7. References

Abbaspour KC , Rouholahnejad E , Vaghefi S , Srinivasan R , Yang H , Kløve B , 2015 A continental-
scale hydrology and water quality model for Europe: Calibration and uncertainty of a high-
resolution large-scale SWAT model. J. Hydrol 524, 733–752, 10.1016/j.jhydrol.2015.03.027

Abbaspour KC , Yang J , Maximov I , Siber R , Bogner K , Mieleitner J , Zobrist J , Srinivasan R , 
2007 Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT. 
J. Hydrol 333, 413–430, 10.1016/j.jhydrol.2006.09.014

Arnold JG , Fohrer N , 2005 SWAT2000: Current capabilities and research opportunities in applied 
watershed modelling. Hydrol. Process 19, 563–572, 10.1002/hyp.5611

Arnold JG , Kiniry JR , Srinivasan R , Williams JR , Haney EB , Neitsch SL , 2013 SWAT 2012 Input/
Output documentation TR-439, Texas Water Resources Institute, College Station, TX.

Arnold JG , Moriasi DN , Gassman PW , Abbaspour KC , White MJ , Srinivasan R , Santhi C , Harmel 
RD , Griensven A.v. , Liew MWV , Kannan N , Jha MK , 2012 SWAT: Model use, calibration, and 
validation. T ASABE 55, 1491–1508, 10.13031/2013.42256

Mohammed et al. Page 14

J Hydrol (Amst). Author manuscript; available in PMC 2019 September 01.

N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript

http://ffw.mrcmekong.org/


Arnold JG , Srinivasan R , Muttiah RS , Williams JR , 1998 Large area hydrologic modeling and 
assessment part I: Model development. J. Am. Water Resour. As 34, 73–89, 10.1111/j.
1752-1688.1998.tb05961.x

Ceola S , Montanari A , Koutsoyiannis D , 2014 Toward a theoretical framework for integrated 
modeling of hydrological change. Wiley Interdisciplinary Reviews: Water 1, 427–438, 10.1002/
wat2.1038

Cochrane TA , Arias ME , Piman T , 2014 Historical impact of water infrastructure on water levels of 
the Mekong River and the Tonle Sap system. Hydrol. Earth Syst. Sci 18, 4529–4541, 10.5194/
hess-18-4529-2014

Colwell RK , 1974 Predictability, constancy, and contingency of periodic phenomena. Ecology 55, 
1148–1153, 10.2307/1940366

Daggupati P , Yen H , White MJ , Srinivasan R , Arnold JG , Keitzer CS , Sowa SP , 2015 Impact of 
model development, calibration and validation decisions on hydrological simulations in West Lake 
Erie Basin. Hydrol. Process 29, 5307–5320, 10.1002/hyp.10536

DeFries R , Eshleman KN , 2004 Land-use change and hydrologic processes: A major focus for the 
future. Hydrol. Process 18, 2183–2186, 10.1002/hyp.5584

Delgado JM , Apel H , Merz B , 2010 Flood trends and variability in the Mekong River. Hydrol. Earth 
Syst. Sci 14, 407–418, 10.5194/hess-14-407-2010

Douglas-Mankin KR , Srinivasan R , Arnold JG , 2010 Soil and Water Assessment Tool (SWAT) 
model: Current developments and applications. T ASABE 53, 1423–1431, 10.13031/2013.34915

Dudgeon D , Arthington AH , Gessner MO , Kawabata Z-I , Knowler DJ , Lévêque C , Naiman RJ , 
Prieur-Richard A-H , Soto D , Stiassny MLJ , Sullivan CA , 2006 Freshwater biodiversity: 
importance, threats, status and conservation challenges. Biol. Rev 81, 163–182, 10.1017/
S1464793105006950 [PubMed: 16336747] 

FAO, IIASA, ISRIC-World Soil Information, Institute of Soil Science, Chinese Academy of Sciences 
(ISSCAS), Joint Research Centre of the European Commission (JRC), Harmonized World Soil 
Database, v1.21, 2012 http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/
harmonized-world-soil-database-v12/en/

