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Abstract
Epigenetics refers to chemical modifications of chromatin or transcribed DNA that can influence gene activity and
expression without changes in DNA sequence. The last 20 years have yielded breakthroughs in our understanding of
epigenetic processes that impact many fields of biology. In this review, we discuss how epigenetics relates to quantitative
genetics and evolution. We argue that epigenetics is important for quantitative genetics because: (1) quantitative genetics is
increasingly being combined with genomics, and therefore we should expand our thinking to include cellular-level
mechanisms that can account for phenotypic variance and heritability besides just those that are hard-coded in the DNA
sequence; and (2) epigenetic mechanisms change how phenotypic variance is partitioned, and can thereby change the
heritability of traits and how those traits are inherited. To explicate these points, we show that epigenetics can influence all
aspects of the phenotypic variance formula: VP (total phenotypic variance)= VG (genetic variance)+ VE (environmental
variance)+ VGxE (genotype-by-environment interaction)+ 2COVGE (the genotype–environment covariance)+ Vɛ (residual
variance), requiring new strategies to account for different potential sources of epigenetic effects on phenotypic variance. We
also demonstrate how each of the components of phenotypic variance not only can be influenced by epigenetics, but can also
have evolutionary consequences. We argue that no sources of epigenetic effects on phenotypic variance can be easily cast
aside in a quantitative genetic research program that seeks to understand evolutionary processes.

Impacts of epigenetics research

Epigenetics refers to chemical modifications of chromatin
or transcribed DNA that can influence gene activity and
expression without changes in DNA sequence (Jablonka
and Raz 2009; Kilvitis et al. 2014). The most well-studied
epigenetic mechanism is the methylation of cytosines within
DNA sequences (Rapp and Wendel 2005; Allis and Jenu-
wein 2016; Richards et al. 2017), although other mechan-
isms like histone modifications (Berger et al. 2009) and a
heterogeneous assortment of RNA regulatory systems
(Chen et al. 2011) have also been uncovered and studied
intensively (reviewed in Allis and Jenuwein 2016).
Methylation of cytosines is an important component of
silencing transposable elements (Gibney and Nolan 2010;

Huff and Zilberman 2014; Fultz et al. 2015; Ikeda and
Nishimura 2015), but is also found in complex patterns
across other genomic contexts (Niederhuth et al. 2016). For
example, dense gene promoter methylation is associated
with silencing of genes, but methylation in gene bodies—
which tends to be polymorphic between individuals—is
poorly associated with gene expression and varies widely
across taxa (Becker et al. 2011; Nätt et al. 2012; Schmitz
et al. 2013; Niederhuth and Schmitz 2017).

Epigenetics research has surged over the last 20 years,
thanks to advances in our knowledge about chromatin
modifications and their modifiers, and the often-complex
connections between these modifications and gene expres-
sion patterns (reviewed in Allis and Jenuwein 2016). In
particular, “the modern era of epigenetic research” is
transforming our understanding of the molecular basis of
development and disease (Allis and Jenuwein 2016). But
the integration of epigenetics into evolutionary thinking is
still gathering momentum (Laland et al. 2015; Burggren
2016; Richards et al. 2017). Epigenetics is one of several
new research topics that are emerging in evolutionary
biology that go beyond the original tenets of the Modern
Synthesis (Huxley 1942), the major integration of disparate
biological and mathematical concepts into evolutionary
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theory in the mid-20th century (Pigliucci 2007; Plutynski
2009; Pigliucci and Müller 2010; Robertson and Richards
2015).

Proponents of a so-called “Extended Evolutionary
Synthesis” are dissatisfied with a definition of evolution that
is limited to changing DNA sequence based on allele fre-
quencies over time. Instead, the evolutionary process would
be more completely described by investigating non-genetic
mechanisms like epigenetics that were not initially included
in the Modern Synthesis, and that might be able to over-
come some of the limitations of strictly DNA sequence-
based inheritance (Pigliucci 2007; Bonduriansky and Day
2009; Day and Bonduriansky 2011; Robertson and
Richards 2015). In particular, because epigenetic mechan-
isms are more dynamic and reversible than DNA sequence,
epimutations have been implicated as a faster source of
adaptation than genetic mutations (Jablonka and Lamb
1989, Jablonka et al. 1998). Epimutations can provide
higher phenotypic variance at equilibrium due to different
epigenetic states, and enhance the adaptive possibilities of
asexual or low-diversity taxa (Jablonka and Lamb 1989;
Geoghegan and Spencer 2012, 2013). Organisms may use
the additional variation afforded by epigenetic mechanisms
as a bet-hedging strategy in unknown environments
(Jablonka and Lamb 1989, Jablonka et al. 1998; Pál and
Miklós 1999). Epigenetic modifications could also "hold" a
potentially advantageous phenotype for multiple genera-
tions, allowing time for more stable genetic variants to
stabilize the phenotype (i.e. canalization or genetic assim-
ilation, Waddington 1942, 1953; West-Eberhard 2005;
Klironomos et al. 2013; Kronholm and Collins 2016).

Epigenetics should be incorporated into evolutionary
theory, because the molecular underpinnings of phenotypic
variation are the subject of many evolutionary research
programs (McNiven et al. 2011). We simply need to expand
our thinking to include epigenetic mechanisms, which are
another class of molecular mechanisms. Evolution relies on
heritable phenotypic variation, which is provided by alleles
(which may be DNA-based alleles or epigenetic-based
alleles, as we will describe) that confer different patterns of
gene expression/function that ultimately result in different
phenotypes in different individuals (Falconer and Mackay
1996). Roff (2007) and Hill (2012) took stock of evolu-
tionary biology in the genomics era, where the advent of
high-throughput genome sequencing technologies of the
last few decades (e.g., Liberles 2001; Goodwin et al. 2016)
has been revolutionary across the life sciences. They point
out that even quantitative genetics, a branch of evolutionary
biology that statistically analyzes phenotypes and has trea-
ted molecular mechanisms as a black box, has been greatly
influenced by the genomic era, with many research pro-
grams now focusing on the number and distribution of
effect sizes of loci affecting a trait in a population through

the use of quantitative trait locus (QTL) or genome-wide
association mapping (GWAM) (Li et al. 2016). Genomics
approaches have also provided new resolution to under-
standing the interactions among loci, and the change in the
phenotypic effects of loci under different environments
(Mackay 2001). High-throughput genome sequencing
technologies have enabled the evolutionary biology com-
munity to blend quantitative genetics and genomic
approaches to address the enduring question about whether
phenotypic variation is controlled by many loci of small
effect, fewer loci with a wider distributions of effect sizes,
or just a few loci of large effect on the phenotype (Roff
2007; Kalisz and Kramer 2008; Stinchcombe and Hoekstra
2008; Hill 2012). Further, we now have more power to ask
whether loci are behaving in an additive or more complex
fashion in their phenotypic effects (Ruppell et al. 2004;
Wolf et al. 2005; Mackay 2014).

