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INTRODUCTION

Dendritic cells (DCs) are the most potent antigen presenting 
cells, which are crucial for the induction of T cell responses.1,2 
DCs can acquire and process antigens in the periphery, and 
migrate to secondary lymphoid tissues where they prime pri-
mary T cell responses. While DCs play a key role in the initia-
tion of primary immune responses, they also play a crucial 
role in the development and maintenance of immune toler-
ance.3-5 

The functional difference between immunogenic and 
tolerogenic DCs depends on maturation state and maturation 
environment. Immature tissue-resident DCs sense invading 
antigens via pattern-recognition receptors such as toll-like re-

Received: June 1, 2018   
Corresponding author: Chong-Kil Lee, PhD, College of Pharmacy, Chungbuk Na-
tional University, 1 Chungdae-ro, Seowon-gu, Cheongju 28644, Korea. 
Tel: 82-43-261-2826, Fax: 82-43-268-2732, E-mail: cklee@chungbuk.ac.kr 

•The authors have no financial conflicts of interest.

© Copyright: Yonsei University College of Medicine 2018
This is an Open Access article distributed under the terms of the Creative Com-
mons Attribution Non-Commercial License (https://creativecommons.org/licenses/
by-nc/4.0) which permits unrestricted non-commercial use, distribution, and repro-
duction in any medium, provided the original work is properly cited.

Generation, Characteristics and Clinical Trials  
of Ex Vivo Generated Tolerogenic Dendritic Cells

Sang-Hyun Kim, Ho-Hyun Jung, and Chong-Kil Lee
College of Pharmacy, Chungbuk National University, Cheongju, Korea.
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ceptors, take up the antigens via phagocytosis or endocytosis 
and degrade them into small peptides to present the antigenic 
peptides in association with major histocompatibility com-
plex (MHC) class II molecules to CD4 T cells.1 These antigen 
entrapping and processing processes trigger the maturation 
of immature DCs to mature DCs, which express considerably 
higher levels of co-stimulatory molecules such as CD80 and 
CD86, and MHC class II molecules, and secrete considerably 
higher amounts of proinflammatory cytokines, such as inter-
leukin (IL)-1, IL-6, IL-12, and tumor necrosis factor (TNF)-α, 
compared to immature DCs.6

Tissue-resident steady-state DCs are immature DCs, which 
express low levels of co-stimulatory molecules and moderate 
levels of MHC class II molecules, and are poorly immunogen-
ic unless activated. In fact, steady-state immature DCs, which 
display peptides originating from self-proteins in association 
with MHC molecules on the cell surface, are tolerogenic DCs 
(tolDCs) that maintain self-tolerance against self-antigens.7 A 
number of attempts have been made to use tolerogenic im-
mature DCs to induce immune tolerance. Dhodapkar and 
Steinman generated immature DCs using IL-4 and granulo-
cyte macrophage-colony stimulating factor (GM-CSF), pulsed 
them with antigen, and then injected them into humans. They 
showed that injection of antigen-pulsed immature DCs led to 
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antigen-specific inhibition of effector T cell function by induc-
ing regulatory T cells (Tregs).8,9 However, using tolerogenic 
immature DCs to induce immune tolerance raises concerns 
regarding the functional stability of the immature state, be-
cause immature DCs could be converted into immunogenic 
mature DCs when encountering a ‘danger signal’ such as pro-
inflammatory cytokines and microbial products. Thus, one of 
the major challenges facing tolDC-based immunotherapy is 
optimizing the protocol for obtaining functionally stable 
tolDCs.