Gassman PW , Reyes MR , Green CH , Arnold JG , 2007 The soil and water assessment tool: 
Historical development, applications, and future research directions. T ASABE 50, 1211–1250, 
10.13031/2013.23637

Gleick PH , 2000 A Look at twenty-first century water resources development. Water Int 25, 127–138, 
10.1080/02508060008686804

Grafton RQ , Pittock J , Davis R , Williams J , Fu G , Warburton M , Udall B , McKenzie R , Yu X , 
Che N , Connell D , Jiang Q , Kompas T , Lynch A , Norris R , Possingham H , Quiggin J , 2013 
Global insights into water resources, climate change and governance. Nat. Clim. Change 3, 315–
321, 10.1038/nclimate1746

Haddeland I , Lettenmaier DP , Skaugen T , 2006 Effects of irrigation on the water and energy 
balances of the Colorado and Mekong river basins. J. Hydrol 324, 210–223, 10.1016/j.jhydrol.
2005.09.028

He Z , Yang L , Tian F , Ni G , Hou A , Lu H , 2017 Intercomparisons of rainfall estimates from 
TRMM and GPM multisatellite products over the Upper Mekong River Basin. J. Hydrometeorol 
18, 413–430, 10.1175/jhm-d-16-0198.1

Heistermann M , 2017 HESS opinions: A planetary boundary on freshwater use is misleading. Hydrol. 
Earth Syst. Sci 21, 3455–3461, 10.5194/hess-21-3455-2017

Helsel DR , Hirsch RM , 2002 Statistical Methods in Water Resources, Techniques of Water-Resources 
Investigations of the United States Geological Survey Book 4, Hydrologic Analysis and 
Interpretation. U.S. Geol. Sur, Reston, VA, pp. 522.

Hester ET , Doyle MW , 2011 Human impacts to river temperature and their effects on biological 
processes: A quantitative synthesis. J. Am. Water Resour. As 47, 571–587, 10.1111/j.
1752-1688.2011.00525.x

Hoang LP , Lauri H , Kummu M , Koponen J , van Vliet MTH , Supit I , Leemans R , Kabat P , 
Ludwig F , 2016 Mekong River flow and hydrological extremes under climate change. Hydrol. 
Earth Syst. Sci 20, 3027–3041, 10.5194/hess-20-3027-2016

Mohammed et al. Page 15

J Hydrol (Amst). Author manuscript; available in PMC 2019 September 01.

N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript

http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmonized-world-soil-database-v12/en/
http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmonized-world-soil-database-v12/en/


Horwitz RJ , 1978 Temporal variability patterns and the distributional patterns of stream fishes. Ecol. 
Monogr 48, 307–321, 10.2307/2937233

Hurst HE , 1951 Long-term storage capacity of reservoirs. T. Am. Soc. Civ. Eng 116, 770–808

Jacobs JW , 2002 The Mekong River Commission: Transboundary water resources planning and 
regional security. Geogr. J 168, 354–364, 10.1111/j.0016-7398.2002.00061.x [PubMed: 
17494227] 

Jelínek F , 1968 Probabilistic Information Theory: Discrete and Memoryless Models. McGraw-Hill, 
New York, 609 pp.

Kite G , 2001 Modelling the Mekong: Hydrological simulation for environmental impact studies. J. 
Hydrol 253, 1–13, 10.1016/S0022-1694(01)00396-1

Kottegoda NT , Rosso R , 1997 Probability, Statistics, and Reliability for Civil and Environmental 
Engineers. McGraw-Hill, New York, 735 pp.

