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Abstract

Current status data occur in many biomedical studies where we only know whether the event of 

interest occurs before or after a particular time point. In practice, some subjects may never 

experience the event of interest, i.e., a certain fraction of the population is cured or is not 

susceptible to the event of interest. We consider a class of semiparametric transformation cure 

models for current status data with a survival fraction. This class includes both the proportional 

hazards and the proportional odds cure models as two special cases. We develop efficient 

likelihood-based estimation and inference procedures. We show that the maximum likelihood 

estimators for the regression coefficients are consistent, asymptotically normal, and asymptotically 

efficient. Simulation studies demonstrate that the proposed methods perform well in finite 

samples. For illustration, we provide an application of the models to a study on the calcification of 

the hydrogel intraocular lenses.
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1 Introduction

Current status data occur in many biomedical and health studies, where the exact onset of 

the event of interest cannot be observed directly and we only know whether or not the event 

has occurred at the time the sample is collected. For example, in a tumorigenicity 

experiment that involves lung tumors in mice (Hoel and Walburg, 1972), only an indicator of 

lung tumor presence or absence at time of death was observed. A second example is the 

Calcification study of the hydrogel infraocular lenses (IOL), which is an infrequently 

reported complication of cataract treatment (Yu et al, 2001). The exact time to the 

occurrence of calcification is not observable. Instead, the calcification status was observed at 

the time of examination.

Current status data have been investigated extensively in literature. Groeneboom and 

Wellner (1992) derived the nonparametric maximum likelihood estimator (NPMLE) of the 

survival function of time to event. Methods for the regression analysis of current status data 
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include the Cox proportional hazards model (Huang, 1996), the proportional odds model 

(Rossini and Tsiatis, 1996; Huang and Rossini, 1997), and the additive hazard model (Lin et 

al, 1998). More recently, partly linear accelerated failure time (AFT) model and partly linear 

transformation models were proposed by Xue et al (2004) and Ma and Kosorok (2005), 

respectively. There is an inexplicit assumption in all the aforementioned methods that the 

event will eventually occur for all subjects given a sufficient long time of follow-up.

In many studies, it is observed that a proportion of subjects never experiences the event of 

interest, i.e., they are cured or not susceptible to the event of interest. The aforementioned 

standard survival analysis techniques may no longer be appropriate in such situations. 

Alternatively, survival models that allow for a cured subgroup are more desirable. Such 

models generally are referred to as “cure models”. Under the cure model, the survival 

function, denoted by S, is allowed to be improper, i.e., S(∞) > 0. There is an abundant 

literature on cure rate models incorporating a cure fraction for right censored data. Perhaps 

the most commonly used cure rate model is the mixture model first introduced by Berkson 

and Gage (1952). This model assumes that the underlying population consists of a cured 

sub-population and a sub-population not being cured. This mixture cure model and its 

extensions have been studied by many investigators, including Farewell (1982, 1986), Gray 

and Tsiatis (1989), Kuk and Chen (1992), Taylor (1995), Sy and Taylor (2000), Peng and 

Dear (2000), Betensky and Schoenfeld (2001), and Lu and Ying (2004), among others. A 

comprehensive discussion of the mixture cure model is given in Maller and Zhou (1996).

The mixture cure model, however, does have several drawbacks both from a frequentist and 

Bayesian perspective as noted by Chen et al (1999) and Ibrahim et al (2001). One particular 

drawback is that the mixture cure model does not appear to describe the underlying 

biological process generating the failure time in the context of cancer relapse. The test of the 

effects of one covariate (on the cure fraction and the hazard rate in the uncured sub-

population) has a degree of freedom of two and consequently can potentially compromise 

the power of the test. Furthermore, the EM-algorithm is often used to estimate the unknown 

parameters in the mixture cure models, which may increase the computation burden 

especially when there are no closed form solutions in the M-step. Additionally, in the 

Bayesian inference, the mixture cure model can yield improper posterior distributions for 

many non-informative improper priors, including the uniform prior for regression 

coefficients.

Alternatively, Yakovlev and Tsodikov (1996) proposed the promotion time cure model, 

which was further studied by Tsodikov (1998), Chen et al (1999), and Tsodikov et al (2003), 

among others. This model has a proportional hazards structure, a desirable feature of 

survival models, yields proper posterior distributions under a wide class of non- informative 

improper priors for the regression coefficients, and also has biological motivations (Chen et 

al, 1999). In this model, the population survival function for a subject with covariates Z is 

given by
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Spop(t ∣ Z) = exp { − eβTZF(t)}, (1)

where F(t) is a distribution function. This model integrates the survival function for either 

cured subjects or non-cured subjects into one single formulation and assumes that the cured 

subjects have survival time equal to infinity. The hazard function corresponding to (1) is 

λpop(t|Z) = eβ
TZf(t), where f(t) = dF(t)/dt. The cure rate under model (1) is limt→∞ Spop(t|

Z) = exp(−eβ
TZ). The promotion time cure model is also referred to as the proportional 

hazards cure model. As a matter of fact, the above promotional time cure model can be 

derived from a biological process generating the relapse time in cancer patients. For a cancer 

patient, let N denote the number of carcinogenic cells, which is assumed to follow a Poisson 

distribution with mean θ. Here θ may depend on some covariates, e.g., θ = eβ
TZ. We denote 

by Yi the random time for the ith carcinogenic cell to produce a detectable cancer mass. We 

assume that Yi’s are i.i.d. with a distribution function F(·) and are independent of N. It then 

can be shown that the probability of cancer free by time t for the patient is exp{−θF(t)}, 

which takes the same form as the survival function in (1).

To further increase the flexibility of the promotional time cure model, Zeng et al (2006b) 

proposed the following class of cure rate models by using Box-Cox type of transformations

Spop(t ∣ Z) = Gγ{eβTZF(t)}, (2)

where

Gγ(x) = (1 + γx)−1/γ, γ > 0

e−x, γ = 0.

This class of models include the proportional hazards cure model and the proportional odds 

cure model as special cases. When γ = 0, model (2) reduces to the proportional hazards cure 

model; when γ = 1, model (2) has the proportional odds structure. This class of cure models 

have sound biological basis and provide flexible alternatives to the mixture cure models.

The studies of cure rate models for current status data are relatively limited. Lam and Xue 

(2005) considered a partly linear AFT model for susceptible subjects and used a sieve 

maximum likelihood approach. Ma (2008) and Ma (2009) used additive risk model and 

linear or partly linear Cox models (Cox, 1972), respectively, to model the event time in the 

susceptible population. In all three papers, the authors considered mixture cure rate models. 

Cook et al (2008) also considered parametric and semiparametric mixture cure models but 

focused on the estimation of covariates effects on the cure rate only. Liu and Shen (2009) 

considered the proportional hazards cure model for interval-censored data and proved the 

strong consistency of the maximum likelihood estimators under the Hellinger distance.
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In this article, we investigate current status data with a cure fraction. Particularly, we 

consider the class of transformation models (2). Although this class of models have been 

well studied for right-censored data, such models have not been used to analyze current 

status data and the extension is far from trivial. Our research aims to fill in this gap both 

theoretically and practically. In the next section, we derive the likelihood function and 

propose using maximum likelihood approach for estimation. In section 3 we establish the 

asymptotic properties of the proposed maximum likelihood estimators (MLEs). In Section 4 

we conduct simulation studies to evaluate the finite-sample properties of the estimators and 

also illustrate the proposed model with the Calcification data. We conclude with a brief 

discussion in Section 5 and provide technical details for the proofs in the Appendix.

2 Maximum Likelihood Estimation

Suppose that there are n i.i.d. observations. For i = 1, …, n, we observe {Yi, Δi = I(Ti ≤ Yi), 

Zi}, where Ti is the failure time for member i, Yi is the random censoring or inspection time, 

Zi is a vector of bounded covariates, and I(·) is the indicator function. The first component of 

Zi is 1. We assume that the inspection time Yi is conditionally independent of Ti given Zi.

We consider model (2). The observed-data likelihood function for the parameters (β, F) can 

be expressed, for fixed γ, as

Ln(β, F) − ∏
i = 1

n
1 − Gγ{e

βTZiF(Yi)}

Δi

Gγ{e
βTZiF(Yi)}

1 − Δi

.

