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Abstract

Radiographic imaging continues to be one of the most effective and clinically useful tools within 

oncology. Sophistication of artificial intelligence (AI) has allowed for detailed quantification of 

radiographic characteristics of tissues using predefined engineered algorithms or deep learning 

methods. Precedents in radiology as well as a wealth of research studies hint at the clinical 

relevance of these characteristics. However, there are critical challenges associated with the 

analysis of medical imaging data. While some of these challenges are specific to the imaging field, 

many others like reproducibility and batch effects are generic and have already been addressed in 

other quantitative fields such as genomics. Here, we identify these pitfalls and provide 

recommendations for analysis strategies of medical imaging data including data normalization, 

development of robust models, and rigorous statistical analyses. Adhering to these 

recommendations will not only improve analysis quality, but will also enhance precision medicine 

by allowing better integration of imaging data with other biomedical data sources.
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INTRODUCTION

Large-scale radiographic imaging of diseased tissue offers an incredibly rich data resource 

for scientific and medical discovery. Since imaging data are collected during routine clinical 

practice, large datasets are potentially readily available for medical research. Buoyed by 
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advancements in artificial intelligence (AI), statistical methodology, and image processing 

capabilities, the number of publications related to big data analysis of radiographic datasets 

is growing at an exponential pace(1,2). Indeed, the automated quantification of radiographic 

characteristics of tissues can be helpful in the detection, characterization, and monitoring of 

diseases. This process, referred to as “radiomics”(3–6), uses either a set of predefined 

engineered features(7) that describe radiographic aspects of shape, intensity, and texture, or 

alternatively features that can be automatically “deep learned” directly from example 

images(8,9). Early success of radiomics for assisting clinical decisions related to the 

diagnosis and risk stratification of different cancers(4,10–14), has spurred rapid expansion in 

this field and has opened new avenues of investigating the clinical utility of medical imaging 

in radiology(15).

The analysis of radiological data presents many challenges. While some of these challenges 

are specific to the imaging field, many are generic and have already been addressed in 

quantitative fields such as genomics and biostatistics. Microarray data analysis field for 

example, while now a mature field, initially struggled with many obstacles related to data 

normalization(16), batch effects(17,18), replicability(19), and the use of gene expression 

profiles for disease subtyping(20) and classification(21). In its current youthful state, data 

analysis in radiology faces similar challenges(3),(15),(5,22). However, many researchers in 

radiology are unaware of some commonly observed and avoidable data analysis pitfalls. It is 

our contention that the quality of radiology studies could be greatly improved by following a 

simple set of data science “best practices” specific to the radiology field. These start with 

basic experimental design principles, including data normalization and standardization 

protocols, and expand to data analysis and validation strategies with appropriate reporting. 

In this review, we provide examples of typical data analysis pitfalls observed in radiomics 

studies, and suggest strategies for avoiding them.

DATA ANALYSIS STRATEGIES

Although data analysis strategies may vary considerably between studies in medical 

imaging, there are certain common strategies related to study design, analysis, and reporting 

(see Figure 1, and Table 1), which could enhance the validity and generalizability of the 

study. Here, we discuss these strategies in detail.

Design: research definition, data curation, and strategic decisions

Experimental design should be defined from the outset of a study. An experienced 

statistician should be consulted from the beginning of the study. By anticipating big picture 

challenges, the research question should be defined, required resources and data be 

identified and curated, and ultimately high-level decisions related to analysis strategies 

should be made. (see Figure 1, Table 1).

Define Research Question—To begin with, the overall scope of the research and the 

potential impact in the field should be assessed by reviewing relevant scientific literature and 

consulting domain experts. Subsequently, feasibility of the study should be assessed and a 

tentative timeline should be established. If possible, effect sizes should be anticipated to 
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assess whether additional data and resources would be required. Finally, the research 

questions to be investigated and the corresponding resource requirements should be defined.

Curate Data and Resources—During this step, imaging and clinical data should be 

gathered and curated, and access to computational resources and methods should be 

established. Careful curation and annotation of the imaging and clinical data is important for 

quality control (QC) of the data and analysis. Validated open-source software tools should 

be prefered over their proprietary commercial counterparts to increase reproducibility and 

interpretability. Moreover, if multiple analysts are working on the analysis, standardized 

computational platforms and software versions should be used to increase consistency and 

reproducibility. Researchers should strive for balance to assure that different phenotypic 

groups are represented appropriately in the training and validation data sets. Here, balance 

refers to the balanced proportion of different classes of outcome or target variables. In cases 

where class imbalance is inevitable, appropriate strategies like augmentation or 

bootstrapping can be utilized.