TolDCs with durable immaturity and immune regulatory 
properties have been generated ex vivo using various pharma-
cological agents such as rapamycin, dexamethasone, and vita-
min D.10 Immunosuppressive cytokines such as IL-10 and 
transforming growth factor (TGF)-β have also been used to in-
duce tolDCs.11 In general, tolDCs are characterized by reduced 
expression of co-stimulatory molecules and IL-12, decreased 
ability to induce T cell proliferation, increased IL-10 secretion, 
and increased Treg induction.10,11 The mechanisms underlying 
tolDC activity include the induction of Tregs, increasing the 
expression of programmed death-ligand 1 (PD-L1) and induc-
ible costimulator ligand (ICOSL), and the production of im-
munosuppressive factors such as IL-10 and TGF-β.7,11-14

Antigen-pulsed tolDCs are promising tools for generating 
antigen-specific immune tolerance. They can be infused di-
rectly for the induction of antigen-specific immune tolerance 
in vivo, or can be used to generate antigen-specific Tregs in 
vitro for Treg-based adaptive cell therapy. In this review, we 

describe the methods used to generate tolDCs ex vivo and the 
phenotypic and functional characteristics of the induced 
tolDCs. In addition, we discuss the therapeutic potential of 
tolDCs for treating immune disorders based on completed or 
currently on-going clinical trials with tolDCs.

 

EX VIVO GENERATION OF tolDCs 

Human tolDCs are mostly produced from peripheral blood 
monocytes by culturing in the presence of GM-CSF and IL-4 
together with an agent(s) known to confer tolerogenic proper-
ties. In murine systems, immature DCs are first generated by 
culturing bone marrow cells in the presence of GM-CSF and 
IL-4, and then induced to tolDCs by additional culturing in 
the presence of an agent(s) known to confer tolerogenic prop-
erties.15 Several pharmacological and biological agents have 
been used to generate tolDCs ex vivo from hematopoietic pre-
cursors or peripheral blood monocytes. The major methods 
used to generate tolDCs ex vivo and common features shared 
by the tolDCs are shown in Fig. 1.

Pharmacological agents 
Pharmacological agents known to induce tolDCs include vita-
min D3, corticosteroid, rapamycin, cyclosporine, tacrolimus, 
aspirin, atorvastatin, retinoic acid, mycophenolic acid, and 
minocycline.10,11,16-21 Of these agents, vitamin D3, dexametha-
sone, and rapamycin have been extensively studied in experi-

Fig. 1. Generation, characteristics, and mechanisms of action of tolDCs. Human tolDCs are mostly produced from peripheral blood monocytes by cultur-
ing with GM-CSF, IL-4, and an agent(s) known to confer tolerogenic properties. In murine systems, immature DCs are first generated by culturing bone 
marrow cells with GM-CSF and IL-4, and then induced to tolDCs by additional culturing with an agent(s) known to confer tolerogenic properties. TolDCs 
induce several subtypes of regulatory lymphocytes such as CD4+CD25+Foxp3+ Tregs, and CD25+Foxp3+/- Tr-1 cells from precursor T cells (pTh). DC, dendrit-
ic cell; tolDCs, tolerogenic DCs; GM-CSF, granulocyte macrophage-colony stimulating factor; IL, interleukin; MHC, major histocompatibility complex; PD-
L1, programmed death-ligand 1; ICOSL, inducible costimulator ligand; TNF, tumor necrosis factor; IFN, interferon; TLR, toll-like receptor; IDO, indoleamine 
2,3-dioxygenase; FasL, Fas ligand; TGF, transforming growth factor.
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mental animals and in humans with the aim of developing 
clinical approaches for the prevention of transplantation re-
jection and treatment of autoimmune and chronic inflamma-
tory conditions. 

The biologically active form of vitamin D, 1,25-dihydroxyvi-
tamin D3 [1,25(OH)2D3], is able to promote the generation of 
tolDCs.22,23 DCs generated using vitamin D express lower lev-
els of MHC class II and co-stimulatory molecules, and pro-
duce higher amount of IL-10 and lower amounts of IL-12 and 
IL-6, compared to untreated normal DCs.22,23 Moreover, these 
DCs are poor activators of antigen-primed T cells, but stimu-
late the generation of Tregs.24 The tolDC-inducing activity of 
vitamin D has also been demonstrated in diabetes-prone 
NOD mice and normal mice.25