Kummu M , Sarkkula J , 2008 Impact of the Mekong River flow alteration on the Tonle Sap flood 
pulse. AMBIO 37, 185–192, 10.1579/0044-7447(2008)37[185:IOTMRF]2.0.CO;2 [PubMed: 
18595273] 

Lacombe G , Douangsavanh S , Vogel RM , McCartney M , Chemin Y , Rebelo L-M , Sotoukee T , 
2014 Multivariate power-law models for streamflow prediction in the Mekong Basin. J. Hydrol. 
Reg. St 2, 35–48, 10.1016/j.ejrh.2014.08.002

Lakshmi V , 2004 The role of satellite remote sensing in the prediction of ungauged basins. Hydrol. 
Process 18, 1029–1034, 10.1002/hyp.5520

Lazzaro G , Basso S , Schirmer M , Botter G , 2013 Water management strategies for run-of-river 
power plants: Profitability and hydrologic impact between the intake and the outflow. Water 
Resour. Res 49, 8285–8298, 10.1002/2013wr014210

Li D , Long D , Zhao J , Lu H , Hong Y , 2017 Observed changes in flow regimes in the Mekong River 
Basin. J. Hydrol 551, 217–232, 10.1016/j.jhydrol.2017.05.061

Lu Xi Xi WJ-J , Grundy-Warr C , 2008 Are the Chinese dams to be blamed for the lower water levels 
in the Lower Mekong? In: Kummu M , Keskinen M , Varis O (Eds.), Modern Myths of the 
Mekong : A critical review of water and development concepts, principles and policies. Water and 
development publications, 01. Helsinki University of Technology, Espoo, Finland, pp. 39–51.

Lyon SW , King K , Polpanich O. u. , Lacombe G , 2017 Assessing hydrologic changes across the 
Lower Mekong Basin. J. Hydrol. Reg. St 12, 303–314, 10.1016/j.ejrh.2017.06.007

Mainuddin M , Kirby M , 2009 Agricultural productivity in the Lower Mekong Basin: Trends and 
future prospects for food security. Food Secur. 1, 71–82, 10.1007/s12571-008-0004-9

Mekong River Commission, 2009a The Flow of the Mekong. No. 2, Mekong River Commission 
Secretariat,, Vientiane, Lao PDR.

Mekong River Commission, 2009b MRC’s Role in Agriculture and Agricultural Water Management, 
Mekong River Commission Secretariat,, Vientiane, Lao PDR.

Mekong River Commission, 2017 Transboundary water resources management issues in the Mekong 
Delta of Cambodia and Viet Nam, Mekong River Commission Secretariat,, Vientiane, Lao PDR.

Milly PCD , Betancourt J , Falkenmark M , Hirsch RM , Kundzewicz ZW , Lettenmaier DP , Stouffer 
RJ , 2008 Stationarity is dead: Whither water management? Science 319, 573–574, 10.1126/
science.1151915 [PubMed: 18239110] 

Milly PCD , Dunne KA , Vecchia AV , 2005 Global pattern of trends in streamflow and water 
availability in a changing climate. Nature 438, 347–350, 10.1038/nature04312 [PubMed: 
16292308] 

Mohammed IN , Bomblies A , Wemple BC , 2015 The use of CMIP5 data to simulate climate change 
impacts on flow regime within the Lake Champlain Basin. J. Hydrol. Reg. St 3, 160–186, 10.1016/
j.ejrh.2015.01.002

Montanari A , Young G , Savenije HHG , Hughes D , Wagener T , Ren LL , Koutsoyiannis D , 
Cudennec C , Toth E , Grimaldi S , Blöschl G , Sivapalan M , Beven K , Gupta H , Hipsey M , 
Schaefli B , Arheimer B , Boegh E , Schymanski SJ , Di Baldassarre G , Yu B , Hubert P , Huang 
Y , Schumann A , Post DA , Srinivasan V , Harman C , Thompson S , Rogger M , Viglione A , 
McMillan H , Characklis G , Pang Z , Belyaev V , 2013 “Panta Rhei—Everything Flows”: Change 

Mohammed et al. Page 16

J Hydrol (Amst). Author manuscript; available in PMC 2019 September 01.

N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript



in hydrology and society—The IAHS Scientific Decade 2013–2022. Hydrolog. Sci. J 58, 1256–
1275, 10.1080/02626667.2013.809088

Mosley LM , 2015 Drought impacts on the water quality of freshwater systems; Review and 
integration. Earth-Sci. Rev 140, 203–214, 10.1016/j.earscirev.2014.11.010

NASA, 2014 SERVIR Annual Report, United States Agency for International Development and the 
National Aeronautics and Space Administration, Huntsville, AL.

