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Trichoderma polysporum selectively inhibits
white-nose syndrome fungal pathogen
Pseudogymnoascus destructans amidst soil
microbes
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Abstract

Background: Pseudogymnoascus destructans (Pd), the causative fungal agent of white-nose syndrome (WNS), has
led to the deaths of millions of hibernating bats in the United States of America (USA) and Canada. Efficient strategies
are needed to decontaminate Pd from the bat hibernacula to interrupt the disease transmission cycle without affecting
the native microbes. Previously, we discovered a novel Trichoderma polysporum (Tp) strain (WPM 39143), which inhibited
the growth of Pd in autoclaved soil samples. In the present investigation, we used culture-based approaches to determine
Tp-induced killing of native and enriched Pd in the natural soil of two bat hibernacula. We also assessed the impact of Tp
treatment on native microbial communities by metagenomics.

Results: Our results demonstrated that Tp at the concentration of 105 conidia/g soil caused 100% killing of native Pd in
culture within 5 weeks of incubation. A 10-fold higher concentration of Tp (106 conidia/g soil) killed an enriched Pd
population (105 conidia/g soil). The 12,507 fungal operational taxonomic units (OTUs, dominated by Ascomycota and
Basidiomycota) and 27,427 bacterial OTUs (dominated by Acidobacteria and Proteobacteria) comprised the native soil
microbes of the two bat hibernacula. No significant differences in fungal and bacterial relative abundances were observed
between untreated and Tp-treated soil (105 Tp conidia/g soil, p≤ 0.05).

Conclusions: Our results suggest that Tp-induced killing of Pd is highly specific, with minimal to no impact on the
indigenous microbes present in the soil samples. These findings provide the scientific rationale for the field trials of Tp
in the WNS-affected hibernacula for the effective decontamination of Pd and the control of WNS.

Keywords: White-nose syndrome, Pseudogymnoascus destructans, Trichoderma polysporum, Biological decontamination,
Biocontrol agent, Selective inhibition, Bat hibernacula, Native soil microbiota, Metagenomics

Background
Pseudogymnoascus destructans (Pd), the etiological agent
of white-nose syndrome (WNS), has caused significant
reductions in hibernating bat populations across the
USA and Canada [1–6]. Mortality was first observed in
hibernating bats in Howes Cave near Albany, New York
(NY), in 2006, and has since spread extensively to 32 US
states and 7 Canadian provinces [7]. Recently Pd was

detected in a little brown bat (Myotis lucifugus) as far
away as Washington State [8]. Several species of bats are
already threatened with extinction, including Myotis
lucifugus (little brown bat), Myotis sodalis (Indiana bat),
and Myotis septentrionalis (northern long-eared bat) [3,
9]. Pseudogymnoascus destructans, a psychrophilic fungus,
is well adapted to grow in the cold conditions prevailing
in caves and mines [2, 10]. It has been shown to secrete
proteolytic enzymes similar to the fungi that cause skin
infections (dermatophytes); [2] and has a clonal popula-
tion in the USA [11–13]. Low body temperature, along
with reduced immune system in hibernating bats, provides
the optimal growth environment for Pd [14–17].
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Alarmingly, Pd has been found to survive in the affected
hibernacula, even in the absence of bats [18–20]. Thus, an
infected hibernaculum could remain contaminated with
Pd for prolonged periods of time and serve as the foci for
new infections [21]. Mathematical models have predicted
that reducing Pd in caves and mines may prevent WNS-
associated bat mortality [20, 22]. Currently, efforts are be-
ing devoted to the development and testing of chemical
and biological agents for the effective eradication of Pd
from bat hibernacula and hibernating bats. Although these
control strategies appear to be promising, they are not
being used for the large-scale decontamination of hiber-
nacula, because of the likely off-target effects on the native
microbial communities [23–27]. Considering the mass
mortality of bats caused by WNS and the economic loss
of 22.9 billion dollars to agricultural pest control in the
USA annually [28], imminent steps are needed to decon-
taminate Pd from bat hibernacula and break its transmis-
sion cycle.
Previously, we characterized a novel, psychrotolerant