Develop Analysis Strategy—Once the scope is defined and the required data and 

resources are curated, important decisions related to analysis strategies should be made. 

Different computational approaches should be reviewed to identify suitable methods for the 

analysis of radiographic data. For example, feature quantification strategies (i.e. engineered 

features or deep learning), image preprocessing methods, data normalization approaches, 

dimensionality reduction and feature selection methods, as well as different supervised and 

unsupervised modeling approaches should all be explored for the exploratory empirical 

analysis. Another important aspect in this step is to define and lock (fix) the training and 

validation cohorts. Within the analysis stage, the training cohort can be used for the 

exploratory empirical analysis to further select and lock the computation methods. However, 

the validation data should be kept locked and untouched, until all methods are fixed in the 

analysis phase (see Figure 1). Locked validation data will prevent information leakage from 

training to validation and limit the possibility of overfitting.

A commonly observed pitfall (see Table 2) that can be avoided at the design stage is when 

the number of samples is realistically too low to attain significance or to train a model. 

Insufficient training data could diminish the learning capability of a model, whereas 

insufficient validation data hinders the true evaluation of the underlying hypotheses. In this 

case, it might be best to gather more data samples, investigate only more conservative 

questions, or postpone the study until a later time. While seemingly undesirable, calling off a 

study at the design stage is preferable rather than investing time and effort in a study that is 

premature or underpowered to achieve statistical significance. Such a premature analysis can 

lead to overfitting as researchers scramble to find a combination of analysis choices that give 

“publishable” numbers.

Analysis: Preprocessing

In the second phase, the analysis is initiated with the goal of quantifying radiologic 

characteristics and ultimately establishing and validating imaging biomarkers (see Figure 2). 

When analyzing radiological cohorts, some preprocessing is required to reduce technical 
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variability across images. Different sources of batch variability should be investigated, 

including difference in scanning instrumentations, signal drifts and other calibration-related 

issues as well as longitudinal effects and changes in imaging protocols. Statistical methods 

to correct for such batch effects should be applied. These steps ensure true assessment and 

validation of the underlying hypotheses.

Examples of image pre-processing prior to feature quantification include resampling of 

dimensions to isometric voxels to homogenize image resolutions. Images with isometric 

voxel dimensions can be either reconstructed from the raw DICOM data or interpolated from 

the image data. Moreover, some modalities such as MRI, require normalization of image 

intensity values. Sources of variability and image normalization steps are critical correction 

measures for imaging-related batch effects.

Analysis: Radiomic Quantification

Within radiology, AI methods can perform comprehensive quantifications of tissue 

characteristics (see Figure 2). These methods can convert 3D radiological images into high 

dimensional phenotype descriptors. This approach, called radiomics, uses engineered 

features and/or deep learning. Here, we will describe these two approaches independently.

Engineered Features—Engineered features are predefined and hard-coded algorithms 

designed to quantify specific radiographic characteristics of diseased tissues(7). Domain-

specific expertise can be used to identify important phenotypic characteristics of diseased 

tissues, which could then be mathematically defined and programmatically extracted in an 

automated manner. For example, nodular ground glass opacity is considered as one of the 

vital factor for the management of pulmonary nodules(23,24). This domain specific 

knowledge has been used to define different statistical features (i.e. mean, median, variance, 

range etc.) from the intensity distributions of the nodules(7). It has been shown that the 

ground glass nodules have significantly lower median intensity values than partly solid or 

solid nodules(25). Similarly, it has been demonstrated that different radiomic features based 

on the shape, texture and regional heterogeneity of the diseased tissues, are associated with 

several clinical endpoints in oncology(4,10,11,13,25–32), and also in other domains such as 

cardiology(14).

Additional data normalization steps like feature transformation and standardization are 

needed for engineered features due to the intrinsic differences of range, scale and statistical 

distributions of these features. Untransformed features may have high levels of skewness 

which tend to result in artificially low p-values in downstream statistical tests for low sample 

size cohorts. Neglecting feature standardization may lead to individual features being over- 

or under-represented in statistical models and eventually introduce bias into the analysis. 