The knowledge of the genetic architecture of traits can be
used to study many aspects of evolution. For instance,
genetic architecture can provide evidence for the degree to
which negative selection, stabilizing selection, and balan-
cing selection shaped the evolution of a trait, as reflected in
the distributions of the minor allele frequencies of the
QTLs/SNPs, as well as in the distribution of effect sizes of
the QTLs/SNPs (Erickson et al. 2004; Josephs et al. 2017).
Knowledge of the genetic architecture can also be leveraged
in artificial selection. Agricultural breeding programs cur-
rently make prodigious use of a technique known as
genomic selection to improve plant and animal breeding
(Meuwissen et al. 2001; Koopaee and Koshkoiyeh 2014).
The approach first uses GWAM to find associations
between molecular markers and the phenotype(s) of interest
in crops or livestock. Then, individuals with unknown
phenotype or pedigree are genotyped at the same SNP sites
(using a low-cost SNP chip) to forecast their phenotype(s)
from the effect sizes associated with each allele from the
GWAM study (Koopaee and Koshkoiyeh 2014). In this
way, superior stock can be selected for breeding and
development without further measuring of phenotype. In
addition to this type of application, genomic selection has
been used in model systems to make more precise predic-
tions about adaptive evolution in response to selection (e.g.,
Edwards et al. 2016; Kooke et al. 2016).

Epigenetics and the missing heritability
problem

A well-known problem with genetic mapping is that not all
of the genetic variance (VG) in the phenotype can be
accounted for by variance in the genome, a phenomenon
known as the “missing heritability” problem (Brachi et al.
2011; Caballero et al. 2015). In QTL studies of recombinant
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inbred lines (RIL) or GWAM studies of natural variants,
some differences in phenotypes cannot be accounted for by
the sum of the significantly correlated genomic regions.
Multiple explanations have been put forth to account for the
missing heritability (Dickson et al. 2010; Rockman 2012;
Hemani et al. 2013; Yang et al. 2015). Epigenetic changes
are another possible source of some of the missing herit-
ability, because epigenetic changes can be inherited and act
in an additive fashion on phenotypic variance (Morgan et al.
1999; Henderson and Jacobsen 2007; Slatkin 2009; Bell
and Spector 2011; González-Recio 2011; Migicovsky and
Kovalchuk 2011; Goddard and Whitelaw 2014; Trianta-
phyllopoulos et al. 2016). Epigenetic changes that have
phenotypic effects (mediated through their effects on gene
expression) and that are also inherited could generate
associations between individuals and phenotypes that may
not be explained based on variation in DNA sequence-based
markers.

There are many examples of epigenetically inherited
effects that could account for missing heritability. One
particularly illustrative example comes from the agouti
locus in mice (Morgan et al. 1999; Waterland and Jirtle
2003). Differences in silencing by methylation of a retro-
transposon inserted upstream of the Avy allele at the agouti
locus is correlated with ectopic agouti expression and dis-
ease risk. Low methylation of the transposable element is
correlated with yellow coat color and diseases such as
obesity, diabetes, and tumors, while high methylation of the
transposable element is associated with brown coat color
and lessened disease risk (Morgan et al. 1999; Waterland
and Jirtle 2003). Importantly, specific agouti epialleles in
female mice can be induced by a high methyl donor diet,
and the epigenetic state of the agouti allele is incompletely
reset by meiosis in the female germ line (Morgan et al.
1999; Waterland and Jirtle 2003). Thus, coat color, along
with susceptibility to cancer and metabolic disorders, can be
induced in the mother and inherited by the offspring,
illustrating that epigenetic changes can be inherited in a
manner like DNA sequence-based mutations, but can also
be induced in a specific, directional way by the
environment.

Several other studies in ecological epigenetics provide
examples of epigenetic effects that are inherited (Sano and
Kim 2013; Robertson and Richards 2015; Richards et al.
2017). Verhoeven et al. (2010) reared apomictic dandelions
(Taraxacum officinale) under several different stresses
(nutrient, salt, and chemical stresses). They found that the
stresses triggered considerable methylation variation
throughout the genome, and many of these were faithfully
transmitted to the offspring. These results demonstrated that
epigenetic variation can be readily generated by environ-
mental challenges and that those changes can be inherited.
In another example, Richards et al. (2008, 2012)

demonstrated the persistence of epigenetic differences in
plants from the Fallopia species complex (referred to as
Japanese knotweed sensu lato) with little DNA sequence
variation. The Fallopia species complex occupies a wide
range of habitats in Europe and has colonized an even wider
array of habitats in the northeastern US (including marshes
and beaches). Richards et al. (2012) found that the invasive
Fallopia at sites on Long Island in New York, USA had
only four variable AFLP positions out of 200 positions
genome-wide. They found diversity was five times higher at
epigenetic loci, and this diversity varied among sites.
Importantly, these data were collected from leaf tissue that
was grown from rhizomes in a common garden. Therefore,
the DNA methylation patterns were not merely induced by
different sites, but persisted in tissue that was created in a
common environment. Perhaps not all of this epigenetic
variation would be inherited through meiosis, but some of it
could be as has been found in other studies (Cubas et al.
1999; Feng et al. 2010; Herrera et al. 2013). More impor-
tantly, for the biology of this species, clonal propagation is a
common mode of expansion and therefore the persistence of
differences in DNA methylation through clonal propagation
is highly relevant (Verhoeven and Preite 2014; Dou-
hovnikoff and Dodd 2015; Rendina González et al. 2016;
Spens and Douhovnikoff 2016).