Corticosteroids, dexamethasone and prednisolone, have 
long been known to exert anti-inflammatory and immuno-
suppressive activities. Numerous studies have shown that 
corticosteroids exert their immunosuppressive activity at least 
in part via induction of tolDCs. DCs generated in the presence 
of dexamethasone express low levels of co-stimulatory mole-
cules and MHC class II molecules, produce elevated levels of 
IL-10 and lower levels of IL-12, and induce the generation of 
Tregs.13,16,26 Dexamethasone also induces the generation of 
tolerogenic macrophages.26 Moreover, DCs generated with 
dexamethasone retain their tolerogenicity for several days, up 
to a week, even after dexamethasone is removed.16,26

Rapamycin has long been known to suppress T cell activation 
via inhibition of the serine/threonine protein kinase, mammali-
an target of rapamycin. Rapamycin also induces the generation 
of tolDCs. DCs generated with rapamycin are poor stimulators of 
antigen-primed T cells, resistant to maturation induced by anti-
CD40 or lipopolysaccharide (LPS) stimulation, and enhance the 
generation of Foxp3+ Tregs.27-30 Treatment of murine heart trans-
plantation recipients with rapamycin-generated DCs increases 
the survival of the transplanted organ, in correlation with in-
creased production of Foxp3+ Tregs in the recipient mice.27

One of the drawbacks of generating tolDCs using the above 
listed pharmacologic agents is the cytotoxic effects of these 
drugs. For instance, rapamycin (10 ng/mL) is effective in gen-
erating tolDCs from bone marrow cells when used together 
with GM-CSF and IL-4. However, the number of CD11c+ cells 
obtained from rapamycin-conditioned cultures is significant-
ly (more than 40%) lower than that from rapamycin-uncondi-
tioned cultures.27 Dexamethasone has also been shown to 
markedly reduce DC recovery.16,26 In this regard, minocycline 
is unique in that it increases the generation of tolDCs from 
bone marrow cells.21 Minocycline also exerts growth-promot-
ing effects on DCs conditioned with relatively toxic doses of 
rapamycin, vitamin D3, or IL-10.31 Furthermore, the toleroge-
nicity of tolDCs generated in the presence of minocycline and 
dexamethasone is superior or at least equal to that of tolDCs 
generated with either one of these agents.31

Combinations of pharmacological agents are also used to 

generate tolDCs with potent tolerogenic properties. For in-
stance, potently tolerogenic and highly stable tolDCs are gen-
erated from monocytes of rheumatoid arthritis (RA) patients 
by the addition of dexamethasone, vitamin D3, and mono-
phosphoryl lipid A together with GM-CSF and IL-4.32

Immunosuppressive cytokines
Immunosuppressive cytokines such as IL-10 and TGF-β have 
been shown to induce regulatory DCs.33-35 Other cytokines 
known to induce tolDCs include TNF-α,36 interferon (IFN)-γ,37 
hepatocyte growth factor,38 and IL-21.39 TolDCs generated 
with IL-10 have been extensively studied in experimental ani-
mals and in humans. 

DCs generated with IL-10 display reduced levels of MHC 
class II molecules and co-stimulatory molecules, and induce 
the generation of Tregs.33-35,40,41 DCs generated with IL-10 se-
crete high levels of IL-10 in the absence of IL-12.34 A compara-
tive study demonstrated that the tolerogenic properties of IL-
10-generated DCs are superior to those of vitamin D3-, 
dexamethasone-, or rapamycin-generated DCs.40 In addition, 
IL-10 in combination with TGF-β induce the generation of 
tolDCs with potent tolerogenic properties. 

The fact that IFN-γ, a prototype of the Th1-type cytokine 
produced mainly by natural killer (NK) and T cells, induces 
the generation of tolDCs is somewhat surprising. At a low 
dose, IFN-γ promotes the maturation of DCs with full activat-
ing potential, however, a high dose of IFN-γ induces DC ac-
quisition of regulatory features.42 The importance of the tim-
ing and intensity of IFN-γ exposure for the function of 
monocyte-derived DCs (mo-DCs) was also noted in a sepa-
rate study.43 A dose-dependent and bivalent effect of IFN-γ on 
DC function would constitue a novel mechanism for homeo-
static regulation of immune responses at local sites. 