We wish to to obtain the maximum likelihood estimators of (β, F) by maximize the above 

likelihood function over the parameter space

Θ = {(β, F): β is in a compact set, ‖β‖ ≤ B, F( · ) is a cumulative distribution function on [0, ∞ )} .

It is obvious that the MLEs exist since the likelihood function is bounded from above by 1 

and Θ is weakly compact. The MLEs, however, are not unique since the likelihood function 

depends on F only through the its values at the observed times Yi, i = 1, …, n. Thus we 

focus on the maximization of Ln(β, F) over all nondecreasing step functions with jumps at 

the Yi’s for F(t). We denote the MLEs of β and F by β̂n and F̂
n. Furthermore, we claim that 

F̂
n can only have jumps at those Yi’s with Δi = 1. Let s1 < ··· < sm denote the ordered distinct 

time points of Yi, i = 1, …, n with associated Δi = 1. For a subject with Δi = 0 and sk < Yi < 

sk+1, consider two distribution functions F1 and F2, which have the same values at all time 

points except that F1(Yi) = F1(sk) and F2(Yi) > F1(sk). Since Gγ(·) is a decreasing function, 

it can be easily shown that Ln(β, F1) > Ln(β, F2). Therefore, F̂
n can have positive jumps only 

at sk, k = 1, …, m. Similarly, we can show that F̂
n(sm) = 1 since F is a proper distribution 

function. Therefore we maximize the likelihood function subject to the constraint that 0 ≤ 

F(s1) ≤ ··· ≤ F(sm) = 1.
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The pool-adjacent-violator (PAV) approach (Barlow et al, 1972; Robertson et al, 1988) is 

often used in the optimization problems with monotone constraints, e.g., see Groeneboom 

and Wellner (1992), van der Laan and Jewell (2001), and Ma (2008, 2009). Alternatively, in 

this paper we use the following transformation

F(sk) = 1 − e
−∑ j = 1

k e
α j

, k = 1, …, m − 1

and the constrained optimization problem reduces to the maximization of the likelihood 

function over (β, α1, …, αm−1) without constraints. For small m, Newton-Raphson 

algorithm can be used to solve the score equations for β and {αk, k = 1, …, m − 1}. When m 
is large, we use the quasi-Newton method of Broyden, Fletcher, Goldfarb and Shanno (or the 

so-called BFGS algorithm) as described in Press et al (1992) to search for the optimum. The 

BFGS algorithm refines an approximation of the inverse Hessian matrix at each iteration via 

a rank-one update. Therefore, although the number of parameters under the proposed model 

increases with sample size, the computation burden for obtaining the NPMLEs increases 

linearly with sample size. In our experience, the BFGS algorithm performs well even when 

there are thousands of parameters. This algorithm has been successfully applied in 

optimization problems with a large number of parameters, e.g., see Diao et al (2013) and 

Yuan and Diao (2014). It is well known that for interval-censored data, the MLE of the 

distribution function may have zero mass at some inspection times even with Δ = 1. 

Numerically, the estimates of the jumps of F are negligible (< 10−6) at those time points. The 

same transformation technique was also used by Zeng et al (2006a) to estimate the 

cumulative hazard function under the semiparametric additive risks model for interval-

censored data.

3 Asymptotic Properties

We first impose the following assumptions:

(C1) Covariates Zi are bounded with probability one. Furthermore, if there exists a 

constant vector β such that βTZi = 0 almost surely, then β = 0.

(C2) Conditional on Zi, the inspection time Yi is independent of Ti.

(C3) There exists a constant t0 < ∞ such that P(Ti > t0|Zi) = P(Ti = ∞|Zi) > 0 almost 

surely. Furthermore, the inspection time Yi is a random variable from a 

distribution with support [τl, τu] with 0 ≤ τl < t0 ≤ τu < ∞ and P(Yi ≥ t0|Zi) > 0.

(C4) The true values of β, denoted by β0, belong to the interior of a known compact 

set,

ℬ = {β:‖β‖ ≤ B for some constant B},

where ||·|| is the Euclidean norm.
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(C5) The true promotion time cumulative distribution function F0 belongs to the 

space

ℱ = {F :F is a cumulative distribution function on [0, ∞ ) and has strictly positve first order
derivatives on [τl, t0]} .

Remark 1—Condition (C1) is the usual linear independence condition of Zi in regression 

settings. Conditions (C2), (C4), and (C5) are standard assumptions in semiparametric 

inferences with failure time data. Condition (C3) assumes that no new cases occur after t0 

and that t0 is in the support of inspection time. Under this assumption, all censored 

observations beyond t0 are treated as “Ti = ∞” (i.e., observed to be cured) and we can 

discriminate between cured and un-cured observations. The constant t0 serves as the “cure 

threshold” defined in Zeng et al (2006b). This condition is needed to ensure the 

identifiability of the unknown parameters (β, F). Note that for a parametric cure rate model, 

the condition that some subjects are observed to be cured is not needed. More details on the 

identifiability of cure models are provided in Li et al (2001). For practical data analysis, we 

can set t0 = sm or choose a threshold value suggested by clinicians. In the mixture cure rate 

model setting, Ma (2008, 2009) set Λ̂(t) = ∞ for t > max{Yi : i = 1, …, n}, where Λ is the 

baseline cumulative hazard function for the un-cured sub-population. This technique is 

essentially the same as setting t0 = sm.

Remark 2—For right-censored failure time data, Zeng et al (2006b) imposed the 

assumption P(Yi = ∞|Zi) > 0. However with current status data Yi = ∞ implies Δi = 1 

regardless of whether Ti = ∞ or not therefore such observations are not informative.

Under conditions (C1) – (C3), the parameters β and F are identifiable. Suppose that two sets 

of parameters, (β, F) and (β̃, F̃), give the same likelihood function for the observed data, i.e., 

if for almost all (Z, Y),

[1 − Gγ{eβTZF(Y)}]
Δ

[Gγ{eβTZF(Y)}]
1 − Δ

= [1 − Gγ{eβ
∼TZF∼(Y)}]

Δ
[Gγ{eβ

∼TZF∼(Y)}]
1 − Δ

,

we claim that β = β̃ and F(t) = F̃(t) for every t ∈ [τl, t0]. In fact, by condition (C3), F(t) = F̃(t) 
= 1 for any t ≥ t0. Let Y = t0, we have Gγ(eβ

TZ) = Gγ(eβ̃
TZ). Then, from the monotonicity of 

Gγ, it follows that βTZ = β̃T Z for almost all Z. Thus condition (C1) gives β = β̃. 
Furthermore, by letting Δ = 1 and Y = t, τl ≤ t < t0, we have Gγ{eβ

TZF(t)} = Gγ{eβ
TZ F̃(t)}. 

It then follows that F(t) = F̃(t) for any t ∈ [τl, t0].

We establish the consistency of the MLEs in the following theorem.

Theorem 1. (Consistency)—Under conditions (C1), (C3) and (C4), ||β̂n−β0|| → 0 and 
supt∈[τl,t0] |F̂

n(t) − F0(t)| → 0 almost surely.

We outline the proof here and defer the details to Appendix A.1. Let
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p(Y , Z, Δ ∣ β, F) = 1 − Gγ eβTZF(Y)
Δ

Gγ eβTZF(Y)
1 − Δ

,

and

m(Y , Z, Δ ∣ β, F) = log p(Y , Z, Δ ∣ β, F)
p(Y , Z, Δ ∣ β0, F0)

be the log-likelihood ratio. Let d((β, F), (β0, F0)) = ||β−β0||+supt∈[τl,b0] |F(t)− F0(t)|, and ℳ = 

{m(Y,Z,Δ|β, F) : (β, F) ∈ ℬ×ℱ}. We show that ℳ is a P-Glivenko-Cantelli class, and 

m(Y,Z,Δ|β, F) satisfies some other conditions. If follows from Theorem 5.8 in van der Vaart 

(2002) that

d((βn, Fn), (β0, F0)) →a . s . 0.

This gives the desired result.

With the consistency result, we can establish the following result on convergence rate of the 

MLEs.