Neither the Verhoeven et al. (2010) study nor the
Richards et al. (2012) study correlated inherited epigenetic
variation with phenotypic variation, but such linkages have
been made in other studies (reviewed in Richards et al.
2017). Cubas et al. (1999), for instance, characterized a
naturally occurring mutant of toadflax (Linaria vulgaris)
that has a different floral symmetry pattern. They found that
methylation changes, rather than DNA sequence changes, to
a floral symmetry gene explained the phenotypic change.
The changes in methylation of the gene segregate and are
inherited much like DNA sequence variants, but sponta-
neous resetting of methylation sometimes occurs in nature
that recovers the non-mutant phenotype.

In another example linking epigenetic variation and
phenotypic variation, Johannes et al. (2009) developed a
recombinant inbred line (RIL) population of the model plant
Arabidopsis thaliana that segregates for differentially
methylated positions (DMPs)—differences in whether
individual cytosines are methylated or not. The epigenetic
recombinant inbred lines (epiRILs) are nearly isogenic in
terms of the DNA sequences, but show variation and high
heritability for many traits relating to growth and mor-
phology, including plant height, flowering time, and pri-
mary root length (Zhang et al. 2013; Cortijo et al. 2014;
Kooke and Keurentjes 2015). The epiRILs were derived
from crosses between the Columbia wild-type genotype and
a mutant line derived from the Columbia wild-type with a
mutation in the DECREASED DNA METHYLATION 1
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(DDM1) locus. Mutant plants (ddm1/ddm1) exhibit 70%
less methylation genome-wide than wild-type plants (Vongs
et al. 1993). From this initial cross, Johannes et al. (2009)
selected backcross progeny that were homozygous for the
wild-type (DDM1/DDM1) at the DDM1 locus to propagate
505 epiRILs through six rounds of single-seed descent.
Thus, the epiRILs are nearly isogenic in terms of DNA
sequences, but segregate for stably inherited methylation
polymorphisms (DMPs), which are homozygous within
each epiRIL (Johannes et al. 2009). The epiRILs show
phenotypic variation and high heritability for plant height,
flowering time, and primary root length (Johannes et al.
2009; Cortijo et al. 2014; Kooke and Keurentjes 2015). Of
particular interest, Cortijo et al. (2014) found multiple
epiQTLs accounting for 60–90% of the heritability of
flowering time and primary root length. Thirty percent of
the heritable DMPs identified in the epiRIL population also
overlapped with naturally occurring epipolymorphic regions
among 138 natural A. thaliana accessions, suggesting that
epigenetic variation could be important in the wild. These
epiQTLs have all the necessary properties (stability,
inheritance, variance, phenotypic effects) to be targets of
natural or artificial selection.

Differences between epigenetic effects and
parental effects

Parental effects refer to traits expressed in parents that
influence traits expressed in offspring (Hadfield 2012).
Under this umbrella are both paternal effects and maternal
effects, allowing for fathers’ and mothers’ phenotypes to
have different effects on offsprings’ phenotypes. Maternal
effects have generally received the most theoretical atten-
tion, presumably because prenatal maternal provisioning
and postnatal maternal care are the most significant sources
of parental effects (Kirkpatrick and Lande 1989; Wolf and
Wade 2016). Epigenetic and parental effects differ in that
epigenetic effects are a more specific class of phenomena
than parental effects; epigenetic effects result from specific
types of cellular mechanisms, whereas parental effects can
include any mechanism by which a trait expressed in the
parents is also expressed in the offspring. Parental effects
can be due to inherited epigenetic effects, but they can also
be due to non-epigenetic mechanisms, like cultural trans-
mission, prenatal nutrient provisioning, postnatal care, and
maternal transmission of mitochondria, chloroplasts, and
other cytoplasmic factors to the offspring (Kirkpatrick and
Lande 1989; Wolf and Wade 2016). Epigenetics also differs
from parental effects because epigenetic effects are not
necessarily inherited, whereas parental effects are, by defi-
nition, inherited. Consider, for instance, a change in the
methylation state at a particular region of a chromosome of

an organism in response to some environmental stimulus,
where the methylation changes are reset in the germ line.
The methylation changes in this example would be epige-
netic, but they would not be a parental effect. This is
because, in this example, the methylation changes in the
parents would not be transmitted to the offspring, and
therefore the methylation changes in the parents would not
serve as the vehicle through which “information” about the
parental traits are passed to the offspring. In summary,
parental effects and epigenetics are overlapping but also
distinct concepts that should be modeled separately and can
have different effects on the phenotype and on inheritance
(Santure and Spencer 2006).

Differences between epigenetic effects and
genetic effects

Epigenetic mechanisms can contribute to phenotypic var-
iation and could be playing a role in the missing heritability
of quantitative traits. But epigenetic contributions to herit-
ability are different from DNA sequence based contribu-
tions to heritability, because epigenetic states can be reset,
either before reaching the germ line or after transmission to
the offspring (Saze et al. 2003; Feng et al. 2010; Hackett
et al. 2013), and because epigenetic differences among
individuals can arise at different rates from DNA sequence-
based differences (Kronholm and Collins 2016). Modeling
efforts have demonstrated that epigenetic effects have dif-
ferent ramifications for evolution than standard DNA
sequence based processes. Furrow (2014), for instance, used
a population genetic model to understand the response of
epigenetically induced phenotypic variation to selection
over multiple generations. He found that, because epimu-
tation rates are high, the response to selection decays more
rapidly across generations than would be expected based on
the observed heritability of a trait alone. Similarly, Santure
and Spencer (2006) found a smaller than expected response
to selection when they included epigenetic differences that
depended on the parent from whom a chromosomal region
was inherited (genomic imprinting; Macdonald 2012).
Thus, traits may be less responsive to natural selection than
expected due to the effect of epigenetic phenomena on
observed heritabilities (but see Klironomos et al. 2013). In
addition to the rate of epimutation, Kronholm and Collins
(2016) found that the effect size of the epimutations influ-
ences the rate of adaptation, where small-effect epimuta-
tions generally speed up adaptation, and large-effect
epimutations slow down adaptation. In contrast to models
that found that epigenetic effects may slow down adapta-
tion, a model by Uller et al. (2015) showed that epigenetic
effects can speed up evolution in heterogeneous but pre-
dictable environments, due to the environmental induction
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of some epigenetic states and their transmissibility. Another
model by Leimar and McNamara (2015) showed that
incompletely-resetting epigenetic systems are ideally suited
for actively transmitting environmental information from
previous generations, and can evolve readily. Thus, selec-
tion may be actively maintaining that the cellular machinery
does not completely reset certain environmentally induced
epigenetic states across generations, something that Shea
et al. (2011) refer to as a “selection-based effect” of
epigenetics.