Genetic modifications
Genetic engineering of DCs to express immunosuppressive 
molecules is a method for generating tolDCs. DCs engineered 
to express IL-10 using a retroviral vector exhibit significantly 
reduced capacity to induce allogeneic T cell proliferation and 
cytotoxic T lymphocyte (CTL) generation.44 Over expression 
of TGF-β also promotes the tolerogenic potential of the DCs.45 
DCs transduced with cDNA encoding CTLA-4-Ig demonstrate 
markedly reduced expression of co-stimulatory molecule 
CD86, but not MHC class II molecules, and induce antigen-
specific hyporesponsiveness.46 DCs engineered to express in-
doleamine 2,3-dioxygenase (IDO) or Fas ligand (FasL) also 
exhibit tolerogenic properties.47,48 

Modulation of microRNA expression in DCs is another ap-
proach for generating tolDCs. Inhibition of miRNA let-7i in 
DCs results in low surface expression of co-stimulatory mole-
cules, impaired T cell stimulatory capacity, and promotion of 
Treg induction.49 DCs transfected with miR-23b show de-
creased antigen uptake, increased IL-10 production, de-
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creased IL-12 production, and an enhanced capacity to pro-
mote Treg differentiation.50

CARACTERISTICS AND MECHANISMS  
OF tolDC TOLEROGENICITY

The mechanisms by which tolDCs exert their activity are var-
ied and incompletely understood. Moreover, phenotypic and 
functional differences among tolDCs arise intrinsically be-
cause of differences in the methods used to generate them. 
Nevertheless, there are common features shared by tolDCs, 
they exert an immature phenotype, and are resistant to matu-
ration stimuli. The major mechanisms underlying the toler-
ance-inducing activity of tolDCs are reduction of co-stimula-
tory molecules, expression of various co-inhibitory molecules, 
production of immunosuppressive cytokines and mediators, 
and induction of Tregs.

Reduced expression of co-stimulatory molecules
The interaction of co-stimulatory molecules, such as CD80 
and CD86, on DCs with CD28 on T cells triggers a T cell-acti-
vating signal. It is generally accepted that T cells become an-
ergic and lose their ability to proliferate during subsequent 
stimulation when they are stimulated with signal-1, the recog-
nition of MHC-complexed antigenic peptide via T cell recep-
tor, in the absence of signals delivered from CD80 and CD86.2 
Reduction of the expression levels of co-stimulatory mole-
cules is one of the hallmarks of tolDCs, regardless of the meth-
ods used to generate them. TolDCs lacking co-stimulatory 
molecules induce T cell anergy.3-5

Increased expression of co-inhibitory molecules
TolDCs express increased levels of various co-inhibitory mol-
ecules such as PD-L1 and ICOSL.12,13,51 T cells become func-
tionally inactive following their interaction with co-inhibitory 
molecules. A number of tolDCs also express inhibitory Ig-like 
transcripts (ILTs) on their surface, which interact with MHC-I 
molecules, especially human leukocyte antigen (HLA)-G, and 
deliver negative signals to T cells. ILT3 and ILT4 are upregu-
lated by exposing immature DCs to known immunosuppres-
sive factors such as IL-10 and vitamin D3.

52,53

Production of immunosuppressive cytokines and 
mediators
Production of immunosuppressive cytokines, such as IL-10 
and/or TGF-β, is one of the most common features of 
tolDCs.11 These cytokines inhibit the production of inflamma-
tory cytokines, such as IL-12, TNF-α, and IFN-γ, and impairs 
the activation of T cells and NK cells.54 In addition, these cyto-
kines induce Treg generation. IL-10, in particular, is crucial for 
the induction of IL-10-secreting T regulatory type 1 cells (Tr-1) 
cells.55,56 Other immunosuppressive mediators known to be 

produced by tolDCs include IDO, hemoxygenase-1, and FasL. 
IDO has been known to suppress T and NK cells, and also in-
duces Treg generation.57-59 FasL-expressing tolDCs induce T 
cell apoptosis via the Fas/FasL interaction pathways. 