Lemma 1. (Convergence rate)—Under conditions (C1), (C3) and (C4),

d((βn, Fn), (β0, F0)) = Op(n−1/3)

Groeneboom and Wellner (1992) established that the best convergence rate for estimates of 

the nonparametric distribution function with one-sample current status data is n1/3. Huang 

(1996) and Ma (2008, 2009) obtained similar results for the estimates of the baseline 

cumulative hazard function in the Cox model (Cox, 1972) and the mixture cure rate model, 

respectively. Lemma 1 indicates that the optimal convergence rate can be achieved under the 

proposed cure rate model. The detailed proof of Lemma 1 is given in Appendix A.2.

Before stating the result for the asymptotic normality of β̂n, we derive the efficient score 

function for β. The log-likelihood for a single observation X ≡ (Y, Δ, Z), denoted by l(β, F), 

takes the form

l(β, F) = Δ log [1 − Gγ{eβTZF(Y)}] + (1 − Δ) log [Gγ{eβTZF(Y)}] .

The score function for β is the first derivative of l(β, F) with respect to β and takes the form
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lβ(β, F) = ZF(Y)Q(X; β, F),

where

Q(X; β, F) = eβTZGγ′ {eβTZF(Y)} − Δ

1 − Gγ{eβTZF(Y)}
+ 1 − Δ

Gγ{eβTZF(Y)}

and Gγ′  is the first derivative of Gγ. For a function g in [τl, τu] with bounded total variation, 

the score function for F along the direction of g is given by

lF(β, F)[g] = g(Y)Q(X; β, F) .

Project the score function of β onto the space generated by lF (β, F)[g], and for g = (g1, …, 

gd) with d = dim(β), denote lF (β, F)[g] = (lF (β, F)[g1], …, lF (β, F)[gd])T. We obtain the 

efficient score function for β at the true parameter

lβ
∗(β0, F0) = lβ(β0, F0) − lF(β0, F0)[g∗],

where

g∗(Y) = F0(Y)
E(ZQ2(X; β0, F0) ∣ Y)

E(Q2(X; β0, F0) ∣ Y)
.

Write Iβ(β0, F0) = E[lβ
∗(β0, F0)lβ

∗ T(β0, F0)]. In the appendix, we will show that Iβ(β0, F0) is 

positive definite and component-wise bounded.

With the derived convergence rate and the efficient score function for β, we can obtain the 

following asymptotic normality results for β̂n.

Theorem 2. (Asymptotic normality)—Under conditions (C1)–(C4), n(βn − β0)

converges weakly to a zero-mean normal distribution with variance Iβ
−1(β0, F0).

Theorem2 states that although the convergence rate of (β̂n, F̂
n) is considerably slower than 

the n1/2 rate for right censored data, we can still obtain the n consistency and asymptotic 

normality of βn̂. Furthermore, we conclude that β̂n is the most efficient estimator for β0 as 
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Iβ
−1(β0, F0) attains the semiparametric efficiency bound for β0. The proof of Theorem 2 is 

provided in Appendix A.3.

Let (·) be the two-sided Brownian motion originating from zero: a mean zero Gaussian 

process on R with (0) = 0, and E( (s) − (h)2 = |s − h| for all s, h ∈ R. Denote →D  for 

convergence in distribution. Let wn be the random variable that given the Zi’s, wn takes 

e
− βn

TZiGγ
−1(1 − i/n) − e

− βn
TZi + 1Gγ

−1(1 − (i + 1)/n) with probability 1/n. Denote w = w(Z) for 

its asymptotic version conditioning on Z. Let f0(·) be the derivative of F0(·).

To derive the asymptotic distribution of F̂
n, we make two additional assumptions.

(C6) Function Gγ satisfies 0 < limx ∞ Gγ
−1(1/x)/x < ∞.

(C7) The density function of Y, g(t) > 0 with t ∈ [τ1, t0].

Theorem 3—Assume (C1)–(C7), then ∀t ∈ [τ1, t0],

n1/3(Fn(t) − F0(t)) →D
4η2(t) f 0(t)

g(t)

1/3
arg min

h ∈ R
{𝔹(h) + h2},

where η2(t) = E[(I(T ≤ t)w(Z) − F0(t))2].

The distribution of arg minh∈R{ (h)+h2} is called Chernoff distribution, the density function 

of which was derived in Groeneboom (1989). It has no closed form and is not easy to 

evaluate. Kosorok (2008) proposed a sampling method to evaluate this distribution. The 

proof of Theorem 3 is in Appendix A.4.

Remark 3—The inference above is based on the selected model with the transformation 

parameter γ fixed. To select the best model, we may choose the transformation which 

minimizes the Akaike information criterion (AIC), which is defined as twice the negative 

log-likelihood function plus twice the number of parameters. It is theoretically possible to 

accounting for the variation due to the model selection procedure. The computation, 

however, may be demanding or unstable. Furthermore, whether this kind of variation should 

be accounted for is up to debate (Box and Cox, 1982). In the subsequent simulation studies, 

we will fix the transformation whereas in the data application, we will use the AIC to select 

the best transformation.

4 Numerical Studies

4.1 Simulation

We conducted simulation studies to examine the finite sample performance of our proposed 

methodology. We generated data from model (2) with Z = (1, Z1, Z2)T, where Z1 is a 

uniform random variable in [0, 1], and Z2 is a Bernoulli random variable with a success 

probability 0.5. The true parameter values of β = (β0, β1, β2) are are set to be (−0.5, 1, −0.5); 
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and F(t) = 1 − {exp(−t) − exp(−t0)}I(t ≤ t0)/{1−exp(−t0)}, where t0 = 4. The inspection time 

was set to be the minimum of 4 and an exponential variable with mean 2. We considered five 

different models by varying the values of γ from 0 to 1. The average cure rate ranged from 

0.45 to 0.56 as α changed from 0 to 1, whereas the censoring proportion among those un-

cured subjects was about 0.26 for all five models.We considered sample sizes of 200 and 

400 for each model. For each simulation set-up, we generated 1,000 data sets. The quasi-

Newton algorithm implemented in C language was applied to maximize the log-likelihood 

function. The initial values of the regression parameters were set to be 0 and the initial jump 

sizes of F were set to be 1/m at s1, …, sm. The convergence of the quasi-Newton algorithm 

was very fast and it took about 0.3 second to analyze one data set with 400 subjects on a 

Dell PowerEdge 2900 server.

Table 1 summarizes the results for each combination of γ and n. The column labeled as 

“Mean” denotes the sampling mean of the parameter estimator from the true parameter 

value; “SE” is the sampling standard error of the parameter estimator; “SEE” is the mean of 

the standard error estimator, which is calculated based on the inverse of the observed 

information; and “CP(%)” is the coverage probability of the 95% confidence interval based 

on the asymptotic normal approximation. The proposed estimators appear to be unbiased. 

The estimate of the standard error reflects accurately the true variation, and for moderate 

sample size and cluster size the confidence intervals have proper coverage probabilities. As 

the sample size increases from 200 to 400, the standard deviations of the estimates shrink at 

approximately the 2 rate.

The next line of simulation studies concerned about the performance of the commonly used 

proportional hazards cure model and the proportional odds cure model when data were 

generated from a different model. Specifically, we used the same setting for generating data 

in the simulation studies described earlier. The model with γ = 1/2 corresponds to a model 

between the proportional hazards cure model and the proportional odds cure models. For 

each simulation setting, we generate 1,000 replications with sample size of n = 400. The 

results are summarized in Table 2. We observe when the true model is the proportional 

hazards cure model, the regression parameters from the proportional odds cure model are 

overestimated, whereas the parameters from the proportional hazards cure model are 

underestimated when the proportional proportional odds cure model is true. In general, when 

the transformation parameter is between 0 and 1, the proportional hazards cure model tends 

to bias towards 0, whereas the opposite is observed for the proportional odds cure model. 

Note that both models estimate the direction of the coefficients correctly under misspecified 

transformation. We also observe that standard error estimates of the regression coefficients 

corresponding to the covariates appear to be correct although the parameter estimates are 

biased.

4.2 Application to the Calcification Study

As an illustration, we applied our proposed model to the Calcification study of Yu et al 

(2001). The objective of the study was to investigate the effects of certain clinical factors on 

the time to IOL calcification after implantation. The status of calcification for each of the 

379 patients in the study was determined by an experienced ophthalmologist at a random 
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time ranging from 0 to 36 months after implantation. Covariates of interest include incision 

length, gender, and age at implantation. One individual with missing measurement on 

incision length was excluded from the analysis. Of the remaining 378 individuals, 48 

experienced calcification before examination time. The nonparametric maximum likelihood 

estimates of the survival functions for males and females at the end of study were 0.844 and 

0.5, respectively.