Neitsch SL , Arnold JG , Kiniry JR , Williams JR , King KW , 2002 Soil and Water Assessment Tool 
theoretical documentation version 2000 TR-191, Texas Water Resources Institute, College Station, 
TX.

Piman T , Cochrane TA , Arias ME , 2016 Effect of Proposed Large Dams on Water Flows and 
Hydropower Production in the Sekong, Sesan and Srepok Rivers of the Mekong Basin. River Res. 
Appl 32, 2095–2108, 10.1002/rra.3045

Piman T , Cochrane TA , Arias ME , Green A , Dat ND , 2013a Assessment of flow changes from 
hydropower development and operations in Sekong, Sesan, and Srepok Rivers of the Mekong 
Basin. J. Water Res. Plan. Man 139, 723–732, 10.1061/(ASCE)WR.1943-5452.0000286

Piman T , Lennaerts T , Southalack P , 2013b Assessment of hydrological changes in the Lower 
Mekong Basin from Basin-Wide development scenarios. Hydrol. Process 27, 2115–2125, 10.1002/
hyp.9764

Poff N , 1996 A hydrogeography of unregulated streams in the United States and an examination of 
scale-dependence in some hydrological descriptors. Freshwater Biol. 36, 71–79, 10.1046/j.
1365-2427.1996.00073.x

Poff NL , Allan JD , Bain MB , Karr JR , Prestegaard KL , Richter BD , Sparks RE , Stromberg JC , 
1997 The natural flow regime. BioScience 47, 769–784, 10.2307/1313099

Poff NL , Olden JD , 2017 Can dams be designed for sustainability? Science 358, 1252–1253, 
10.1126/science.aaq1422 [PubMed: 29217554] 

R Development Core Team, 2017 R: A language and environment for statistical computing R Found. 
for Stat. Comput, Vienna, Austria.

Räsänen TA , Koponen J , Lauri H , Kummu M , 2012 Downstream hydrological impacts of 
hydropower development in the Upper Mekong Basin. Water Resour. Manag 26, 3495–3513, 
10.1007/s11269-012-0087-0

Räsänen TA , Someth P , Lauri H , Koponen J , Sarkkula J , Kummu M , 2017 Observed river 
discharge changes due to hydropower operations in the Upper Mekong Basin. J. Hydrol 545, 28–
41, 10.1016/j.jhydrol.2016.12.023

Resh VH , Brown AV , Covich AP , Gurtz ME , Li HW , Minshall GW , Reice SR , Sheldon AL , 
Wallace JB , Wissmar RC , 1988 The role of disturbance in stream ecology. J. N. Am. Benthol. 
Soc 7, 433–455, 10.2307/1467300

Rodell M , Houser PR , Jambor U , Gottschalck J , Mitchell K , Meng C-J , Arsenault K , Cosgrove B , 
Radakovich J , Bosilovich M , Entin JK , Walker JP , Lohmann D , Toll D , 2004 The global land 
data assimilation system. B. Am. Meteorol. Soc 85, 381–394, 10.1175/bams-85-3-381

Rossi CG , Srinivasan R , Jirayoot K , Duc TL , Souvannabouth P , Binh N , Gassman PW , 2009 
Hydrologic evaluation of the Lower Mekong River Basin with the soil and water assessment tool 
model. IAEJ 18, 1–13, http://114.255.9.31/iaej/EN/Y2009/V18/I01-02/1

Sabo JL , Ruhi A , Holtgrieve GW , Elliott V , Arias ME , Ngor PB , Räsänen TA , Nam S , 2017 
Designing river flows to improve food security futures in the Lower Mekong Basin. Science 358, 
10.1126/science.aao1053

Spruce J , Bolten JD , Srinivasan R , 2017 Developing land use land cover maps for the Lower Mekong 
Basin to aid SWAT hydrologic modeling, in: 2017 AGU Fall Meeting, Abstract H104–298677. 
AGU, New Orleans, Louisiana.