Induction of Tregs
The ability of tolDCs to direct T cell polarization toward vari-
ous types of Tregs is pivotal to their tolerogenic function. 
TolDCs induce several subtypes of regulatory lymphocytes 
such as CD4+CD25+Foxp3+ Tregs, CD25+Foxp3+/- Tr-1 cells, 
CD8+ Tregs, and regulatory B cells.27,60-62 CD4+CD25+Foxp3+ 
Tregs have been extensively investigated in various inflamma-
tory diseases.63-65 IL-10 and TGF-β are the major cytokines 
produced by tolDCs and induce Treg generation. IL-10-in-
duced tolDCs acquire the ability to secrete IL-10, which exerts 
powerful anti-inflammatory effects and contributes to Treg 
differentiation and proliferation.66 TGF-β is unique among cy-
tokines in that it induces Foxp3 expression and promotes Treg 
differentiation even in the absence of DCs.67 Foxp3+ Tregs, in 
turn, augments the generation and tolerogenic properties of 
tolDCs by suppressing DC maturation.68,69

CLINICAL TRIALS WITH tolDCs

The therapeutic efficacy of ex vivo-generated tolDCs has been 
demonstrated in animal models of autoimmune diseases 
such as RA,70-72 diabetes,73,74 and experimental allergic en-
cephalomyelitis,75 as well as in animal models of graft rejec-
tion.76,77 Based on the successes in small animal models, sev-
eral clinical trials have been completed or on-going in 
patients with autoimmune diseases such as RA, type 1 diabe-
tes, multiple sclerosis (MS), and Crohn’s disease. Five com-
plete clinical trials with reported outcomes are summarized 
in Table 1. 

The first trial for RA treatment was performed with tolDCs 
generated from monocytes by adding the NF-κB inhibitor, 
BAY 11-7082.78 The tolDCs were exposed to four citrullinated 
peptide antigens, collagen type II1237-1249—Cit1240, fibrinogen α 
chain717-725—Cit720, fibrinogen β chain433-441—Cit436, and vimen-
tin447-455—Cit450, and then administered once via intradermal 
injection. The results showed that a single intradermal injec-
tion of tolDCs was safe, and effective in HLA risk genotype-
positive RA patients. Another clinical trial for RA treatment 
was performed with tolDCs generated from monocytes by 
adding dexamethasone, vitamin D3, and monophosphoryl 
lipid A.32,79 Antigens in autologous synovial fluid were loaded 
with these tolDCs and then administered into an inflamed 
knee joint via intra-articular injection. The treatment was 
deemed safe and acceptable with promising outcomes. Two 
of the three patients receiving 3×106 tolDCs and one of the two 
patients receiving 10×106 tolDCs demonstrated improvement 
in vascularity on day 14, whereas no improvement was ob-
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served in the six patients receiving 1×106 tolDCs or the control 
intervention. 

Two clinical trials were performed with tolDCs not loaded 
with particular antigens. The phase I study of autologous 
tolDCs in type 1 diabetes patients was performed with tolDCs 
generated from monocytes with antisense oligonucleotides 
targeting the primary transcripts of the CD40, CD80 and CD86 
co-stimulatory molecules.80 The treatment appeared safe and 
well tolerated. However, there was no indication of efficacy, 
although an increase in potentially beneficial B220+ CD11c- B 
cells was observed. Another clinical trial with antigen-unload-
ed tolDCs was performed in patients with Crohn’s disease.81 
In this study, tolDCs were generated from monocytes using 
dexamethasone and vitamin A. The treatment appeared safe 
and well tolerated, and resulted in clinical improvement in 
33% of the patients.

Recently, a phase 1b clinical trial with antigen-loaded 
tolDCs was completed in patients with MS and neuromyelitis 

optica.82 In this study, tolDCs were generated from monocytes 
with dexamethasone, and loaded with disease relevant pep-
tides, i.e., MOG1-20, MOG35-55, MBP13-32, MBP83-99, MBP111-129, 
MBP146-170, PLP139-154 for MS and AQP463-76 for neuromyelitis 
optica. The treatment was well-tolerated, and supported the 
functional tolerogenic efficacy of the therapy as demonstrated 
by a switch towards Th2 responses, an increase in IL-10 pro-
duction, and a decrease in IFN-γ production. 