Trichoderma polysporum (Tp) strain (WPM 39143) from
the William Preserve Mine, Ulster County, NY, one of
the mines at the epicenter of the WNS zoonotic [29]. Tp
grew well at low temperatures of 6–15 °C and inhibited
Pd in laboratory media and autoclaved soil samples [29].
The present study aimed at further evaluation of Tp as
an effective biocontrol agent against Pd. Specifically, we
examined (a) if Tp could act as an effective biocontrol
agent against Pd in the natural soil from bat hibernacula
and (b) whether Tp treatment impacted the native micro-
bial communities in the natural soil from bat hibernacula.

Methods
Fungal strains and media
Pseudogymnoascus destructans (Pd) strain M1379 and
Tp strain WPM 39143 were used as described previously
[29, 30]. All fungal isolates were maintained on Sabour-
aud dextrose agar (SDA) slants at 4 °C and stored in
20% glycerol at − 70 °C in sterile cryogenic vials. Sabour-
aud dextrose agar fortified with an enhanced panel of
antibacterials (SDA-A; Additional file 1), SDA-A with
cycloheximide (0.2 g/L), and rose bengal agar with chlor-
amphenicol (RBC; 100 μg/ml) were used for the isolation
of Pd, Tp, and other fungi from bat hibernacula as
described previously [30]. Potato dextrose agar (PDA)
and water agar (WA) were used to induce spore forma-
tion in Pd and Tp. Millet seeds extract was used to for-
tify nutrients in the soil samples from bat hibernacula for
Tp and Pd interaction studies. In brief, 50 g of millet seeds
was added in 250 ml water, was autoclaved at 121 °C for
20 min, and was mixed with an additional 250 ml steril-
ized water. The resulting extract was passed through mus-
lin cloth, autoclaved as above, allowed to cool, and stored

at 4 °C until used. All the experiments were performed in
the biosafety cabinet in a biosafety level 2 laboratory.

Biocontrol application of Tp in natural soil
To determine Tp-induced killing of Pd in a natural soil,
one soil sample from Aeolus cave (AC), Bennington
County, VT (dark black in color; collection date of 11/13/
2015), and one soil sample from Barton Hill Mine (BHM),
Essex County, NY (course sediments; collection date of
12/28/2015), were used. Soil samples, approximately
100 g, from each site were weighed, transferred to an
autoclaved mortar and pestle, and mixed gently to obtain
a homogeneous mixture. The mixture was aliquoted into
eight vials for each site, with each vial containing 5 g of
soil. Four vials were inoculated with Pd (105 conidia/g
soil), and the remaining four vials received sterilized
water. Following 1-week post-incubation, two of the four
Pd-containing vials received Tp (105 conidia/g soil) to ob-
tain a 1:1 ratio of Pd to Tp. The other two Pd containing
vials received sterilized water (Pd only). Of the remaining
four vials in which Pd was not inoculated, two received
Tp (105 conidia/g soil), which served as Tp only controls,
while the remaining two vials received sterilized water and
served as soil only controls (Additional file 2). All the vials
were incubated at 10 °C for 5 weeks.
To determine the number of Tp required for killing

Pd in subsequent experiments, 10-fold (106 conidia/g
soil) and 100-fold (107 conidia/g soil) higher concentra-
tions of Tp conidia than Pd conidia (105 conidia/g soil)
were added and these soil samples were incubated at 10 °
C and then processed at 1, 3, and 5 weeks post-incubation
(Additional file 3).