In our data analysis, we included incision length, gender, and age at implantation as 

covariates in the cure models. Let Z1 be the incision length, Z2 be gender that takes values 0 

and 1 for female and male patients, respectively, and Z3 be the age at implantation divided 

by 10. We fit the proposed model (2) with Z = (1, Z1, Z2, Z3)T. We compared the 

proportional hazards cure model and the proportional odds cure model, and those models in 

between. As suggested by Zeng et al (2006b), we selected the proportional odds cure model 

which maximizes the Akaike information criterion (AIC). The AIC is defined as the twice 

log-likelihood function minus twice the number of parameters. The results under the 

proportional odds cure model are presented in Table 3. We see that males and older people 

are more likely to be cured and increase in incision length leads to an decrease in cure rate, 

although their effects are not significant. Our findings agree well with those of Lam and Xue 

(2005). Furthermore, to give a graphical comparison, Figure 1 plots the separate 

nonparametric estimates of the survival curve and the model-fitted survival curve for each 

gender group. The model-fitted survival function is calculated as the empirical average of 

the predicted survival functions. The dotted and dot-dashed lines in Figure 1 present the 

predicted survival functions; these in general agree quite well with the nonparametric 

estimates of the survival curves. The big difference between the fitted survival function and 

the nonparametric estimate of the survival function for males at the tail is due to that the 

largest inspection time in male patients with the occurrence of calcification was 17.6 

months. Therefore the nonparametric estimate of the survival function for males is flat 

whereas the MLE of F0 in the fitted model has jumps beyond that time point. Figure 1 

indicates that the proportional odds cure model fits the data well.

5 Discussion

We have considered a class of semiparametric cure models by imposing the Box-Cox type 

transformation on the population survival function for the analysis of current status data with 

a cured proportion in the population. This class includes the well-known proportional 

hazards and proportional odds structures as two special cases and has great potential in 

clinical trials and for modeling survival data with a cure fraction. We have developed 

efficient likelihood-based estimation and inference procedures and shown that the MLEs of 

the regression parameters are consistent, asymptotically normal and asymptotically efficient. 

The inference in this paper is based on the selected model with the transformation parameter 

fixed. As suggested by Zeng et al (2006b) we use the AIC to select the best model. It would 

be of interest to estimate the variances of the MLEs of the regression parameters accounting 

for the variation due to the model selection procedure in semiparametric inference. Future 

research is warranted.
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We have developed an efficient algorithm implemented in C language for calculating the 

MLEs and standard error estimates of the MLEs under the proposed models. The 

computation is substantially faster than the PAV approach under the mixture cure model in 

Ma (2009). This significant improvement makes it possible to apply our methods to genetic 

studies in which linkage or association tests are performed at hundreds of thousands of 

genetic markers. Our computer program is available upon request.

As noted by Taylor (1995), Fang et al (2005), and Lam et al (2005), applications of cure 

models are restricted to problems in which there is strong scientific evidence for the 

existence of the cured population or a clear level plateau of the survival function is observed. 

Identifiability problem may arise when the cure probability is very close to one or zero. In 

our experience, the numerical computation of the MLEs may not be stable if the cure 

fraction is small.
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Appendix

A.1. Proof of Theorem 1

Let p(Y,Z,Δ|β, F) = [1 − Gγ(eβ
TZF(Y))]Δ[Gγ(eβ

TZF(Y))]1−Δ, and

q(Y , Z, Δ ∣ β, F) = log p(Y , Z, Δ ∣ β, F)
p(Y , Z, Δ ∣ β0, F0)

be the log-likelihood ratio. Let P be the probability measure of p(Y,Z,Δ|β0, F0), Pq(Y,Z,Δ|β, 
F) = ∫ q(Y,Z,Δ|β, F)dP(Y,Z,Δ), the true mean of q; and let 

Pnq(Y , Z, Δ ∣ β, F) = (1/n)∑i = 1
n q(Y i, Zi, Δi ∣ β, F), the empirical mean of q based on the data 

{(Yi,Zi,Δi): i = 1, …,n}. Note that Pq(Y,Z,Δ|β, F) is the negative Kullback-Leibler 

divergence of p(Y,Z,Δ|β, F) from p(Y,Z,Δ|β0, F0), and as a function of (β, F), it is always 

non-positive, attaining its maximum value of 0 at (β, F) = (β0, F0). Let Θ be the range of β 
and ℱ be the collection of all distribution functions on R+. Recall that (β̂n, F̂

n) is the MLE 

of (β0, F0), i.e.,

(β0, F0) ∈ arg max
(β, F) ∈ (Θ, ℱ)

Pq(y, z, δ ∣ β, F), and (βn, Fn) ∈ arg max
(β, F) ∈ (Θ, ℱ)

Pnq(y, z, δ ∣ β, F) .

Let d((β, F), (β0, F0)) as given before the Lemma (recall definitions of τl and t0 given in 

condition (C3)). By our model specification, Pq(Y,Z,Δ|β, F) is continuous with respect to (β, 
F); also, with (C3), the model is identifiable, and so (β0, F0) is the unique maximizer of 

Pq(Y,Z,Δ|β, F). Thus for all η > 0,

sup
(β, F) ∈ (Θ, ℱ):d((β, F), (β0, F0)) > η

Pq(Y , Z, Δ ∣ β, F) < Pq(Y , Z, Δ ∣ β0, F0)

and by definition of MLE, Pnq(Y , Z, Δ ∣ βn, Fn) ≥ Pnq(Y , Z, Δ ∣ β0, F0),
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so if we show that  = {q(Y,Z,Δ|β, F): (β, F) ∈ (Θ,ℱ)} is a P-Glivenko- Cantelli class, then 

by Theorem 5.8 in van der Vaart (2002, p.386),

d((βn, Fn), (β0, F0)) →a . s . 0.

This gives the desired result. Note that F̂
n is estimated by data points s1, …, sm.

Now we show that  is P-Glivenko-Cantelli. For any function g, let ||g||L1(P) = ∫ |g(y, z, δ)|

dP(y, z, δ), and N[ ](ε, , L1(P)) be the minimum number of ε-brackets needed to cover 

under norm ||·||L1(P). We first show that N[ ](ε, , L1(P)) is finite ∀ε > 0.

By our specification of p(Y,Z,Δ|β, F) and with (C1), it can be checked that q(Y,Z,Δ|β, F) is 

boundedly differentiable with respect to β, and boundedly Gáteaux differentiable with 

respect to F. Consequently, by Taylor expansion, there are constants 0 < Cj < ∞ (j = 1, 2), 

such that

‖q(Y , Z, Δ ∣ β1, F1) − q(Y , Z, Δ ∣ β2, F2)‖
L1(P) ≤ C1‖β1 − β2‖ + C2‖F1 − F2‖

L1(P),

∀ (β1, F1), (β2, F2) ∈ (Θ, ℱ) . So,

N[ ](ε, 𝒬, ‖ · ‖L1(P)) ≤ N[ ](
ε

2C1
, Θ, ‖ · ‖) × N[ ](

ε
2C2

, ℱ, ‖ · ‖L1(P)), ∀ε < 0.

By (C4), N[ ](ε/(2C1),Θ, ||·||) = O(1/εd), with d = dim(Θ). Since ℱ is a collection of bounded 

monotone functions, by Theorem 2.7.5 in van der Vaart and Wellner (1996, p.159), for some 

constant 0 < C < ∞,

N[ ](ε, ℱ, ‖ · ‖L1(P)) ≤ exp {C
ε }, ∀ε > 0.

Thus, for some generic constant 0 < C < ∞,

N[ ](ε, 𝒬, ‖ · ‖L1(P)) ≤ N[ ](
ε

2C1
, Θ, ‖ · ‖) × N[ ](

ε
2C2

, ℱ, L1(P))

≤ C

εd exp {C
ε } < ∞ , ∀ε > 0,

and so by Theorem 2.4.1 in van der Vaart and Wellner (1996, p.122),  is a Glivenko-

Cantelli class with respect to P.