The primary purposes of the clinical trials currently regis-
tered with ClinicalTrials.gov are summarized in Table 2. The 
current on-going clinical trials with tolDCs mostly involve au-
toimmune diseases such as Crohn’s disease, RA, MS, and type 
1 diabetes mellitus. One clinical trial aiming to reduce the 
need for conventional immunosuppression in transplant re-
cipients is also underway. As shown in Table 2, different ap-
proaches are being used to generate tolDCs for clinical use, 
raising the need to establish a more standardized ex vivo gen-
eration method(s). In fact, there are numerous questions that 

Table 1. Completed Clinical Trials with Reported Outcomes

Immune  disorder TolDC generation Antigens pulsed Major outcomes Reference

RA With NF-κB inhibitor BAY  
11-7082 from monocyte

Citrullinated peptides:  
collagen type II1237-1249–Cit1240, 
fibrinogen α chain717-725–Cit720, 
fibrinogen β chain433-441–Cit436, 
and vimentin447-455–Cit450

1) Intradermal administration of the tolDCs was  
 well-tolerated. 

2) Immunoregulatory and anti-inflammatory effects   
 were observed in HLA risk genotype-positive RA     
 patients. 

3) Reduction in effector T cells and proinflammatory  
 cytokines and chemokines, and an increased ratio   
 of Tregs.

78

RA With dexamethasone,  
vitamin D3, and  
monophosphoryl lipid A from 
monocyte

Autologous synovial fluid 1) Intra-articular administration of the tolDCs was  
 safe and acceptable. 

2) Two of the three patients receiving 3×106 tolDC  
 and one of the two patients receiving 10×106  
 tolDC demonstrated improvement in vascularity on  
 day 14, whereas no improvement was seen in the  
 six patients receiving 1×106 tolDC or control  
 intervention.

32,79

Type 1 diabetes With antisense  
phosphorothioate-modified 
oligonucleotides targeting 
CD40, CD80 and CD86 from 
monocyte

No antigen 1) Intradermal administration of the tolDCs was  
 well-tolerated. 

2) No indication of clinical efficacy. 
3) Increase of potentially beneficial B220+  

 CD11c-B cells.

80

Crohn’s disease With dexamethasone and 
vitamin A from monocyte

No antigen 1) Intraperitoneal administration of the tolDCs was  
 well-tolerated. 

2) Clinical improvement was observed in 33% of the  
 patients. 

3) Increase of circulating Tregs and decrease in IFN-γ  
 levels.

81

MS and neuromyelitis 
optica

With dexamethasone from 
monocyte

Disease relevant peptides:  
MOG1-20, MOG35-55, MBP13-32, 
MBP83-99, MBP111-129, MBP146-170, 
PLP139-154 for MS, and AQP463-76 

for neuromyelitis optica

1) The cell therapy was well-tolerated, and supported  
 the functional tolerogenic role of the therapy. 

2) The results showed that a switch towards Th2  
 responses, increase in IL-10, and decrease in IFN-γ  
 production.

82

DC, dendritic cell; tolDCs, tolerogenic DCs; Treg, regulatory T cell; IFN, interferon; IL, interleukin; RA, rheumatoid arthritis; MS, multiple sclerosis.
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have to be addressed in order to achieve generalized and suc-
cessful application of tolDCs in clinical settings including op-
timization of dose, route, and frequency of administration. 
Nevertheless, the list in Table 2 show that tolDC-based treat-
ment of autoimmune diseases is now a reality, and could con-
stitute an innovative cellular therapy in the future.