Several authors have emphasized how the decoupling of
phenotypic change from genotypic change enabled by epi-
genetic mechanisms can allow populations to change in
ways that might not otherwise be possible. For instance,
epigenetic changes that happen at faster rates than DNA
sequence changes can drive more rapid evolutionary change
by serving as a bridge to allow phenotypic changes to occur
first, and genetic changes later (Bonduriansky and Day
2009; Geoghehan and Spencer 2013; Klironomos et al.
2013; Kronholm and Collins 2016). In addition, epimuta-
tions may allow for a higher mutational load and lower
mean fitness of adapted populations than would otherwise
be expected (due to the higher epimutation rate; Klironomos
et al. 2013), but recent studies found that epigenetic varia-
tion may compensate for the negative effects of inbreeding
(Vergeer et al. 2012; Liebl et al. 2013). When van der Graaf
et al. (2015) combined theoretical modeling with high-
resolution epigenetic analysis of multiple independent A.
thaliana mutation accumulation lines, they found that the
mean fitness due to epimutations was not lower than
expected. The epimutation rates they reported were high
enough to rapidly uncouple genetic from epigenetic varia-
tion, but low enough for new epialleles to sustain long-term
selection responses. We will need more information before
we can make conclusions about the specific ramifications of
epigenetics on evolutionary processes. Much of the differ-
ences among the conflicting evolutionary models for parti-
tioning phenotypic variance can be accounted for by
quantifying the distributions and phenotypic effects of
epimutations in multiple different species (Kronholm and
Collins 2016). Yet those variables are presently largely
unknown and we must wait for the empirical data to para-
meterize those variables (sensu van der Graaf et al. 2015).

Epigenetic effects on phenotypic variance

Quantitative genetic studies are based on understanding
components of variance within the framework VP= VG+
VE, where VP is the total phenotypic variance in a trait in a
population, VG is the phenotypic variance attributed to
genetic variance, and VE refers to all other sources of phe-
notypic variance that are not the genetic variance (Falconer

and Mackay 1996). In this simple, dichotomous partition-
ing, VE is often misleadingly termed the “environmental
variance”, even though it contains more than just environ-
mental variance. But VE can also be defined sensu stricto as
the phenotypic variance attributed only to environmental
variance (Scheiner and Goodnight 1984). When the defi-
nition of VE is limited to the phenotypic variance attributed
to truly environmental variance, two additional terms are
partitioned out in the phenotypic variance equation: VGxE,
the phenotypic variance attributed to genotype-by-
environment interaction, and Vɛ, the residual or error var-
iance that is not explained by any of the other sources of
variation (i.e., not explained by VG, VE, or VGxE) (Scheiner
and Goodnight 1984). We argue that each component of the
equation VP= VG+ VE+ VGxE+ Vɛ can be influenced by
epigenetics, and an additional partition, COVGE, can also be
influenced by epigenetics. We also show how each of the
variance components from the expanded phenotypic var-
iance equation can influence evolution. Therefore, the
influences of epigenetics on any of the variance components
cannot be safely set aside and ignored when thinking about
evolutionary processes and evolutionary outcomes.

Epigenetics, VG, and evolution

The genetic variance portion of phenotypic variance, VG,
can be dissected into: VA+ VD+ VI+ VGɛ, where VA is the
additive genetic variance, meaning the portion of the total
genetic variance that is inherited in an additive fashion. VD

(dominance variance), VI (gene–gene interaction), and VGɛ

(residual genetic variance) are other portions of the total
genetic variance (Falconer and Mackay 1996). VA is the
portion of phenotypic variance that is necessary for evolu-
tionary change, and when standardized by the total pheno-
typic variance (VP) is defined as the narrow sense
heritability (h2). Narrow-sense heritability is important in
both agricultural breeding and in evolutionary theory,
because it describes variation that is necessary for traits to
evolve (Lopez-Fanjul and Garcia-Dorado 2011). The
importance of narrow-sense heritability to evolution is
represented by the “breeder’s equation”, R= h2S, where R
is the response to selection on a trait, h2 is the heritability of
the trait, and S is the strength of selection on the trait
(Falconer and Mackay 1996). In this equation, evolution is
the response to selection.

To the extent that epigenetic mechanisms contribute
additively to the phenotype, then epigenetic variance may
be found in the additive genetic variance component, VA, of
the total genetic variance. It may be possible to partition
epigenetic variance from VA (see the section below titled,
Incorporating epigenetic effects into quantitative genetics
studies; Spencer 2002; Santure and Spencer 2006, 2011; Tal
et al. 2010; Macdonald 2012; Varona et al. 2015). But
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epigenetic mechanisms can also contribute to dominance
deviations, because there is no reason to assume that epi-
genetic re-patterning of chromosomes should have purely
additive effects on the phenotype. Therefore, epigenetics
can also contribute to the variance in dominance deviations
(VD) portion of the total genetic variance. The contribution
of epigenetics to dominance deviations has not been thor-
oughly investigated, to our knowledge, but it would helpful
to learn more about how much epigenetic mechanisms
contribute to VD.

Epigenetically re-patterned genes may influence the
expression of other genes and their effects on the pheno-
type, and thus epigenetics can influence the epistatic var-
iance, VI, portion of the total genetic variance as well.
Shivaprasad et al. (2012) studied gene expression patterns
in the F1 progeny of a cross between cultivated tomato
(Solanum lycopersicum) and a wild relative (Solanum
pennellii) and found that micro or small interfering (si)
RNAs were more abundant in hybrids than in either parent,
and that accumulation of such transgressive sRNAs corre-
lated with suppression of the corresponding target genes. In
one instance, this effect was associated with hypermethy-
lation of the corresponding genomic DNA. Smith and
Weigel (2012) pointed out that many sRNAs are produced
from non-coding regions or transposable elements, which
diverge more quickly than protein-coding genes and thus
provide more opportunity for unexpected genetic interac-
tions. To the extent that gene expression changes are
mediated epistatically by epigenetic changes (as in Shiva-
prasad et al. 2012), epigenetics can be influencing VI.