A.2 Proof of Lemma 1

Denote S = (Y,Z,Δ), let p(S|β, F), P and Pn as given in the proof of Theorem 1, ℓ(β, F|S) = 

log p(S|β, F) be the log-likelihood, and Dn be the set of all the observed data. Define
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𝕄n(β, F) = Pnℓ(β, F ∣ S) and 𝕄(β, F) = Pℓ(β, F ∣ S) .

Since (βn̂, F̂
n) ∈ (Θ,ℱ) is the MLE of (β0, F0), it is the M-estimator based on the log-

likelihood ℓ(β, F|Dn) on the parameter space (Θ,ℱ), and so 

𝕄n(βn, Fn) ≥ 𝕄n(β, F) ≥ 𝕄n(β, F) − Op(rn
−2), for any (β, F) ∈ (Θ,ℱ) and any positive sequence 

rn →∞.

Let d(β̂n − β0, F̂
n − F0) = ||βn̂ − β0|| + || F̂

n − F0||L2. Since conditions of Theorem 1 are 

satisfied, in its proof change supt∈[τl,t0] | F̂
n(t) − F0(t)| to ||F̂

n − F0||L2, we get 

d(βn − β0, Fn − F0) →P 0.

Note that (β0, F0) = arg sup(β,F)∈(Θ,ℱ) (β, F). Denote by 

ℓβ
(1)(β0, F0 ∣ S), ℓF

(1)(β0, F0 ∣ S)[F − F0], ℓββ
2 (β0, F0 ∣ S), ℓβ, F

2 β0, F0 ∣ S)[F − F0], ℓF, β
2 (β0, F0 ∣ S)[F

− F0] ℓF, F
(2) (β0, F0 ∣ S)[F − F0, F − F0]

the partial derivatives of ℓ(β, F|S) with respect to (β, F). The derivative with respect to F is in 

the Gáteaux sense. By our specification of model, these quantities exist. Note that 

E(β0, F0)ℓβ
(1)(β0, F0 ∣ S) = 0, and E(β0, F0)ℓF

(1)(β0, F0 ∣ S)[F − F0] = 0. Denote by Q(2)(β, F|S)[F 

− F0, F − F0] the (d + 1) × (d + 1) matrix of all the second order partial derivatives. 

Therefore,

𝕄(β, F) − 𝕄(β0, F0) = 1
2E(β0, F0) (β − β0, 1)TQ(2)(β, F ∣ S)[F − F0; F − F0](β − β0, 1) < 0

and is of order O(d2(β − β0, F − F0), where (β̄, F̄) is an intermediate value between (β, F) 

and (β0, F0). Under some general conditions, the above can be upper bounded by −Cd2(β − 

β0, F − F0) for some 0 < C < ∞, in small neighborhood of (β0, F0). So for any 0 < ηn → 0 

and any τ with ηn < τ ≤ η < ∞, for some 0 < C < ∞,

sup
τ /2 < d(β − β0, F − F0) ≤ τ, (β, F) ∈ (Θ, ℱ)

𝕄(β, F) − 𝕄(β0, F0) ≤ − Cτ2 .

Next we show, with E* for outer expectation,

E∗ sup
τ /2 < d(β − β0, F − F0) ≤ τ, (β, F) ∈ (Θ, ℱ)

n ∣ (𝕄n − 𝕄)(β, F) − (𝕄n − 𝕄)(β0, F0) ∣ ≤ ϕn(τ),

(A.0)
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for some decreasing function ϕn(·) to be given.

For this, let N[ ](ε, (Θ,ℱ),L2(P)) be defined in the proof of Theorem 1, we showed N[ ](ε, 
(Θ,ℱ),L2(P)) = O(1/εd exp{C/ε}) = O(exp{C/ε}). Let C be some generic finite positive 

constant, and

J[ ](τ, (Θ, ℱ), L2(P)) = ∫0
τ

1 + log N[ ](ε, (Θ, ℱ), L2(P))dε

= ∫−∞
logτ

et 1 + Ce−tdt ≤ C∫−∞
logτ

ete−t /2dt = Cτ1/2 .

In the above we used the fact that for small τ > 0, log τ < 0, so e−t > 1 and 1 + Ce−t ≤ (1 + 

C)e−t on (−∞, log τ).

Let 1 = {q(·|β, F): (β, F) ∈ (Θ,ℱ), τ/2 < d(β − β0, F − F0) ≤ τ}, 𝔾nq = n(Pn − P)q, || n||

1= supq∈ 1| nq|. Then the left hand side of (A.0) is upper bounded by 2|| n|| 1.

Note that since 1 is a subset of the  defined in the proof of Theorem 1, so N[ ](ε, 1, 
L2(P)) ≤ N[ ](ε, , L2(P)) ≤ N[ ](ε, (Θ,ℱ),L2(P)) and consequently, J[ ](τ, 1, L2(P)) ≤ J[ ](τ, 
(Θ,ℱ), L2(P)) ≤ Cτ1/2.

Also, it is easy to see that, with our specification of the likelihood, Pq2 < Cτ2 and ||q||∞ < C 
for all q ∈ 1, for some 0 < C < ∞. Thus, by Lemma 3.4.2 in van der Vaart and Wellner 

(1996, p.324),

E∗‖𝔾n‖𝒬1
≤ J[ ](τ, 𝒬, L2(P)) 1 +

J[ ](τ, ℳ, L2(P))

τ2 n
C ≤ Cτ1/2(1 + τ−3/2n−1/2),

which implies (A.0) with ϕn(τ) = Cτ1/2(1 + τ−3/2n−1/2). Take rn = n1/3, then

rn
2ϕn

1
rn

= Cn1/3 ≤ n .

Now, all conditions of Theorem 3.4.1 in van der Vaart and Wellner (1996, p.322) are 

satisfied, so by this Theorem, rnd(β̂ n − β0, F̂
n − F0) = n1/3d(βn̂ − β0, F̂

n − F0) = Op(1).

A.3 Proof of Theorem 2

Recall that lβ(β, F) is the score for β, lF (β, F)[g] = ∂l(β, F + λg)/∂λ|λ=0 is the score operator 

for F at direction g, with g(y) = ∫ 0
yh(x)dF(x) and h ∈ L2

0(F), where 

L2
0(F) = {h: ∫ hdF = 0, ∫ h2dF < ∞ }. Denote 𝒢 = {g:g( · ) = ∫ hdF, h ∈ L2

0(F)}. Note that 
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lβ
∗(β0, F0) = lβ(β0, F0) − lF(β0, F0)[g∗] be the efficient score, where 

g∗ = (g1
∗, …, gd

∗)T (d = dim(β)),

lF(β0, F0)[g∗] = (lF(β0, F0)[g1], …, lF(β0, F0)[gd])T ,

and g* is determined by

0 = E (lβ(β0, F0) − lF(β0, F0)[g∗])lF(β0, F0)[g]
= E E ZF0(Y) − g∗(Y) Q2(X; β0, F0) Y , ∀g ∈ 𝒢 .

(A.1)

This gives g*(Y) = F0(Y)E[ZQ2(X;β0, F0)|Y ]/E[Q2(X;β0, F0)|Y ].

Let ln(β, F) = logLn(β, F) be the log-likelihood, lβ,n(β, F) = ∂ln(β, F)/∂β and lF,n(β, F)[g] be 

the sample score operator for F at direction g, and define lF,n(β, F)[g*] similarly. Since (β̂n, 
F̂n) is the MLE, we have lβ,n(β̂, F̂

n) = 0 and lF,n(β̂, F̂
n)[g*] = 0. Additionally, it is obvious 

that Plβ(β0, F0) = 0 and PlF (β0, F0)[g*] = 0. Let ℳ1 = {lβ(β, F): β ∈ ℬ, F ∈ ℱ} and ℳ2 = {lF 

(β, F)[g*]: β ∈ ℬ, F ∈ ℱ}. Since ℬ is bounded and ℱ is collection of bounded monotone 

functions, using the entropy computations in the proof of Theorem 1, it is easy to show that 

they are Donsker classes. It can be shown that for fixed X, lβ(β, F) and lF (β, F) are Lipchitz 

in (β, F), so ℳ1 and ℳ2 are also Donsker classes. Since by Theorem 1, ||β̂n − β0||+ supt∈[τl,t0] 

|F̂
n −F0| → 0 almost surely, condition (C1) and the given model imply that lβ(β, F) and lF 

(β0, F0)[g*] are continuous in (β, F) and with finite second moments, thus by Corollary 

2.3.12 in van der Vaart and Wellner (1996), we have

n(Pn − P)lβ(βn, Fn) − n(Pn − P)lβ(β0, F0) = op(1)

where the op(1) is in the vector sense, and

n(Pn − P)lF(βn, Fn)[g∗] − n(Pn − P)lF(β0, F0)[g∗] = op(1) .