Srinivasan R , Arnold JG , Jones CA , 1998a Hydrologic modelling of the United States with the soil 
and water assessment tool. Int. J. Water Resour. D 14, 315–325, 10.1080/07900629849231

Srinivasan R , Ramanarayanan TS , Arnold JG , Bednarz ST , 1998b Large area hydrologic modeling 
and assessment part II: Model application. J. Am. Water Resour. As 34, 91–101, 10.1111/j.
1752-1688.1998.tb05962.x

Mohammed et al. Page 17

J Hydrol (Amst). Author manuscript; available in PMC 2019 September 01.

N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript

http://114.255.9.31/iaej/EN/Y2009/V18/I01-02/1


Thanh DD , Cochrane TA , Arias ME , Tri VPD , Vries TD , 2015 Analysis of water level changes in 
the Mekong floodplain impacted by flood prevention systems and upstream dams, in: The 36th 

IAHR World Congress. Hague, Netherlands.

Veilleux JC , Anderson EP , 2016 2015 Snapshot of water security in the Nile, Mekong, and Amazon 
River Basins. Limnol. Oceanogr.-Bull 25, 8–14, 10.1002/lob.10085

Vörösmarty CJ , McIntyre PB , Gessner MO , Dudgeon D , Prusevich A , Green P , Glidden S , Bunn 
SE , Sullivan CA , Liermann CR , Davies PM , 2010 Global threats to human water security and 
river biodiversity. Nature 467, 555–561, 10.1038/nature09440 [PubMed: 20882010] 

Wang C , 2017 Study on the adverse effects of hydropower development on international shipping. IOP 
Conf. Ser.: Earth Environ. Sci 61, 012063, 10.1088/1755-1315/61/1/012063

Wang W , Lu H , Ruby Leung L , Li HY , Zhao J , Tian F , Yang K , Sothea K , 2017a Dam 
construction in Lancang-Mekong River Basin could mitigate future flood risk from warming-
induced intensified rainfall. Geophys. Res. Lett 44, 10378–10386, 10.1002/2017GL075037

Wang W , Lu H , Yang D , Sothea K , Jiao Y , Gao B , Peng X , Pang Z , 2016 Modelling Hydrologic 
Processes in the Mekong River Basin Using a Distributed Model Driven by Satellite Precipitation 
and Rain Gauge Observations. PLOS ONE 11, e0152229, 10.1371/journal.pone.0152229 
[PubMed: 27010692] 

Wang W , Lu H , Zhao T , Jiang L , Shi J , 2017b Evaluation and comparison of daily rainfall from 
latest GPM and TRMM products over the Mekong River Basin. IEEE J. Sel. Top. Appl 10, 2540–
2549, 10.1109/JSTARS.2017.2672786

Weron R , 2002 Estimating long-range dependence: Finite sample properties and confidence intervals. 
Physica A 312, 285–299, 10.1016/S0378-4371(02)00961-5

Wild TB , Loucks DP , 2014 Managing flow, sediment, and hydropower regimes in the Sre Pok, Se 
San, and Se Kong Rivers of the Mekong basin. Water Resour. Res 50, 5141–5157, 
10.1002/2014WR015457

Winemiller KO , McIntyre PB , Castello L , Fluet-Chouinard E , Giarrizzo T , Nam S , Baird IG , 
Darwall W , Lujan NK , Harrison I , Stiassny MLJ , Silvano RAM , Fitzgerald DB , Pelicice FM , 
Agostinho AA , Gomes LC , Albert JS , Baran E , Petrere M , Zarfl C , Mulligan M , Sullivan JP , 
Arantes CC , Sousa LM , Koning AA , Hoeinghaus DJ , Sabaj M , Lundberg JG , Armbruster J , 
Thieme ML , Petry P , Zuanon J , Vilara GT , Snoeks J , Ou C , Rainboth W , Pavanelli CS , 
Akama A , Soesbergen A.v. , Sáenz L , 2016 Balancing hydropower and biodiversity in the 
Amazon, Congo, and Mekong. Science 351, 128–129, 10.1126/science.aac7082 [PubMed: 
26744397] 