Methods like standardization and logarithmic transformations(33) can transform features 

into zero-centered distributions having identical variances and symmetric distributions.

Deep learning—Deep learning enables the extraction of multiple feature levels from data 

directly without explicit definition(8,34,35). It provides a higher level of feature abstraction 

and thus potentially providing better prediction performance. While deep learning has 

recently achieved impressive successes in practice, a strong theoretical backing is yet to be 
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established(36). The lack of “rules of thumb” makes choosing an appropriate deep learning 

network architecture challenging. The problem at hand: classification, detection, 

segmentation, registration or reconstruction, in addition to the type and size of data, all hint 

at the appropriate architecture to utilize. Starting from published architectures that have 

proven successful in their respective tasks is common practice. Convolutional neural 

networks (CNNs) are the most prevalent deep learning architectures in medical imaging 

today(37). Transfer learning, or using pre-trained networks, is often an attractive option 

when dealing with scarce data(38). Data normalization is an essential data preprocessing 

step for deep learning. It ensures increased numerical stability and quicker and stable 

convergence. This could be achieved through sample-wise, feature-wise, or PCA whitening 

normalization depending on the data type. It is important to note, however, that even with 

inputs being normalized, their distributions are highly susceptible to change as they 

propagate through the network where parameters are constantly optimized during training - a 

problem referred to as “internal covariance shift”, and can be mitigated using batch 

normalization(39) or layer normalization(40). Normalization is hence made to be an integral 

part of the network architecture, as opposed to merely being a preprocessing step, and is 

performed on inputs to each layer, based on the distribution of the given batch of cases.

A few important points should be considered before choosing the quantification method. 

While deep learning is able to perform quantifications in an automated manner, it generally 

requires fairly large datasets. Often with quantitative imaging, it could be challenging to 

gather and curate large cohorts of patients with similar clinical, imaging and demographic 

characteristics. Engineered features are less sensitive to the cohort size but need to be 

defined manually by experts. Moreover, it also requires the segmentation of the diseased 

tissue. Recent efforts utilizing transfer learning have broadened the applicability of deep 

learning approaches to smaller cohorts(38,41). Hence, these points should be carefully 

considered prior to choosing a particular quantification method.

Analysis: Biomarker Identification

Quantitative analysis of medical image data involves mining large number of imaging 

features, with the goal of identifying highly predictive/prognostic biomarkers. Here, we 

discuss these concepts for engineered features and deep learning methods separately.

Engineered Features—A large number of engineered features are extracted from the 

medical image data, which might be highly redundant. The use of appropriate feature 

selection/reduction strategies can minimize the feature redundancies and mitigate the “curse 

of dimensionality”(42). Many unsupervised and supervised feature selection methods have 

been described in the literature(10). Unsupervised methods based on principal component 

analysis, independent component analysis, or correlation, can reduce the feature space 

without using a target outcome. Alternatively, supervised methods can be used to select 

features that are relevant to the particular target outcome(43,44). These supervised methods 

can be categorised into three categories: wrapper, embedded and filter methods. 

Computationally expensive wrapper and embedded methods use stricter model structure 

assumptions and are likely to have low generalizability, whereas model independent filter 

methods are relatively efficient and provide better generalizability(43,44).

Parmar et al. Page 5

Clin Cancer Res. Author manuscript; available in PMC 2019 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Predictive and prognostic models with high accuracy, reliability, and efficiency are vital 

factors driving the success of quantitative imaging approaches(10). Myriad supervised and 

unsupervised methods exist in the machine learning literature derived using different 

statistical assumptions(42,45,46). Several investigations have compared these methods for 

quantitative image analyses(47–49),(10. These studies have demonstrated that the variability 

of prediction scores is highly influenced by method choice(10,42). Therefore, the choice of 

feature selection and machine learning modeling methods should be cautiously made.

One of the most commonly observed pitfalls during biomarker identification stage is 

overfitting. Researchers have a tendency to exhaustively search through different modeling 

methods and parameter configurations to obtain high and publishable performance, which 

can result in poor biomarker generalizability. To avoid this, use of standard settings for 

hyperparameters(50) or locked and independent validation data(51) is recommended.