Epigenetic effects on VG can most obviously influence
evolution via their effects on VA (the additive component of
the total genetic variance), since the response to selection
(evolution) in the breeder’s equation depends, in part, on h2,
which is a standardized measure of VA. But epigenetic
effects on VI (the epistatic component of the total genetic
variance) can also be converted to additive genetic variance
by the action of genetic drift and genetic bottlenecks that
cause some loci to become fixed, eliminating the interaction
effects among loci (Cheverud and Routman 1995; Hill
2017). The epigenetic effects that may be involved in epi-
static interactions could be evolutionarily important during
speciation events, when founders are isolated into smaller
populations and genetic diversity is reduced. Epigenetic
variation is reprogrammed through hybridization among
species in the wild and in agricultural contexts (Salmon
et al. 2005; Salmon et al. 2008), and may strengthen
reproductive barriers among species (Smith and Weigel
2012). In summary, epigenetic influences on VG can influ-
ence evolution, via their effects on VI as well as via their
effects on VA; the nonadditive component of VG should not
be ignored when accounting for epigenetic influences on
phenotypic variance and evolution.

Epigenetics, VE sensu stricto, and evolution

Phenotypic plasticity is the ability of a genotype to produce
distinct phenotypes in response to different environmental
conditions (Pigliucci 2001). It can be quantified for a single
individual, or for multiple replicates of the same genotype,
across different environments. A “genotype” in this instance
can refer to individuals with specific configurations of
alleles at a locus. It can also refer to clonal copies of an
individual (e.g., Fallopia spp.; Richards et al. 2008; Parepa
et al. 2014), apomictic offspring (e.g., Taraxicum; Ver-
hoeven and van Gurp 2012) or an inbred strain of a species
such as the Landsberg erecta strain of Arabidopsis thaliana
(Koornneef and Meinke 2010) or the Sprague–Dawley
strain of the rat Rattus norvegicus (Hsu and Lai 2007).
Plasticity is typically measured by the phenotype in one
environment minus the phenotype in the other environment,
and is visualized on a graph as a “norm of reaction”
(Pigliucci 2001; Fig. 1). The greater the difference in the
phenotype between the two environments, the greater the
plasticity. Phenotypic plasticity can also be described as the
phenotypic variance in a dataset that is due to differences in
the phenotype among two or more different environments.
Understood in this way, plasticity is represented by the term
VE sensu stricto in the partitioning of phenotypic variance
(Scheiner and Goodnight 1984).

To the extent that changes in the phenotype in different
environments arise from changes in gene expression, epi-
genetic modifications could be contributing to those chan-
ges in gene expression (Duncan et al. 2014). There are
examples of epigenetically-mediated plasticity in many
taxa, including flowering plants (Geng et al. 2013; Zhang

Fig. 1 The phenotype (y-axis) of the same individual/inbred strain/
genotype in two different environments (x-axis) as a norm of reaction.
The phenotype in Environment 2 minus the phenotype in Environment
1 indicates how much phenotypic plasticity (VE) there is
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et al. 2013; Herman and Sultan 2016), yeast (Herrera et al.
2012), honeybees (Kucharski et al. 2008), ants (Bonasio
et al. 2012; Simola et al. 2013), mammals (Oberlander et al.
2008; Godfrey et al. 2011; Lim et al. 2012; Hunter et al.
2015), and birds (Lindqvist et al. 2007; Natt et al. 2009;
Goerlich et al. 2012; Nätt et al. 2012). Generally speaking,
epigenetic modifications are likely a common mechanism of
phenotypic plasticity (Nicotra et al. 2010; Richards et al.
2010; Geng et al. 2013; Herman et al. 2014; Herman and
Sultan 2016), and can account for some of the phenotypic
variance via their effects on response to environment (VE).

A relevant example of phenotypic plasticity mediated by
epigenetic alterations comes from Thorson et al. (2017).
They examined morphological divergence and epigenetic
variation in asexual freshwater snail populations of the
species Potamopyrgus antipodarum from contrasting lake
and river habitats. They found that populations exhibit
habitat specific differences in shell shape that are adaptive
given the water current speeds of their environments. These
differences were associated with significant genome-wide
DNA methylation differences among snails from different
habitats, and the different methylation patterns were repe-
ated in replicate habitats. Because these snails contain few
molecular genetic differences, Thorson et al. (2017) hypo-
thesize that the differences in the shell morphology among
habitats are due to adaptive phenotypic plasticity that is
mediated by epigenetic mechanisms, specifically DNA
methylation throughout the genome. It is possible that the
observed differences in methylation among habitats are not
just environmentally induced but also heritable, but this
additional possibility was not tested.

While epigenetic modifications may provide insight into
the molecular details of phenotypic plasticity (Nicotra et al.
2010), the two are not entirely interchangeable. As descri-
bed above, epigenetics is also found in the VG part of the
dissection of phenotypic variance, which is not a plastic
response to environment. Furthermore, phenotypic plasti-
city can be due to many biochemical mechanisms (reviewed
in Kelly et al. 2012), and not all of these mechanisms
involve epigenetics. For instance, phenotypic plasticity can
be due to the kinetic constraints of enzyme functions in
response to temperature. This type of plasticity can be seen
in plants, which have optimal temperature ranges for pho-
tosynthesis, driven by the kinetic properties of the enzymes
and other mechanisms involved (Yamasaki et al. 2002).
Therefore, photosynthetic reactions can go slower or faster
depending on the temperature regime experienced by the
plant, and enhanced growth of a plant under moderately
higher temperatures could be due to increased rates of
enzymatic reactions and not necessarily to epigenetic
mechanisms. Optimal environmental ranges for enzymes
are a fundamental aspect of cellular physiology across the
domains of life (Geueke and Kohler 2010), so this example

is generalizable to any taxon. Similarly, to the extent that an
organism grows larger in response to nutrients simply
because it has more materials to build more cells and more
structures, this does not necessarily result from an epige-
netic mechanism mediating the plastic response of organism
size to nutrient levels. In summary, some phenotypic var-
iance can be attributed to epigenetic modifications that are
not plasticity (like epigenetics influencing VG) and some
phenotypic variance is due to plasticity that is not the result
of epigenetic modifications.