WLE, Dataset on the dams of the Irrawaddy, Mekong, Red and Salween River Basins, 2017 https://
wle-mekong.cgiar.org/maps/

Zhang B , Zhang L , Guo H , Leinenkugel P , Zhou Y , Li L , Shen Q , 2014 Drought impact on 
vegetation productivity in the Lower Mekong Basin. Int. J. Remote Sens 35, 2835–2856, 
10.1080/01431161.2014.890298

Ziv G , Baran E , Nam S , Rodríguez-Iturbe I , Levin SA , 2012 Trading-off fish biodiversity, food 
security, and hydropower in the Mekong River Basin. P. Natl. Acad. Sci. USA 109, 5609–5614, 
10.1073/pnas.1201423109

Mohammed et al. Page 18

J Hydrol (Amst). Author manuscript; available in PMC 2019 September 01.

N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript

https://wle-mekong.cgiar.org/maps/
https://wle-mekong.cgiar.org/maps/


Mohammed et al. Page 19

J Hydrol (Amst). Author manuscript; available in PMC 2019 September 01.

N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript



Figure 1. 
The Lower Mekong River Basin. Streamflow gauges follow the Lower Mekong River Basin 

subareas presented by Rossi et al., (2009). Cities with population classes obtained from 

Environmental Systems Research Institute, Inc. (ESRI) World Populated Places layer 

(https://www.arcgis.com/home/index.html, accessed on 31 May 2018) are depicted in red 

(greater than 5 million), orange (1–5 million), and light green (0.5–1 million). Land use and 

land cover class descriptions are given as a separate legend. Dam data are described in 

Appendix A.1.
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Figure 2. 
Lower Mekong basin time series data. Annual precipitation in millimeters (colored in blue), 

mean annual maximum air temperature (colored in black) in degrees Celsius, and mean 

annual minimum air temperature (colored in black) in degrees Celsius time series data are 

aggregated over the entire Lower Mekong basin.
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Figure 3. 
Daily simulated and observed discharge in m3/sec for the Lower Mekong River at six sub-

basin watersheds as presented in Figure 1 in calibration of the LMRB model. The LMRB 

model calibration years are 2005 and 2006. The percent error (Qerr) between daily simulated 

and observed discharge and the Nash–Sutcliffe (NSE) performance metrics are depicted for 

each sub-basin.
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Figure 4. 
Monthly mean observed and simulated discharge (m3/sec) for the Lower Mekong River at 

six sub-basin watersheds as presented in Figure 1 in calibration of the LMRB model. The 

LMRB model calibration years are 2005 and 2006. The percent error (Qerr) between 

monthly mean simulated and observed discharge and the Nash–Sutcliffe (NSE) performance 

metrics are depicted for each sub-basin.
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Figure 5. 
Scatterplot of monthly observed and simulated discharge in m3/sec for the Lower Mekong 

River at six sub-basin watersheds in validation of the LMRB model during 2001–2004, and 

2007–2015. The Nash–Sutcliffe (NSE) performance metrics during validation time period 

are depicted for each sub-basin.
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Figure 6. 
Vientiane (SB3) hydrograph. Mean, minimum, and maximum daily discharge during 1913–

2016.
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Figure 7. 
Sensitivity analysis for the Lower Mekong River Basin Colwell index predictability (P). 