Deep learning—In deep learning, dimensionality reduction and classification are 

performed alongside feature extraction in an integrated manner (see Figure 2). However, the 

quality and output of these cascaded layers depend on different hyperparameters such as the 

number of layers and feature maps, layer arrangement and architecture, size of the receptor 

field etc. Many different network architectures have been described using different sets of 

hyperparameters(52,53). Prediction performance could be influenced by the choice of these 

hyperparameters and architectures. As in the case of engineered features, optimizing the 

hyperparameters by exhaustively searching the parameter space, is a common pitfall in deep 

learning as well. The deep learning architecture should be selected based on the underlying 

scope and application of the research, the statistical properties of data in hand, and the 

effective data size.

Overfitting represents a major challenge in deep learning and can drastically affect a 

network’s ability to generalize to unseen data. Often, deep learning methods are treated as a 

“black box” and not enough attention is given to understanding the actual methods and 

technical concepts. This is particularly an issue when working with limited training data. 

Deeper and more complex networks trained on limited data could induce overfitting. The use 

of shallower networks could avoid overfitting but may result in insufficient learning, also 

known as underfitting. One solution could be data augmentation, where the training data is 

expanded by applying label-preserving image transformations(54) like cropping, reflections 

and rotations. Dropout or other regularization methods could also be used to reduce 

overfitting(55,56). Dropout makes the network less sensitive to individual weights and hence 

increases the robustness of a network. Other regularization methods allow penalizing large 

parametric weights to make the network more robust and generalizable. During training, the 

network performance should be evaluated and monitored using cross-validation. A cross 

validation-based early stopping(57) approach can also be utilized to avoid overfitting. These 

important factors should be considered during the biomarker identification stage.

After identifying biomarkers, a document should be created listing all the cross-validation 

and analysis steps taken during the exploratory analysis of training data, the final hypotheses 

to be validated, the training data used and corresponding inclusion criteria, as well as a list 

of identified and locked computational approaches. Furthermore, it should also be declared 
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that the validation data was not used during the exploratory analysis or biomarker 

identification stage. The same document can later be used to incorporate validation results 

and reported alongside the study findings.

Analysis: Biomarker Validation

As described in the previous sections, avoiding overfitting and data leakage is essential when 

working with machine learning and deep learning models. It should be ensured that locked 

validation cohorts remain blinded during the training and hyperparameter tuning. Only after 

fixing the models, network architectures, computational methods, and corresponding 

hyperparameters, should the validation be carried out on the locked validation cohorts. 

These steps ensure the true evaluation of the underlying hypotheses.

Appropriate performance metrics should be used, especially, when dealing with highly 

unbalanced classes. For example, the accuracy of a classifier is potentially sensitive to the 

event ratio (class distribution) of a population resulting in deceivingly over-optimistic 

results. Accurate evaluation can be achieved by reporting multiple performance metrics like 

AUC, Sensitivity, Specificity, Positive Predictive Value, Negative Predictive Value etc. 

Moreover, robustness of the biomarkers with respect to data perturbation is also a vital 

aspect of biomarker validation(58). An essential and often overlooked step before choosing 

candidate biomarkers is performing multiple testing corrections. When testing hundreds of 

features, it is expected that some associations with clinical outcomes can be found entirely 

by chance. To avoid this, correction methods like Bonferroni(59) and Benjamini and 

Hochberg(60) should be applied.

In order to gage the true clinical impact, it is also essential to statistically compare the 

developed biomarkers to standard clinical markers during validation. Furthermore, the 

additive increase in performance should also be evaluated by combining the developed 

biomarkers and standard clinical markers in a computational model. Moreover, emphasis 

should be given to multiple external validation sets, which can ensure the robustness and 

generalizability of a biomarker. It is our view that studies demonstrating biomarker 

robustness through reproducibility should be looked upon favorably.

Sharing and Reporting

In the final phase, a detailed report should be made about the data, analysis methods, and 

results. Furthermore, enough emphasis should be given to sharing the analysis protocols, 

documented code, original as well as processed data, along with detailed descriptions.

Share data and code—There are several technical and privacy issues to be considered 

while sharing biomedical imaging data. Patient confidentiality must be protected throughout 

the entire process. A system similar to that of the database of Genotypes and 

Phenotypes(dbGaP) should be adopted, where raw imaging data can be archived and 

distributed in a manner that enables data sharing without compromising patient 

confidentiality. Publicly available online medical imaging repository, The Cancer Imaging 

Archive (TCIA) (http://www.cancerimagingarchive.net/), is a great place for sharing and 

archiving medical image data as it uses a standards-based approach to de-identification of 
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DICOM images to insure that images are free of protected health information (PHI). For 

analysis, repositories like GitHub (http://github.com) allow for relative ease in sharing code. 