Epigenetic effects on VE sensu stricto may not have
obvious ramifications for evolution, given that environ-
mental variation does not have a heritable component to it.
But epigenetic states are different from DNA sequence
variation in that epigenetic states can be environmentally
induced and then inherited in the germ line (Morgan et al.
1999; Waterland and Jirtle 2003; Verhoeven et al. 2010;
Richards et al. 2012; Frésard et al. 2013; and reviewed in
Richards et al. 2017). Thus, epigenetic mechanisms can
account for some of the plastic response of a trait to the
environment (which is VE sensu stricto) that is then con-
verted into additive genetic variance. Surprising as it may
first seem, epigenetic influences on VE sensu stricto have
evolutionary implications for the calculation of VA, and
therefore epigenetic influences on VE sensu stricto may
potentially influence evolution.

Epigenetics, VGxE, and evolution

The effects of the environment on phenotype can vary by
genotype (Fig. 2). In other words, the expression and
function of genes can change depending on the specific

Fig. 2 The phenotype (y-axis) of three different individuals/inbred
strains/genotypes in two different environments (x-axis) as a norm of
reaction. Each individual/inbred strain/genotype is indicated by a
different symbol+ color. The fact that the three genotypes have dif-
ferent values for the phenotype in Environment 2 minus the phenotype
in Environment 1 indicates that there is genetic variation for plasticity
(VGxE)
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alleles comprising a genotype (Gillespie and Turelli 1989).
This widespread phenomenon (Baye et al. 2011; De Marais
et al. 2013; Rauw and Gomez-Raya 2015), called the
“genotype-by-environment interaction”, is partitioned from
the total phenotypic variance (Scheiner and Goodnight
1984). Any genotypes in Fig. 2 that have non-zero slopes
are displaying plasticity (Pigliucci 2001), and the fact that
different genotypes have different slopes indicates that there
is genetic variation for plasticity (Scheiner and Lyman
1989). Thus, there are environmental and genetic compo-
nents in VGxE.

Just as there can be epigenetic contributions to the
environmental (VE) and genetic (VG) components of phe-
notypic variance, there can also be epigenetic contributions
to the genotype-by-environment interaction (VGxE). Take,
for instance, the genotypes in Fig. 2 in environment 1.
Within that environment, there is genetic variance in the
phenotype—the three genotypes have different genotypic
means. As described above, epigenetics can be contributing
to the genetic variance. Similarly, take the same genotypes
in Fig. 2 in environment 2. Within that environment, there is
also genetic variation in the phenotype and, therefore, epi-
genetic mechanisms can be contributing to the genetic
variance within that environment. Now take genotype 1 and
examine how its phenotype changes across environments.
This is phenotypic plasticity, and epigenetic mechanisms
can contribute to phenotypic plasticity, as described above.

The signature of epigenetic effects on VGxE has been
documented in a few studies. Bossdorf et al. (2010) treated
a set of natural inbred lines of Arabidopsis thaliana with the
demethylating agent 5-azacytidine and examined the

consequences of this treatment for plasticity of plant traits to
nutrient levels. By looking at how demethylation influenced
the plastic responses of the inbred lines as compared to their
control counterparts, they found that the effect of epigenetic
re-patterning on plastic responses varies among inbred lines
(Fig. 3). But the changes in the plastic responses only
weakly matched what would be expected by the relatedness
of the lines to one another. This suggests that the inbred
lines differed in their methylation patterns in ways that are
at least partly decoupled from their DNA sequence simi-
larity. Similarly, Tatra et al. (2000) investigated the
response of DNA methylation to irradiance-mediated plas-
ticity of stem elongation in two ecotypes of Stellaria
longipes, using a multifactorial design of light and 5-
azacytidine. They found that the plastic responses to light
were altered differently by demethylation among the two
different ecotypes. In another study, Herman and Sultan
(2016) used demethylation in Polygonum persicaria to
show that the inheritance of adaptive response in offspring
of drought-exposed plants was mediated by DNA methy-
lation. The effect of demethylation on inheritance of the
adaptive response varied among inbred lines. These studies
demonstrate empirically that epigenetic modifications can
account for some of the differences in plastic responses
among genotypes. To the extent that epigenetic differences
are inherited, epigenetic mechanisms may account for some
of the inherited differences in plasticity among different
genotypes.

The genotype-by-environment interaction can be thought
of as genetic variance for plasticity, and can be broken
down into additive and dominance variance components.
This allows for calculating the heritability (in the narrow-
sense) of plasticity, which can evolve (Scheiner and Lyman
1989), There are many examples of the evolution of plastic
responses to the environment (Dudley and Schmitt 1995;
Gotthard and Nylin 1995; Pigliucci 2001). As such, epi-
genetic influences on VGxE can influence evolution, because
VGxE contains heritable genetic variation for plasticity and
some of this heritable variation can be due to epigenetic
mechanisms.

Another way in which VGxE can influence evolution is
through genetic assimilation. Genetic assimilation is the
process where a phenotype originally produced in response
to an environmental stimulus later becomes genetically
encoded via selection, and the plastic response is lost, due to
a directional shift in the environment (Waddington 1956;
Pigliucci and Murren 2003; Crispo 2007). Phenotypic
plasticity can thus can serve as a bridge for populations to
adapt to changing environments, and evolution via genetic
assimilation can later developmentally hard-wire the
induced plastic responses. Under a scenario of genetic
assimilation, selection first acts on genetic variation for
plasticity (VGxE), favoring individuals that are able to alter

Fig. 3 Genotypic variation in the effects of experimental demethyla-
tion on plant phenotypic plasticity. The reaction norms illustrate how
treatment with 5-azacytidine alters the phenological response to
nutrient additions in 22 genotypes of Arabidopsis thaliana. Two
genotypes with contrasting responses are highlighted in bold. Repro-
duced from Bossdorf et al. (2010) with permission
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their phenotype in ways that better match the new envir-
onment; if the ancestral environment is later lost, selection
will subsequently favor constitutive induction of the novel
phenotype, due to costs associated with maintaining the
metabolic/developmental machinery for a plastic response
to the environment (Pigliucci and Murren 2003). To the
extent that epigenetic variation among individuals account
for some of the VGxE in response to a novel environment,
epigenetic mechanisms provide some of the genetic var-
iance in plasticity that selection can act on in the new
environment. This plasticity can later become genetically
encoded and constitutive via evolution by genetic
assimilation.