From these facts we get

− nPlβ(βn, Fn) − nPnlβ(β0, F0) = op(1) (A.2)

and
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− nPlF(βn, Fn)[g∗] − nPnlF(β0, F0)[g∗] = op(1) . (A.3)

Denote lβ,β(β, F) = ∂l(β, F)/(∂β∂βT),

lβ, F(β, F)[g] = ∂lβ(β,∫ (1 + λg)dF)/ ∂λ ∣λ = 0,

and define lF,β(β, F)[g] and lF,F (β, F)[g1, g2] similarly. Using Taylor expansion, and note 

that ||β̂n−β0||2+|| F̂
n−F0||2 is bounded, so by Lemma 1 and dominated convergence E(||β̂n − 

β0||2 + ||F̂
n − F0||2) = O(n−2/3), and so

Plβ(βn, Fn) − Plβ(β0, F0) − Plβ, β(β0, F0)(βn − β0) − Plβ, F(β0, F0)[Fn − F0]

= OE(‖βn − β0‖2 + ‖Fn − F0‖2) = (n−2/3) .

The above and (A.2) give

−Pnlβ(β0, F0) − Plβ, β(β0, F0)(βn − β0) − Plβ, F(β0, F0)[Fn − F0] = op(n−1/2) . (A.4)

Similarly,

PlF(βn, Fn)[g∗] − PlF(β0, F0)[g∗] − PlF, β(β0, F0)[g∗](βn − β0) − PlF, F(β0, F0)[g∗, Fn − F0] = O

(‖βn − β0‖2 + ‖Fn − F0‖2) = Op(n−2/3) .

The above and (A.3) give

−PnlF(β0, F0)[g∗] − PlF, β(β0, F0)[g∗](βn − β0) − PlF, F(β0, F0)[g∗, Fn − F0] = op(n−1/2) .

(A.5)

It is known that P lβ(β0, F0)lβ
T(β0, F0) = − Plβ, β(β0, F0). By the same way, −Plβ,F (β0, F0)[g] 

= P(lβ(β0, F0)lF (β0, F0)[g]) for all g, and −P(lF,F (β0, F0)[g1, g2]) = P(lF (β0, F0)[g1]lF (β0, 
F0)[g2]) for all g1 and g2. Note that (A.1) holds for any g. Thus,
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Plβ, F(β0, F0)[Fn − F0] − PlF, F(β0, F0)[g∗, Fn − F0]

= − P(lβ(β0, F0)lF(β0, F0)[Fn − F0]) + P(lF(β0, F0)[g∗]lF(β0, F0)[Fn − F0])

= − P (lβ(β0, F0) − lF(β0, F0)[g∗])lF(β0, F0)[Fn − F0] = 0 .

Now, subtracting (A.4) from (A.5) we get

nP(lβ, β(β0, F0) − lF, β(β0, F0)[g∗])(βn − β0) = nPn(lβ(β0, F0) − lF(β0, F0)[g∗]) + op(1) .

(A.6)

Note that, since P (lβ(β0, F0) − lF(β0, F0)[g∗])lF
T(β0, F0)[g∗] = 0, so

P(lβ, β(β0, F0) − lF, β(β0, F0)[g∗]) = − P lβ(β0, F0)lβ
T(β0, F0) − lβ(β0, F0)lF

T(β0, F0)[g∗]

= − P lβ(β0, F0)(lβ(β0, F0) − lF(β0, F0)[g∗])T

= − P (lβ(β0, F0) − lF(β0, F0)[g∗])(lβ(β0, F0) − lF(β0, F0)[g∗])T

= − P lβ
∗(β0, F0)(lβ

∗(β0, F0))T = − Iβ(β0, F0) .

This and (A.6) give

n(βn − β0) = Iβ
−1(β0, F0) nPnlβ

∗(β0, F0) + op(1),

which gives the desired result.

A.4 Proof of Theorem 3

Since (β̂n, F̂
n) is the MLE, we have

Fn = arg max
F ∈ ℱ ∑

i = 1

n
Δi log 1 − Gγ{e

βn
TZiF(Yi)} + (1 − Δi) log Gγ{e

βn
TZiF(Yi)} .

Let R(y|z, F) = 1 − Gγ{β̂T zF(y)}, then R(·|z, F) is a distribution function. Let ℛ = {R(·|z,F): 

F ∈ ℱ}, and R̂
n(·|z) be the MLE of R(·|z, F), i.e.,
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Rn = arg max
R ∈ ℛ ∑

i = 1

n
Δi log R(Yi ∣ Zi, F) + (1 − Δi) log [1 − R(Yi ∣ Zi, F)]

and it is straightforward that R̂
n(·|z) = R(y|z, F̂

n).

Recall that the common current status model with log-likelihood

∑
i = 1

n
Δi log F(Yi) + (1 − Δi) log [1 − F(Yi)]

and it is known (e.g., see Example 3.2.15 in van der Vaart and Wellner (1996)) that the 

NPMLE F̌
n(·) of F0(·) is the slope function of the greatest convex minorant of Fn(·), which is 

the cumulative- sum diagram on [0, 1] with jump Δi/n at Yi. i.e.

Fn(t) = 1
n ∑

j ≤ i
Δi, t ∈ n−1(i − 1, i], (i = 1, …, n) .

and F̌
n(·) is the slope of greatest convex minorant of Fn(·), and for a ∈ R,

Fn(Yi) ≤ a if and only if arg min
s

{Vn(s) − aGn(s)} ≥ Yi,

where Vn(s) = n−1∑i = 1
n ΔiI(Y i ≤ s), and Gn(s) = n−1∑i = 1

n I(Y i ≤ s).

In our case, similarly, R̂
n(·|Z) is the greatest convex minorant of Rn(·|Z), cumulative- sum 

diagram on [0, 1], where the latter has constant jump of Δi/n. Thus the corresponding Fn(·) in 

this case must be a we weighted cumulativesum diagram with weight wi at the Yi’s, where 

the wi’s are determined by wi ≥ 0, ∑i = 1
n wi = n. Then F̂

n(Yi) = Σj≤i wi:= Wi. Assume the 

e
βn

TZiW i’s are arranged in an increasing order. With (C6), Wn = e
− βn

TznGγ
−1(1/n) with 0 < 

limn Wn/n < ∞ in probability. Since Wi = 0 for Δi = 0, we can arrange the Wi’s such that 

{wi/n = (Wi+1 − Wi)/n: i = 1, …,n} are probability weights. Then as for the common current 

status model, the log-likelihood in our case will be maximized with the Wi’s satisfying

W1 = 0, 1 − Gγ e
βn

TZi + 1Wi + 1 = 1 − Gγ e
βn

TZiWi +
Δi
n , (i = 1, …, n − 1) .

Thus, e
βn

TZiW i = Gγ
−1(1 − i/n), and
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wi = Gγ
−1(1 − i + 1

n )e
βn

TZi + 1 − Gγ
−1(1 − i

n )e
βn

TZi .

In our case, the above equality may not be achieved for some of the Δi’s.

Let

Fn(y) = 1
n ∑

j ≤ i
Δiwi, y ∈ n−1(i − 1, i], (i = 1, …, n) .

then F̂
n(·) is the slope of greatest convex minorant of Fn(·), and for a ∈ R,

Fn(Yi) ≤ a if and only if arg min
s

{Vn(s) − aGn(s)} ≥ Yi,

where Vn(s) = n−1∑i = 1
n ΔiwiI(Y i ≤ s) and Gn(s) = n−1∑i = 1

n I(Y i ≤ s).

Then as in Example 3.2.15 in van der Vaart and Wellner (1996), at every fixed point t,

Fn(t) ≤ a if and only if arg min
s

{Vn(s) − aGn(s)} − t ≥ 0.