Furthermore, computational tools such as Jupyter notebooks and Sweave can make 

“executable documents”, which should be included as supplements to the scientific articles 

to promote reproducibility and generalizability. Experiments housed in software 

environment containers with locked versioning such as docker (www.docker.com) allow for 

swift reproducibility and portability.

Share statistics & protocols—As building imaging biomarkers from radiological data 

involves multiple analytical steps, sharing comprehensive descriptions of statistical methods 

are essential for reproducibility. We recommend reporting the number of samples and 

features tested, feature definitions, the statistical tests and algorithms used during the 

analysis, list of model and hyper parameters used, details regarding the optimization 

methods, nominal and corrected p-values, and effect size assessments, in the shared 

document. Once imaging data has gone through the quantification steps outlined above, the 

result is normally a matrix of features versus samples. As long as sample labels are properly 

de-identified, this feature matrix can usually be shared without any risk to patient 

confidentiality. Ideally, all code required to reproduce study findings from the feature matrix 

should also be shared, with the exception of sections that require the use of protected clinical 

metadata.

An effective strategy often adopted for data sharing is to group data, analysis reports, and 

runnable code blocks into a single object such as R data packages with vignettes. For studies 

that use deep learning approaches, the type of network architecture and hyper parameters 

should be shared. Additionally, sharing entire networks with trained weights can be highly 

beneficial for transfer-learning efforts. With an increasing number of deep learning libraries, 

sharing trained networks in universal formats such as ONNX (www.onnx.ai) can facilitate 

straightforward cross-platform compatibility. It is our experience that sharing methods and 

code in this manner also has the natural effect of raising the overall quality of data analyses, 

in addition to ensuring reproducibility.

Data science and big data are rapidly becoming major components of healthcare applications 

in both the industrial and academic settings. However, performing accurate and meaningful 

data analyses is challenging and potentially plagued with errors and incorrect conclusions. In 

this article, we addressed data analyses practices specific to radiographic medical images. 

We identified commonly observed pitfalls and recommended vital guidelines. 

Recommendations given here are not exclusive solutions nor do they guarantee completely 

error-free unbiased experimentation. However, they do act as guidelines for the management 

and handling of research-compromising pitfalls. Mindful implementation of these guidelines 

will enhance the quality of radiomic analyses as well as allow for better integration of 

imaging data with other patient-specific data for precision medicine efforts.
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Figure 1. Data analysis stages in medical imaging
Design involves defining research scope and questions, curating the required data and 

resources and exploring and developing the analysis strategies. Analysis begins with 

radiomic quantification, followed by biomarker identification and validation. Data, code, and 

other details related to experiment are reported and shared during the Reporting stage.
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Figure 2. Detailed analysis stage
Analysis begins with the preprocessing of medical images in order to avoid different 

technical variability and batch effects. After that, in the radiomic quantification step, 

radiomic descriptors, capturing different phenotypic characteristics of diseased tissues are 

quantified. Radiomic quantification can either be done using engineered features or deep 

learning methods. According to the quantification method, in the biomarker identification 

step, appropriate analysis methods are explored and suitable methods are applied to develop 

biomarkers. Finally, in the biomarker validation step, the developed biomarker is validated in 

the locked and independent validation cohort.
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Table 1
Recommendations for analyzing medical image data in radiology

These recommendations cover different steps like Design, Analysis and Reporting.

Design: Define research question - Define research questions

- Review related literature and assess the scope of the research

- Requirements gathering (required datasets, tools, etc.)

- Feasibility assessment and timeline

- Refine and finalize research questions and resource requirements

Design: Data and resource curation - Gather and curate the required resources (data, tools)

- Check the quality of imaging and clinical data and perform the appropriate selection

Design: Develop analysis strategy - Based on available data, define the suitable analysis strategies

- Explore and decide the suitable methods and computational approaches:

- Feature quantification (engineered vs. deep learning)

- Image preprocessing

- Data normalization

- Supervised vs. unsupervised

- Dimensionality reduction

- Statistical modeling

- Define the analysis flow and timeline

- Fix the hypotheses and their evaluation strategies

- Fix the training and validation cohorts and ensure no data leakage

- Fix the resources to be used

Design: Strive for balance - Assure that different phenotypic groups are represented appropriately in the training data.