Culture recovery of Pd, Tp, and other fungi
Following incubation of soil samples at 10 °C for 1–5 weeks,
100 mg of soil sample was removed from each vial in dupli-
cate and transferred into 2-ml screw cap vials. The soil
sample was suspended in 500 μl of sterilized water and vor-
texed vigorously. Ten-fold dilutions of the supernatant were
prepared, and 50 μl of each dilution was plated onto various
media plates (150 mm diameter) in duplicate. The plates
were incubated at 10 °C and checked periodically for the re-
covery of Pd, Tp, and other fungi as described previously
[30]. In brief, SDA-A medium was used to determine the
Tp colony-forming units (CFUs), SDA-A with cyclohexi-
mide was used to determine Pd CFU, and the RBC medium
was used for the determination of other fungi present in
the cave and mine soil samples. The percent killing of Pd
by Tp was calculated using a formula 1 − (Pd CFU experi-
ment/Pd CFU control) × 100.

Dual culture challenge studies
For dual culture challenge studies, approximately 1 × 1 mm
of freshly grown Tp fungal hyphal mat was inoculated on
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one side of the SDA plate. Similarly, freshly grown fungal
hyphal mat from various fungi obtained from both AC and
BHM were inoculated on the opposite side of the plate.
The interactions between Tp and other fungal isolates were
assessed by measuring colony diameter following 18 days
post-incubation at 10 °C. The Tp and different fungal iso-
late cultures alone served as a control.
Statistical analysis for culture-based assays (CFU enumer-

ation and colony diameter) was performed using GraphPad
Prism software (GraphPad, San Diego, CA, USA). The com-
parison of two groups was performed using a two-tailed un-
paired t-test with a p value of ≤ 0.05 accepted as significant.

Metagenomics of soil samples
DNA libraries
For the microbial community analysis, DNA from 100 mg
of untreated and Tp-treated (105 and 106 conidia/g soil for
AC and 105 conidia/g soil for BHM) soil samples (in du-
plicate) were extracted with the Powersoil DNA isolation
kit (MO BIO Laboratories, Carlsbad, CA, USA) (Add-
itional file 4). DNA concentrations were measured using a
Nanodrop spectrophotometer ND 2000 (Nano-Drop
Technologies, Wilmington, DE, USA). DNA libraries were
prepared using a two-step PCR. In the first PCR, the pri-
mer sets targeted the ITS2 region of the ribosomal RNA
(rRNA) gene of fungi [31] and the hypervariable region
V4 of the 16S rRNA gene of bacteria and archaea [32].
The same Illumina adaptor sequences were added to both
fungal and bacterial/archaeal primers. Thus, the primer
set used for the first PCR for fungi had the following
sequence: Forward primer 5′- TCGTCGGCAGCGTCAG
ATGTGTATAAGAGACAGAACTTTYRRCAAYGGAT
CWCT-3′ (locus specific sequence in bold) and Reverse
primer 5′- GTCTCGTGGGCTCGGAGATGTGTATAAG
AGACAGAGCCTCCGCTTATTGATATGCTTAART -3′
(locus-specific sequence in bold). The primer set used for
the first PCR for bacteria/archaea had the following se-
quence: Forward primer 5′- TCGTCGGCAGCGTCAGA
TGTGTATAAGAGACAGGTGYCAGCMGCCGCGGTA
A-3′ (locus-specific sequence in bold) and Reverse primer
5′- GTCTCGTGGGCTCGGAGATGTGTATAAGAGAC
AGGGACTACNVGGGTWTCTAAT-3′ (locus-specific se-
quence in bold). PCR reactions were carried out in a total
volume of 25 μl. Three microliters of extracted DNA (5 ng/
μl) was added to the PCR reaction containing 15.1 μl of ster-
ile water, 0.2 μl of bovine serum albumin, 2.5 μl of Accutaq
LA buffer, 2 μl of dNTPs, 0.2 μl of Accutaq™ LA DNA poly-
merase (Sigma-Aldrich, St. Louis, MO, USA), and 1 μl each
of fungal and bacterial/archaeal forward and reverse primers.
All the PCR reactions were carried out in triplicate on a
C1000 TouchThermal Cycler (BioRad, Hercules, CA, USA).
The thermocycling conditions for fungal-specific PCR were
initial denaturation at 95 °C for 1 min, followed by 27 cycles
of denaturation at 94 °C for 30 s, annealing at 55 °C for