To evaluate the distribution of n1/3(F̂
n(t) − F0(t)), we need to compute the probability of the 

event {n1/3(F̂
n(t)−F0(t)) ≤ r}for each r ∈ R. Take a = F0(t)+ rn−1/3, then {n1/3(F̂

n(t)−F0(t))≤ 

r} = {F̂
n(t) ≤ a} = {n1/3(arg mins {Vn(s)− aGn(s)} − t)≥ 0}, and by the change of variable s 

↦ t + n−1/3h,
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n1/3 arg min
s

{Vn(s) − aGn(s)} − t

= arg min
h

{Vn(t + n−1/3h) − (F0(t) + rn−1/3)Gn(t + n−1/3h)}

= arg min
h

{Pn(ΔwI(Y ≤ t + n−1/3h]) − (F0(t) + rn−1/3)PnI(Y ≤ t + n−1/3h]}

= arg min
h

{Pn([Δw − F0(t)]I[Y ≤ t + n−1/3h]) − rn−1/3Pn[I(Y ≤ t + n−1/3h)]}

= arg min
h

{Pn([Δw − F0(t)]I(t ≤ Y ≤ t + n−1/3h]) + Pn([Δw − F0(t)]I(Y ≤ t]) − rn−1/3Pn

(I(t ≤ Y ≤ t + n−1/3h]) − rn−1/3PnI(Y ≤ t]}

= arg min
h

{Pn([Δw − F0(t)]I[t ≤ Y ≤ t + n−1/3h]) − rn−1/3PnI[t ≤ Y ≤ t + n−1/3h]}

= arg min
h

{n2/3Pn([Δw − F0(t)]I[t ≤ Y ≤ t + n−1/3h]) − rn1/3PnI[t ≤ Y ≤ t + n−1/3h]}

= arg min
h

{n2/3(Pn − P)([Δw − F0(t)]I[t ≤ Y ≤ t + n−1/3h]) + n2/3P([Δw − F0(t)]I[t ≤ Y

≤ t + n−1/3h]) − rn1/3PnI[t ≤ Y ≤ t + n−1/3h]}

: = arg min
h

{B1, n(h) + B2, n(h) + B3, n(h)} .

(A.6)

Let g(·) be the density function of Y,

B3, n(h) − rn1/3P[I(t ≤ Y ≤ t + n−1/3h] − rn1/3g(t)n−1/3h = − rg(t)h .

As a random variable, given the Zi’s, w takes 

e
− βn

TZiGγ
−1(1 − i/n) − e

− βn
TZi + 1Gγ

−1(1 − (i + 1)/n) with probability 1/n. Without confusion, 

we also denote w = w(Z) for its asymptotic version conditioning on Z. Note that Y and (T,Z) 

are independent, and ||βn̂ − β0|| = Op(n−1/2), and with condition (C6), we show that

P(w) = E[e
− β0

TZ
] ∑
i = 1

n 1
n Gγ

−1(1 − i + 1
n ) − Gγ

−1(1 − i
n ) = E[e

−β0
TZ

]
Gγ

−1(1
n )

n − 1.

and

B2, n(h) n2/3P([Δ − F0(t)]I[t ≤ Y ≤ t + n−1/3h])

= n2/3∫t
t + n−1/3h(F0(y) − F0(t))g(y)dy n2/3 f 0(t)g(t)∫t

t + n−1/3h(y − t)dy

= n2/3 f 0(t)g(t)n−2/31
2h2 = 1

2 f 0(t)g(t)h2 .
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Now we evaluate B1,n(h). For h < 0, the notation I(t ≤ Y ≤ t + hn−1/3) means I(t + hn−1/3 ≤ Y 
≤ t). Let

f n, h(Yi, Zi) = n1/6(Δw(Zi) − F0(t))I(t ≤ Yi ≤ t + hn−1/3) .

Then

B1, n(h) = n−1/2 ∑
i = 1

n
[ f n, h(Yi, Zi) − P f n, h(Yi, Zi)] .

Let ℱn = {fn,h(·, ·): |h| ≤ K}, for some K > 0. By (C1) and (C4), the w(Zi)’s are uniformly 

bounded, thus ℱn has an envelope function Fn(y, x, z) = n1/6CI(t− Kn−1/3 ≤ Y ≤ t + Kn−1/3, 

with some 0 < C < ∞. Obviously,

PFn
2(Y , Z) = O(1), P Fn

2I(Fn > η n) 0, ∀η > 0,

and for some 0 < C < ∞,

P f n, s − f n, h
2 = n1/3E (Δiw(Zi) − F0(t))2I(t + (s ∧ h)n−1/3 ≤ Yi ≤ t + (s ∨ h)n−1/3)

Cn1/3∫
t + (s ∧ h)n−1/3

t + (s ∨ h)n−1/3hg(y)dy O(1) ∣ s − h ∣ .

It follows that for any totally bounded semimetric ρ(·, ·) on [−K,K],

sup
(s, h): ρ(s, h) ≤ δn

P f n, s − f n, h
2 O(1) ∣ s − h ∣ 0, ∀δn 0.

Thus the three conditions in Theorem 2.11.21 of van der Vaart and Wellner (1996) are 

satisfied.

Let ℱn,δ = {fn,s − fn,h: ρ(s, h) ≤ δ}. Then ℱn,δ and ℱn, δ
2  are P-measurable in the sense of 

Definition 2.33 in van der Vaart and Wellner (1996). Furthermore, for fixed h,

P f n, h = n1/6E (Δw(Z) − F0(t))I(t ≤ Y ≤ t + hn−1/3)

n1/6E {(Δ − F0(t)) + o(1)}I(t ≤ Y ≤ t + hn−1/3)

= O(n1/6n−2/3h2) + o(1)n1/6g(t)n−1/3h = O(n−1/2h2) + o(n−1/6h) 0,
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and

P f n, s f n, h = n1/3E (Δw(Z) − F0(t))2I(t ≤ Y ≤ t + (s ∧ h)n−1/3)

= n1/3∫t
t + (s ∧ h)n−1/3

E (I(T ≤ Y)w(Z) − F0(t))2 ∣ Y = y g(y)dy

n1/3E (I(T ≤ t)w(Z) − F0(t))2 g(t)(s ∧ h)n−1/3: = η2(t)g(t)(s ∧ h) .

Therefore as n → ∞, (Pfn,sfn,h − Pfn,sPfn,h) → η2(t)g(t)(s ∧ h). Note that E[ (s) − (h)]2 = 

|s − h|, where (·) is the two-sided Brownian motion process, originating from zero. It 

follows that Pfn,sfn,h − Pfn,sPfn,h converges to the covariance function of the process 

g1/2(t)η(t) (·).

For a probability measure Q, let N(ε,ℱn, L2(Q)) be the number of -balls needed to cover ℱn 

under the metric of L2(Q). It is easy to see that

sup
Q

N(ε‖Fn‖
Q, 2, ℱn, L2(Q)) = O(1/ε),

where the supreme is over all probability measures. Thus, ∀ ηn → 0,

sup
Q

∫0

ηn
N(ε‖Fn‖

Q, 2, ℱn, L2(Q))dε

∫0

ηn
− log εdε = 2∫ −logηn

∞
xe−x2

dx 0.

By Theorem 2.11.22 in van der Vaart and Wellner (1996), we obtain

B1, n( · ) →D η2(t)g(t)𝔹( · ), in l∞([ − K, K]),

where l∞([−K,K]) is the space of all bounded real functions on [−K,K] equipped with the 

supremum metric.

Now collecting results from (A.6), we have that the event {n1/3(F̂
n(t) − F0(t))≤ r} is 

asymptotically equivalent to
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arg min
h

{ η2(t)g(t)𝔹(h) + 1
2 f 0(t)g(t)h2 − rg(t)h} ≥ 0

= arg max
h

{ − η2(t)
g(t) 𝔹(h) − 1

2 f 0(t)h2 + rh} ≥ 0

= arg max
h

{ η2(t)
g(t) 𝔹(h) − 1

2 f 0(t)h2 + rh} ≥ 0 .