 

CONCLUSION AND PROSPECTS

TolDCs can be generated ex vivo from peripheral blood 

monocytes or bone marrow cells by culturing them in the 
presence of GM-CSF, IL-4, and an agent(s) known to confer 
tolerogenic properties. The agents used extensively to gener-
ate tolDCs include vitamin D, dexamethasone, rapamycin, 
and IL-10, and new agents, such as minocycline, are being 
continuously explored. Although the mechanisms by which 
tolDCs exert their activity are diverse and incompletely under-
stood, there are common features shared by tolDCs. In gener-
al, tolDCs exert an immature phenotype, and are resistant to 
maturation stimuli. TolDCs are characterized by reduced ex-
pression of co-stimulatory molecules, increased expression of 

Table 2. Clinical Trials Currently Registered at ClinicalTrials.gov

Immune disorder Primary purpose of study Phase Status
Actual study 

start date
Estimated study 

completion
NCI number

Organ transplantation To collect evidence regarding the safety 
of administering autologous tolDCs to 
living-donor renal transplant recipients. 
It is anticipated that immune regulation 
induced by autologous tolDC therapy can 
eventually be used to reduce the need 
for conventional immunosuppression in 
transplant recipients.

1, 2 Recruiting March, 2015 October, 2019 NCT02252055

MS To assess the tolerability and safety profile 
of treatment with tolDCs loaded with 
myelin peptides in patients with MS or 
neuromyelitis optica.

1 Recruiting September, 2015 December, 2018 NCT02283671

Type 1 diabetes To evaluate the safety and efficacy of 
autologous immmunoregulatory DCs. 
Circulating DCs will be harvested by 
leukapheresis, incubated in vitro with  
antisense DNA oligonucleotides  
targeting the primary transcripts of CD40, 
CD80 and CD86, and then injected back 
into the same subject.

2 Not yet recruiting October, 2015 January, 2019 NCT02354911

Crohn’s disease Evaluate the safety and clinical efficacy of 
intralesional administration of tolDCs in 
patients with refractory Crohn’s disease.

1 Recruiting November, 2015 March, 2018 NCT02622763

RA Evaluate the safety and tolerability of a 
single intra-articular injection of  
autologous mo-DCs generated in the 
presence of IFN-α/GM-CSF and tolerized 
with dexamethasone in RA patients.

1 Recruiting December, 2016 November, 2018 NCT03337165

MS Evaluate the safety and tolerability of  
intranodal administration of autologous  
mo-DCs tolerized with vitamin D3 and pulsed 
with myelin peptides in MS patients.

1 Recruiting July, 2017 September, 2019 NCT02903537

MS To treat MS patients by vaccination with 
myelin-derived peptide-pulsed tolDCs. 
The feasibility and safety of administering 
myelin-derived peptide-pulsed tolDCs in 
patients with MS will be assessed.

1 Recruiting May, 2017 December, 2020 NCT02618902

DC, dendritic cell; tolDCs, tolerogenic DCs; IFN, interferon; GM-CSF, granulocyte macrophage-colony stimulating factor; mo-DCs, monocyte-derived DCs; RA, 
rheumatoid arthritis; MS, multiple sclerosis.
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co-inhibitory molecules, production of immunosuppressive 
cytokines and mediators, and/or induction of Tregs. Based on 
the successes in small animal models, several clinical trials 
have been completed or are on-going in patients with autoim-
mune diseases such as RA, type 1 diabetes, MS, and Crohn’s 
disease. The results thus far are highly encouraging both in 
terms of safety and clinical efficacy in all the clinical studies 
completed to date, tolDC administration is tolerated and ap-
pears safe. More importantly, the completed clinical trials in-
dicate significant promise for tolDC-based immunotherapy. 
However, numerous questions remain to be addressed prior 
to generalized and successful application of tolDCs in clinical 
settings. One of the major challenges facing tolDC-based im-
munotherapy is protocol optimization in order to obtain a 
maximum number of tolDCs with stable tolerogenic proper-
ties. In addition, the dose, route, and frequency of administra-
tion of each type of tolDC also require optimization. However, 
as demonstrated by numerous on-going clinical studies, 
tolDC-based treatment of autoimmune diseases is now a real-
ity, and could provide innovative cellular therapy in the future.
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