1 min, extension at 68 °C for 1 min, followed by final exten-
sion at 68 °C for 5 min. For bacterial/archaeal-specific PCR,
thermocycling conditions were 95 °C for 1 min, followed by
27 cycles of denaturation at 94 °C for 30 s, annealing at 63 °
C for 1 min, extension at 68 °C for 1 min, and a final exten-
sion at 68 °C for 5 min. The first-stage PCR products were
run on the agarose gel to confirm the length of the respect-
ive bands. Triplicate samples were pooled to limit possible
PCR artifacts. An Agencourt AMPure XP PCR purification
kit (Beckman Coulter, Inc., Indianapolis, IN, USA) was used
for the purification of the PCR products. The second PCR
step added dual indices (barcode) along with Illumina se-
quencing adaptors using the Nextera XT index kit (Illumi-
na-16S Metagenomics protocol). PCR reactions were
carried out in a total volume of 50 μl, which contained 5 μl
of PCR product from the first PCR and the 2× KAPA Hifi
HotStart Ready mix. The reaction conditions were initial de-
naturation at 95 °C for 3 min, followed by eight cycles of de-
naturation at 95 °C for 30 s, annealing at 55 °C for 30 s,
extension at 72 °C for 30 s, and a final extension at 72 °C for
5 min. All PCR reactions were performed in triplicate. The
PCR products were cleaned using an Agencourt AMPure
XP PCR purification kit. DNA concentration was measured
using a Qubit 2.0 Fluorometer (Invitrogen, Carlsbad, CA,
USA) and the size was measured with an Agilent Tapesta-
tion using the D1000 High Sensitivity kit. The resulting
DNA libraries were pooled, denatured, and sequenced on
MiSeq using MiSeq Reagent kit v3 (600 cycles) (Illumina
Inc., San Diego, CA, USA) by the Wadsworth Center Ad-
vanced Sequencing Core Facility.

Sequence processing
The Wadsworth Sequencing Core demultiplexed reads
and removed primer and linker sequences before ana-
lysis. The subroutines of BBTools v36.38 [33], BBmerge
and BBduk, merged all pairs of forward and reverse
reads, quality trimmed merged pairs (with the parame-
ters trimq = 20, minq = 20, minlength = 150, minavgqual-
ity = 20, efilter = 3, mininsert = 250, mininsert0 = 250),
and removed any remaining forward and reverse primers
for fungal and bacterial samples. The ITS2 region for
taxonomic identification was extracted from fungal se-
quences using ITSx v.1.0.11 [34], which removed 5.8S
and 28S regions from merged sequences. Chimeric
sequences were removed using USearch61 with a modi-
fied Unite “ITS2-only” reference dataset [35] (version 7.2
release 28.06.2017) which was designed to serve as a
chimera-free reference database. Chimeric 16S sequences
were removed from bacterial samples in QIIME v.1.9.0
[36] via Usearch61 [37, 38] and the most recent version of
the Greengenes database (gg_13_8 minor release of
gg_13_5 from 15.08.2013). Using default parameters,
QIIME further processed quality-filtered sequences, which
were then clustered into operational taxonomic units
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(OTUs) at 97% similarity by the UCLUST algorithm [37]
and assigned taxonomy by mothur v.1.25 [39, 40] with the
pick open reference OTU option and a default confidence
level of 0.5. The latest releases of the Greengenes 16s
(gg_13_8) and UNITE datasets (version 7 release
28.06.2017) [41], both clustered at 97% similarity, served
as the reference databases for clustering and taxonomic
assignment of bacterial and fungal sequences, respectively.