In the above we used the fact that −𝔹(h) =D 𝔹(h). Using problem 3.2.5 in van der Vaart and 

Wellner (1996), the above is re-written as

4η2(t) f 0(t)
g(t)

1/3
arg max

h
{𝔹(h) − h2} + r ≥ 0

=
4η2(t) f 0(t)

g(t)

1/3
arg min

h
{−𝔹(h) + h2} ≥ − r

=
4η2(t) f 0(t)

g(t)

1/3
arg min

h
{𝔹(h) + h2} ≥ − r

=
4η2(t) f 0(t)

g(t)

1/3
arg min

h
{𝔹(h) + h2} ≤ r , ∀t, r .

In the above we used the fact that − (·) and (·) have the same distribution, and that W = arg 

minh { (h) + h2} is symmetrically distributed about 0, thus P(CW ≥ −b) = P(CW ≤ b). This 

gives the desired result for h ∈ [−K,K]. Below we prove that the result is actually true on R. 

Let ĥn = arg minh{Vn(h) − aGn(h)} − t. We need to show that ĥn is bounded in probability. 

Thus for large n, ĥn will be in [−K,K] for some 0 < K < ∞ in probability, and so the desired 

result is true on R. For this, we only need to show n1/3d(ĥn, ĥ) = Op(1) for some distance 

d(·, ·). The method is similar to that in the proof of Lemma 1 and is omitted.
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Fig. 1. 
Nonparametric estimates and proportional odds cure model-fitted survival functions of time 

to IOL calcification. The model-fitted survival function is calculated as the empirical 

average of the predicted survival functions for each gender group.
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Table 3

Maximum Likelihood Estimates of Regression Coefficients in the Proportional Odds Cure Model for the 

Calcification Data

Covariate Estimate SE Est/SE p-value

Intercept 0.354 0.075 4.689 <0.001

Incision length 0.447 0.260 1.719 0.086

Gender (male) −0.310 0.343 −0.906 0.365

Age/10 −0.136 0.216 −0.626 0.531
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	Remark 1—Condition (C1) is the usual linear independence condition of Zi in regression settings. Conditions (C2), (C4), and (C5) are standard assumptions in semiparametric inferences with failure time data. Condition (C3) assumes that no new cases occur after t0 and that t0 is in the support of inspection time. Under this assumption, all censored observations beyond t0 are treated as “Ti = ∞” (i.e., observed to be cured) and we can discriminate between cured and un-cured observations. The constant t0 serves as the “cure threshold” defined in Zeng et al (2006b). This condition is needed to ensure the identifiability of the unknown parameters (β, F). Note that for a parametric cure rate model, the condition that some subjects are observed to be cured is not needed. More details on the identifiability of cure models are provided in Li et al (2001). For practical data analysis, we can set t0 = sm or choose a threshold value suggested by clinicians. In the mixture cure rate model setting, Ma (2008, 2009) set Λ̂(t) = ∞ for t > max{Yi : i = 1, …, n}, where Λ is the baseline cumulative hazard function for the un-cured sub-population. This technique is essentially the same as setting t0 = sm.Remark 2—For right-censored failure time data, Zeng et al (2006b) imposed the assumption P(Yi = ∞|Zi) > 0. However with current status data Yi = ∞ implies Δi = 1 regardless of whether Ti = ∞ or not therefore such observations are not informative.Under conditions (C1) – (C3), the parameters β and F are identifiable. Suppose that two sets of parameters, (β, F) and (β̃, F̃), give the same likelihood function for the observed data, i.e., if for almost all (Z, Y),we claim that β = β̃ and F(t) = F̃(t) for every t ∈ [τl, t0]. In fact, by condition (C3), F(t) = F̃(t) = 1 for any t ≥ t0. Let Y = t0, we have Gγ(eβTZ) = Gγ(eβ̃TZ). Then, from the monotonicity of Gγ, it follows that βTZ = β̃T Z for almost all Z. Thus condition (C1) gives β = β̃. Furthermore, by letting Δ = 1 and Y = t, τl ≤ t < t0, we have Gγ{eβTZF(t)} = Gγ{eβTZ F̃(t)}. It then follows that F(t) = F̃(t) for any t ∈ [τl, t0].We establish the consistency of the MLEs in the following theorem.Theorem 1. (Consistency)—Under conditions (C1), (C3) and (C4), ||β̂n−β0|| → 0 and supt∈[τl,t0] |F̂n(t) − F0(t)| → 0 almost surely.We outline the proof here and defer the details to Appendix A.1. Letand be the log-likelihood ratio. Let d((β, F), (β0, F0)) = ||β−β0||+supt∈[τl,b0] |F(t)− F0(t)|, and ℳ = {m(Y,Z,Δ|β, F) : (β, F) ∈ ℬ×ℱ}. We show that ℳ is a P-Glivenko-Cantelli class, and m(Y,Z,Δ|β, F) satisfies some other conditions. If follows from Theorem 5.8 in van der Vaart (2002) thatThis gives the desired result.With the consistency result, we can establish the following result on convergence rate of the MLEs.Lemma 1. (Convergence rate)—Under conditions (C1), (C3) and (C4),Groeneboom and Wellner (1992) established that the best convergence rate for estimates of the nonparametric distribution function with one-sample current status data is n1/3. Huang (1996) and Ma (2008, 2009) obtained similar results for the estimates of the baseline cumulative hazard function in the Cox model (Cox, 1972) and the mixture cure rate model, respectively. Lemma 1 indicates that the optimal convergence rate can be achieved under the proposed cure rate model. The detailed proof of Lemma 1 is given in Appendix A.2.Before stating the result for the asymptotic normality of β̂n, we derive the efficient score function for β. The log-likelihood for a single observation X ≡ (Y, Δ,
Z), denoted by l(β, F), takes the formThe score function for β is the first derivative of l(β, F) with respect to β and takes the form
 where
 and 
 is the first derivative of Gγ. For a function g in [τl, τu] with bounded total variation, the score function for F along the direction of g is given byProject the score function of β onto the space generated by lF (β, F)[g], and for g = (g1, …, gd) with d = dim(β), denote lF (β, F)[g] = (lF (β, F)[g1], …, lF (β, F)[gd])T. We obtain the efficient score function for β at the true parameter
 whereWrite 
. In the appendix, we will show that Iβ(β0, F0) is positive definite and component-wise bounded.With the derived convergence rate and the efficient score function for β, we can obtain the following asymptotic normality results for β̂n.Theorem 2. (Asymptotic normality)—Under conditions (C1)–(C4),

converges weakly to a zero-mean normal distribution with variance
.Theorem2 states that although the convergence rate of (β̂n, F̂n) is considerably slower than the n1/2 rate for right censored data, we can still obtain the 
 consistency and asymptotic normality of β̂n. Furthermore, we conclude that β̂n is the most efficient estimator for β0 as 
 attains the semiparametric efficiency bound for β0. The proof of Theorem 2 is provided in Appendix A.3.Let 
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(·) be the two-sided Brownian motion originating from zero: a mean zero Gaussian process on R with 
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(0) = 0, and E(
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(s) − 
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(h)2 = |s − h| for all s, h ∈ R. Denote 
 for convergence in distribution. Let wn be the random variable that given the Zi’s, wn takes 
 with probability 1/n. Denote w = w(Z) for its asymptotic version conditioning on Z. Let f0(·) be the derivative of F0(·).To derive the asymptotic distribution of F̂n, we make two additional assumptions.(C6)Function Gγ satisfies 
.(C7)The density function of Y, g(t) > 0 with t ∈ [τ1, t0].Theorem 3—Assume (C1)–(C7), then ∀t ∈ [τ1, t0],

where η2(t) = E[(I(T ≤ t)w(Z) − F0(t))2].The distribution of arg minh∈R{
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(h)+h2} is called Chernoff distribution, the density function of which was derived in Groeneboom (1989). It has no closed form and is not easy to evaluate. Kosorok (2008) proposed a sampling method to evaluate this distribution. The proof of Theorem 3 is in Appendix A.4.Remark 3—The inference above is based on the selected model with the transformation parameter γ fixed. To select the best model, we may choose the transformation which minimizes the Akaike information criterion (AIC), which is defined as twice the negative log-likelihood function plus twice the number of parameters. It is theoretically possible to accounting for the variation due to the model selection procedure. The computation, however, may be demanding or unstable. Furthermore, whether this kind of variation should be accounted for is up to debate (Box and Cox, 1982). In the subsequent simulation studies, we will fix the transformation whereas in the data application, we will use the AIC to select the best transformation.
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