Epigenetics, COVGE, and evolution

When the occurrence of specific environmental conditions
depends on an organism’s genotype, or vice versa, there is a
genotype–environment covariance (COVGE; Falconer and
Mackay 1996). The genotype–environment covariance
combines the genetic variance together with the environ-
mental variance (Falconer and Mackay 1996). A standar-
dized version of this covariance is often presented in the
literature as a genotype–environment correlation (rGE; Jaf-
fee and Price 2007). Because epigenetic mechanisms can
play a role in genetic variance, epigenetic mechanisms can
also play a role in COVGE, which is based, in part, on
genetic variance. As with each of the other components of
the phenotypic variance formula, the epigenetic contribu-
tion to COVGE must be accounted for, either by cross-
factorial experimentation where each genotype experiences
each environment equally, or by explicitly estimating
COVGE as part of partitioning of phenotypic variance. If
COVGE is not accounted for, then the phenotypic variance it
introduces can confound estimates of VG or VGxE (Falconer
and Mackay 1996; Jaffee and Price 2007). A covariance
between genotype and environment is particularly likely to
arise when considering epigenetic mechanisms of pheno-
typic variance, because epigenetic changes can be envir-
onmentally induced and then inherited (Morgan et al. 1999;
Waterland and Jirtle 2003; Verhoeven et al. 2010; Richards
et al. 2012; Frésard et al. 2013; and reviewed in Richards
et al. 2017). Given that organisms tend to inherit their
environments from their parents (Oyama et al. 2001), the
environmental induction of epigenotypes, combined with
the inheritance of parental environments, means that the
prevalence of different epigenotypes should be particularly
nonrandom with respect to the environments in which the
epigenotypes are found. Without the COVGE term in the
phenotypic variance formula, the mathematical assumption
is that the (epi)genetic variance and environmental variance
are unrelated, so the addition of this term is important for
properly partitioning phenotypic variance when the

asusmption of (epi)gentype-environment independence is
violated.

Incorrect estimation of VG and VGxE could lead to an
incorrect heritability estimate of a trait or trait plasticity, and
the response of a trait to selection (i.e., evolution) could be
miscalculated. The genotype–environment covariance is
often ignored in quantitative genetic studies, because it is
assumed to be of negligible importance (Falconer and
Mackay 1996). However, COVGE could be a large portion
of the total phenotypic variance when epigenetic effects are
involved, due to induction of epigenetic changes by the
environment and the subsequent inheritance of those epi-
genetic changes (Bonduriansky and Day 2009; Slatkin
2009; Geoghegan and Spencer 2012, 2013; Richards et al.
2017). We propose that accounting for the
epigenotype–environment covariance could be accom-
plished by first clustering individuals, based on their
molecular epigenetic marker similarities (using a Bayesian
clustering algorithm for example; Pritchard et al. 2000), and
then calculating the epigenotype–environmental covariance
by combining the information about the environments that
the individuals experienced, the individuals’ phenotypes,
and the epigenetic clusters that the individuals were
assigned to. Development of this or similar approaches is
beyond the scope of this paper, but methods for parsing out
the epigenotype–environment covariance are needed to
properly parse phenotypic variance into its various con-
stituents. It should be possible to calculate the epigenetic
contribution to COVGE, but the methods for doing so have
not yet been fleshed out.

Epigenetics, Vɛ, and evolution

The residual or error variance, Vɛ, as defined by Scheiner
and Goodnight (1984), includes only measurement error,
microenvironmental variance, and developmental stochas-
ticity. Microenvironmental variance refers to environmental
variance that was not explicitly accounted for in the study
design. If there are a large of amount of environmental
effects that are not explicitly accounted for by VE sensu
stricto in the study design, then the microenvironmental
variance can actually be larger than VE sensu stricto
(Mulder et al. 2013). Yet the microenvironmental variance
is an invisible constituent of Vɛ in the phenotypic variance
partitioning, because by definition it was not measured.
Given that epigenetic changes can influence the environ-
mental variance of the phenotype, as described above,
epigenetic changes can also influence microenvironmental
variance of the phenotype, because microenvironmental
variance is just phenotypic variance attributable to envir-
onmental axes that were unmeasured. This also means that
epigenetic effects on microenvironmental variance can
influence evolution in the same was that epigenetic effects
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on environmental variance can influence evolution, as
described above.

Methods for incorporating epigenetic effects
into quantitative genetics studies

With the growing evidence that epigenetic changes can
have different ramifications for evolution than DNA
sequence changes, methods are being developed to actually
incorporate epigenetic effects into models of quantitative
genetics. Models of genomic imprinting have found that the
estimation of the total genetic variance is not affected by
imprinting, but the partitioning of the genetic variance in the
phenotype changes and the response to selection for a
highly imprinted trait cannot be predicted by the breeder’s
equation (Spencer 2002; Santure and Spencer 2006, 2011).
Day and Bonduriansky (2011) propose a model for non-
genetic inheritance more generally based on the Price
equation (Price 1972) that emphasizes the interactions
between genetic and epigenetic effects with the following
parameters for both (1) the effects of selection, (2) changes
that occur in transmission from the parent to offspring
generation (“reproductive transmission”) and (3) changes
that occur in the parent generation (“survival transmis-
sion”). This model allows for changes in DNA sequence,
the fact that some genomic contexts are more likely to
acquire epigenetic effects than others, and the change in the
epigenetic component is dependent on genotype. They
found that epigenetic variation can determine the pattern of
phenotypic variation and that phenotypic change can be
decoupled from the dynamics of the genotype. Slatkin
(2009) modeled disease risk as a function of diallelic
genetic and epigenetic loci, and considered that for every
individual offspring per generation, there is an opportunity
for any individual epigenetic state to be reset. Therefore, not
all of the epigenetic differences will persist in the offspring,
and the probability that relatives resemble each other in
epigenetic state is less than expected by their relatedness.
Slatkin (2009) concluded that epigenetic effects do not
contribute substantially to the heritability of diseases, but
Slatkin cautioned that his conclusions depended heavily on
the persistence times of heritable epialleles. How persistent
epialleles are across various taxa is currently an unanswered
question.