Sample statistics
For bacterial and fungal datasets, Chao1, observed spe-
cies, and Simpson’s index estimates of alpha diversity
were calculated in QIIME with rarefied OTU tables. Sig-
nificant differences across treatments and locations were
assessed via a non-parametric t-test with 999 permuta-
tions of the p value. QIIME also calculated beta diversity
with Bray Curtis, and Euclidean metrics and significant
differences in community composition were identified
with an analysis of similarities (ANOSIM). Principal
component analysis plots were generated in R v.3.3.0 [42]
with Euclidean distance matrices to confirm consistency
among replicates and verify that most of the variation in
datasets was derived from differences in treatment and lo-
cation (data not shown).
Bacterial and fungal samples were rarefied to depths of

190,000 and 92,226, respectively, and relative abundances
were summarized to a genus level (if possible). Abundance
count at the phylum and genus levels were exported from
QIIME and analyzed in DESeq2 v.3.5 [43] in R to identify
significant changes in taxonomic composition. Only taxa
with four or more counts across samples were included in
DESeq2 analyses to remove sparse OTUs.

Fungal identification
All fungi recovered from the soil samples were identified
by morphological and molecular methods [44]. For mo-
lecular testing, DNA from pure fungal colonies was ex-
tracted using MasterPureTM Complete DNA and RNA
purification kits (Epicenter, Madison, WI, USA) as per
manufacturer’s instructions. The extracted DNA was
used for the amplification of internal transcribed spacer
(ITS) regions 1 and 2 (ITS1, 5.8S, and ITS2) of the ribo-
somal gene as described previously [30]. In some in-
stances, where the ITS region failed to provide fungal
identification, the D1/D2 region of the large subunit
(LSU) of the 28S rDNA gene was amplified [30]. PCR
was carried out as described in White et al. [45]. PCR
products were cleaned with ExoSAP-IT (USB Corp.,
Cleveland, OH, USA) and sequenced at the Wadsworth
Center Advanced Genomics Core. The sequences were
assembled and edited for accuracy using Sequencher
software 4.8 (Gen Codes Corp., Ann Arbor, MI, USA).
All unknown sequences were compared to the NCBI
GenBank database with blast [46] and the Westerdijk

Fungal Biodiversity Institute database [47] for fungal
identifications; % identity of ≥ 97 was used for species
confirmation. In case of discrepant results between the
two databases, the Westerdijk Fungal Biodiversity Insti-
tute database was preferred as it has curated sequences.

Results
Biocontrol of Pd in natural soil – A culture-based approach
Pd was recovered from native AC soil at ~ 104 CFU/g soil
(Fig. 1). Pd recovery was very low from BHM (~ 8 CFU/g
soil), consistent with our previous observations [30].
Treatment of AC soil with Tp (105 conidia/g soil) resulted
in 100% inhibition of the native Pd population within
5 weeks post-incubation at 10 °C, confirming high biocon-
trol potential of Tp (Fig. 1). However, when AC and BHM
soil samples were enriched with Pd (105 conidia/g soil),
the Tp-induced killing of Pd was markedly reduced to
approximately 40 to 43% (data not shown). Maximum
killing of Pd in enriched soil was observed, when Tp in-
oculum was increased from 1-fold (105conidia/g soil) to
10-fold (106 conidia/g soil) to that of Pd (105 conidia/g
soil). Although Tp killed Pd as early as 1-week
post-incubation, 95% killing was achievable at 5-week
post-incubation (Fig. 2a). Further increase in Tp to
100-fold of Pd was not effective as the killing of Pd was
observed to be only 84% at 5-week post-incubation
(Fig. 2a). Enriching soil nutrients by adding millet seeds
extract did not impact Tp-induced killing of Pd as only
87 and 72% Pd was killed with the additions of 10-fold
and 100-fold more Tp, respectively (Fig. 2b). These re-
sults indicated that the ratio of Tp to Pd of 10:1

Fig. 1 Inhibition of native Pd by Tp in AC soil samples. Untreated
soil (soil alone) and soil treated with Tp (105 conidia/g soil) were
incubated at 10 °C. Five weeks post-incubation, two aliquots from
each sample were processed for the recovery of Pd. Tp induced
100% killing of native Pd in the AC soil samples (p < 0.05)
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appeared to optimally render the maximum inhibitory
effect. The soil microbial communities did not hamper
Tp growth in any of the soil samples tested. The Tp
growth was not only sustained but also increased with
prolonged incubation (data not shown).