Design: Lock Data - Lock training and validation cohorts to avoid information leakage.

- Ensure that validation data remains locked(unused) until the exploratory analysis and biomarker 
identification is done on training cohorts.

Analysis: Preprocessing - Perform the required image pre-processing.

- Assess potential batch effects between cohorts and apply correction methods if needed.

Analysis: Radiomic quantification - Explore and fix the the feature quantification methods. Radiologic characteristics can be 
quantified, for example, using engineered or deep learned features.

- Accordingly fix the feature transformation and data normalization approaches.

Analysis: Biomarker identification - Explore the feature selection/reduction and machine learning/deep learning modeling 
approaches using the cross-validation of training cohorts.

- Explore different parameter settings and tuning strategies using cross-validation of training data.

Analysis: Lock Methods - All methods and parameters should be locked (fixed) before applying them to validation data.

- A report, testifying that validation data was not seen during the training and exploratory analysis 
stage, should be sent to the institutional review board (IRB) along with the list of locked 
methods that will be applied on the validation cohort.

Analysis: Biomarker validation - Evaluate performance of previously fixed methods in the validation data.
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- Perform multiple test corrections if applicable

- Statistically compare the performance of identified biomarker with conventional clinical 
markers.

- Also, evaluate the complementary additive effect of the identified biomarker on conventional 
clinical markers and test if there is a significant increase in the performance.

Reporting: Statistics and protocols - Report all relevant information and parameters related to each statistical test, such as the number 
of features tested, uncorrected and corrected p-values, effect size, and a rationale for the choice 
of a model or test.

- Report acquisition protocols of the imaging data. Also, report segmentation protocols if these 
were performed.

- List all the software and tools used.

- If space is an issue then these details can be provided as a supplementary information to the 
article or report.

Reporting: Share Data & Methods - Share the data and methods to the scientific community if feasible. This often brings more 
reproducibility in science and also increases the overall impact of a publication.
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Table 2
Commonly observed pitfalls

A list of commonly observed pitfalls in data analysis of medical image data.

Pitfall 1: No predefined 
analysis protocol

- Not defining the analysis protocols beforehand could result in testing a large number of different 
design strategies to optimize the performance, which often does not generalize to other independent 
data sets.

Pitfall 2: Insufficient data for 
training and validation

- Insufficient training data could diminish the learning capability of a model. Insufficient validation 
data hinders the true evaluation of the underlying hypotheses.

Pitfall 3: No multiple test 
correction

- When a large number of features are statistically evaluated, often there is a chance of false 
“discovery”. Several statistical techniques, known as multiple testing corrections, are available to 
prevent that. No (or incorrect) multiple testing correction could induce erroneous statistical 
inferences and results.

Pitfall 4: No feature reduction - Large number of features increase the chance of false “discovery”. Moreover, it could also induce the 
multicollinearity and overfitting. Therefore in order to avoid the curse of dimensionality, feature 
reduction or selection methods are required.

Pitfall 5: Overfitting - While an overfitted model works extremely well in the initial training data set, its performance 
degrades substantially on other, independent data sets. Proper strategies should be applied to reduce 
the chance of overfitting on training data.

Pitfall 6: No locked data and 
Information leakage

- Often validation (parts of) data is used within training procedure. For example, features are selected 
based on the complete dataset, including validation data, and then these features are used for training 
a model in the training data. Validating this model in the validation cohort would be incorrect. As 
features are selected using the validation cohort, there is a possibility of information leakage and 
overfitting. Similarly, validation data can not be used for tuning the hyperparameters. Validation data 
should always be locked and untouched during training.

Pitfall 7: Not reporting 
appropriate performance 
metric

- Often using a single performance metric for the evaluation of a model is not sufficient. For example, 
accuracy of a classifier is sensitive to the event ratio (class distribution) of a population. Accurate 
evaluation can be achieved by reporting multiple performance metrics. For example, in classification 
studies, AUC, Sensitivity, Specificity, PPV, NPV etc. should be reported along with the accuracy of a 
classifier.

Pitfall 8: Training 
performance are incorrectly 
reported

- Often it has been observed that model performance on the training data is reported as results. 
Although this could provide information regarding the learning capability and convergence of a 
model, it does not give any information regarding the generalizability of a model and hence does not 
allow valid evaluation. Results should only emphasise the model performance in the independent 
validation cohorts.
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