While several models that incorporate epigenetic changes
into quantitative genetic studies require the estimation of
molecular epigenetic processes, and particularly the rate of
gain and loss of epigenetic effects across the genome, a
model developed by Tal et al. (2010) proposes the use of
only phenotypic datasets combined with a detailed pedigree.
The Tal et al. (2010) model considers transmissibility (the
probability of transmission of the epigenetic state) and

environmental induction (the probability of the epigenetic
state being induced) by adding a term, VC, to the equation
VP= VG+ VE, that reapportions some of the phenotypic
variance from VG and VE. Calculating VC requires deter-
mining the phenotypic covariances between parents and
offspring, between sibs, and between uncles and nephews.
The design allows for estimation of the heritable epigenetic
variance and epigenetic transmissibility using information
about the number of opportunities for epigenetic reset
between generations, and assumptions about environmental
induction. They introduce a new term, γ2, which is the
epigenetic heritability, or the proportion of phenotypic
variance attributable to potentially heritable epigenetic
variance. Different from standard heritability (h2), the con-
tribution of epigenetic heritability (γ2) to parent-offspring
similarity depends on the transmissibility coefficient: if the
epigenetic states tend to be reset frequently, then the impact
of γ2 on parent-offspring similarity is low; if the epigenetic
states tend to be transgenerationally stable, then the impact
of γ2 on parent-offspring similarity is high. The introduction
of a new type of heritability with different ramifications for
similarity among relatives could enhance our understanding
of evolutionary processes by describing how different
components of heritable phenotypic variation respond to
selection.

The Tal et al. (2010) study provides a practical way
forward for parsing out epigenetic influences in quantitative
genetic studies. But like in other studies, Tal et al. (2010) do
not account for the influence of epigenetic differences on
VGxE. Perhaps the Tal et al. (2010) formula could be
reformulated to account for epigenetic influences on VGxE,
by partitioning VCxE from VGxE in a similar manner to what
they describe for partitioning VC from VG and VE (sensu
lato). The development of such a method lies outside the
scope of this paper, but it would be a fruitful area of future
research. Similarly, Richards et al. (2017) recommend that
future studies on phenotypic variance should parse out a
higher-order interaction term involving epigenetic effects,
which could be something like VGxExC. This variance
component would account for the ways in which DNA-
encoded differences in plasticity change depending on the
epigenetic effects.

It is important to note that Tal et al. (2010) define epi-
genetic inheritance broadly to include the transmission of
phenotypic variation by any means besides transmission of
DNA sequence variation. Their definition of epigenetics is
broader than the more mechanistic, cellular definition of
epigenetics that we have described (namely, chemical
modifications of chromatin or transcribed DNA that can
influence gene activity and expression without changes in
DNA sequence; Jablonka and Raz 2009; Kilvitis et al.
2014), and their definition includes additional parental
effects (Kirkpatrick and Lande 1989; Wolf and Wade
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2016). It may be that there is no way in principle to separate
epigenetics effects sensu stricto from other non-genetic
forms of inheritance using a purely phenotypic dataset and a
pedigree. Yet, despite potentially overestimating the epi-
genetic effects sensu stricto, the Tal et al. (2010) approach
can be used to set upper bounds on the amount epigenetic
influence on phenotypic variance and provide data to gen-
erate hypotheses for future research. For instance, they give
the example of rapidly increasing heritability in inbred lines
(Grewal 1962; Hoi-Sen 1972; Lande 1975), where one may
expect VA (and therefore h2) to be small due to a lack of
DNA sequence diversity. The classic interpretation is that
the inbred lines must have a DNA mutation rate that is three
orders of magnitude higher than is normally expected in
order to increase the heritability and increase it that quickly.
But if the estimates of VC, γ2, and the transmissibility
coefficient are greater than zero, then the heritability may be
partially generated by epigenetic mechanisms. The specific
epigenetic mechanisms that contribute to heritability in the
inbred lines could be examined in follow-up studies that use
epigenomic mapping techniques (e.g., Zhang et al. 2013;
Cortijo et al. 2014; Kooke and Keurentjes 2015). Overall,
the Tal et al. (2010) study provides a pragmatic approach
for teasing out epigenetic influences on phenotypic variance
and heritability, but the methods developed so far are
imperfect and require further development to accurately
quantify epigenetic influences.

Conclusions

The modern era of epigenetics research presents opportu-
nities for advancing our understanding of evolutionary
processes, just as the genomics era more generally has
greatly influenced evolutionary disciplines. We have
demonstrated how epigenetic phenomena can contribute to
each of the components of phenotypic variance in the
expanded formula: VG, VE, VGxE, Vɛ, and COVGE. It is
important to consider the influence of epigenetic phenom-
ena on phenotypic variance when hypothesizing about the
mechanisms behind phenotypic variance observed in a
quantitative genetic study. One cannot assume that only
DNA sequence-based phenomena account for patterns
when epigenetic and other non-genetic phenomena could be
playing a role as well; and accounting for parental effects
will not necessarily capture epigenetic phenomena. The
contribution of epigenetic mechanisms cannot be easily cast
aside, especially given the increasing reliance on molecular
mechanisms as a part of our understanding of evolutionary
processes, and the fact that epigenetic mechanisms can have
different ramifications for evolution from DNA sequence-
based mechanisms. Some existing studies have developed
methods for partitioning epigenetic variance from

phenotypic variance, which represents a step in the right
direction, but we need more methods that carefully consider
all of the areas where variance due to epigenetic factors may
need to be accounted for. The challenge of developing
methods to parse out all of the ways that epigenetics can
contribute to evolutionary models will require significant
effort, but the difficulty of deciphering the role of epigenetic
mechanisms does not preclude its importance.
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