Observed predictability during 2001–2015 time period at SB4, SB5, and SB6 is 0.342, 

0.325, 0.317 respectively. Predictability change from observed predictability depicted in y-

axis at each panel were calculated from simulated flow obtained by driving the LMRB 

model with adjusted Upper Mekong River flow inputs during the 2001–2015 time period as 

outlined in x-axis. Predictability change (y-axis) reports the scaled predictability change, 

i.e., Psim − Pobs /Pobs × 100. Sub-basin watersheds follow description in Figure 1.
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Figure 8. 
Colwell index, Predictability (P), Constancy (C), and Contingency (M) of streamflow for the 

Lower Mekong River Basin. Data for current streamflow status Colwell predictability 

analyses are daily discharge for the years 2001–2015. Flow simulations for different 

scenarios predictability analyses were obtained by driving the LMRB model with adjusted 

UMRB flow inputs during the 2001–2015 time period. Sub-basin watersheds follow 

description in Figure 1.
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Figure 9. 
Annual flow reversal analyses at the LMRB. Black line gives flow reversals (FLOWREV) in 

days for the time period of 1960–2015 calculated from observed discharge, blue line gives 

(FLOWREV) calculated from simulated discharge with the UMRB inflow increased by 

30%, and red line gives (FLOWREV) calculated from simulated discharge with the UMRB 

inflow decreased by 30%. Simulation discharge time period is 2001–2015 highlighted in 

grey. Sub-basin watersheds follow description in Figure 1.
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Figure 10. 
Flood duration (FLDDUR) analyses at the LMRB. The flood duration in days are the 

number of days when discharge equals or exceeds a threshold discharge magnitude causing 

floods. Black bars give flood duration in days for the 1960–2015 time period calculated 

from observed discharges, and blue bars give flood duration calculated from simulated 

discharges with the UMRB inflow increased by 30%. Simulation discharge time period is 

2001–2015 highlighted in gray. Sub-basin watersheds follow description in Figure 1.
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Table 4.

Annual DAYCV analyses at the LMRB during the 2001–2015 time period. The DAYCVμ column is the 

arithmetic mean of the annual DAYCV in percent. Values in parentheses refer to mean annual DAYCV during 

the 1960–2015 time period. Sub-basin 7 and 8 streamflow time record is different than the rest of the Sub-

basin streamflow record as listed in Table 2. UMRB input adjustment scenarios simulation discharge time 

period is 2001–2015. Country codes are similar to descriptions in Table 2.

No. LMRB Station Name Country Code DAYCVμ

1 Sub-basin 1 outlet Chiang Sean TH 010501 70.10 (76.52)

2 Sub-basin 2 outlet Luang Prabang LA 011201 80.73 (82.85)

3 Sub-basin 3 outlet Vientiane LA 011901 81.83 (84.51)

4 Sub-basin 4 outlet Mukdahan TH 013402 88.57 (93.56)

5 Sub-basin 5 outlet Pakse LA 013901 95.38 (97.25)

6 Sub-basin 6 outlet Kratie KH 014901 93.41 (95.68)

7 Sub-basin 7 outlet Yasothom TH 370104 (116.68)

8 Sub-basin 8 outlet Rasi Salai TH 380134 (154.31)

Inputs from Upper Mekong increased by 30%

1 Sub-basin 1 outlet Chiang Sean TH 010501 84.46

2 Sub-basin 2 outlet Luang Prabang LA 011201 90.89

3 Sub-basin 3 outlet Vientiane LA 011901 94.53

4 Sub-basin 4 outlet Mukdahan TH 013402 100.84

5 Sub-basin 5 outlet Pakse LA 013901 93.99

6 Sub-basin 6 outlet Kratie KH 014901 91.69

7 Sub-basin 7 outlet Yasothom TH 370104 84.48

8 Sub-basin 8 outlet Rasi Salai TH 380134 91.05

Inputs from Upper Mekong decreased by 30%

1 Sub-basin 1 outlet Chiang Sean TH 010501 68.45

2 Sub-basin 2 outlet Luang Prabang LA 011201 78.90

3 Sub-basin 3 outlet Vientiane LA 011901 86.10

4 Sub-basin 4 outlet Mukdahan TH 013402 97.92

5 Sub-basin 5 outlet Pakse LA 013901 91.54

6 Sub-basin 6 outlet Kratie KH 014901 90.25

7 Sub-basin 7 outlet Yasothom TH 370104 84.48

8 Sub-basin 8 outlet Rasi Salai TH 380134 91.05
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