Effect of Tp treatment on microbial communities of cave
and mine soil samples—a metagenomics approach
Sequence analysis
A total of 2,003,427 fungal sequences passed initial
quality filters. Of these, 96% (1,921,639) passed QIIME’s

quality standards as well, while 0.07% (1347) were
flagged as chimeric and removed (Table 1). This re-
sulted in an average of 192,163 sequences per sample
(N = 10), which were clustered into 12,507 OTUs. For
all bacterial samples, a total of 3,295,648 sequences
passed the initial quality filters of BBtools with 97% of
these sequences (3,177,499) accepted by QIIME and
0.6% (21,503) identified as chimeric and removed
(Table 1). On average, there were 317,749 sequences
per sample (N = 10), which clustered into 27,427
OTUs.

Fig. 2 Inhibition of enriched Pd by Tp in AC soil samples. a Soil samples from AC were inoculated with Pd (105 conidia/g soil) in duplicate. Following
7 days post-incubation at 10 °C, Tp at 10-fold (106 conidia/g soil) or 100-fold (107 conidia/g soil) to that of Pd (105 conidia/g soil) was added. Untreated soil
(soil alone) and soil containing Tp served as controls. Two aliquots from each sample were processed for the recovery of Pd in culture at week 1, 3, and 5
post-incubation. Approximately, 50 and 67% killing of Pd was observed with 10-fold and 100-fold higher Tp at week 1 post-incubation, which gradually
increased to 57 and 72% at week 3 post-incubation and 95 and 84% at week 5 post-incubation. b Soil samples were inoculated with Pd and treated with
Tp as explained in a, except that these samples also received 1% millet seeds extract. Addition of millet seeds extract did not enhance Tp killing of Pd.

Table 1 Fungal and bacterial community analyses by high throughput sequencing

Sample Fungi Bacteria

BBmerge and bbduk QIIME and Usearch61 BBmerge and bbduk QIIME and Usearch61

AC Soil alone 1 96,993 92,225 247,465 237,561

AC Soil alone 2 161,501 153,529 321,874 308,610

AC Soil + Tp A1 214,333 204,336 393,209 377,754

AC Soil + Tp A2 166,355 158,564 344,568 330,694

AC Soil + Tp B1 323,672 312,063 444,201 427,840

AC Soil + Tp B2 116,711 105,622 207,965 199,979

BH Soil alone 1 156,003 150,631 275,597 267,273

BH Soil alone 2 233,462 225,964 306,924 298,202

BH Soil + Tp A1 205,092 200,594 304,892 295,134

BH Soil + Tp A2 329,305 318,111 448,953 434,452

Total 2,003,427 1,921,639 3,295,648 3,177,499

Soil samples from Aeolus Cave (AC) and Barton Hill Mine (BHM) were treated with Tp at the concentration of 105 conidia/g soil (A1, A2) or 106 conidia/g soil (B1,
B2) followed by gDNA extraction, PCR, and high throughput sequencing. Untreated soil samples (soil alone) were included for comparison. Note, due to small
number of Pd recovered from BHM soil, the Tp treatment was limited to 105 conidia/g soil
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Tp treatment and location effects on alpha and beta diversity
of soil samples
No significant differences in the alpha diversity were ob-
served across treatments or geographical locations for
either bacterial or fungal communities (Additional file 5).
Fungal community composition changes, as assessed by
the beta diversity estimates, also did not differ signifi-
cantly due to Tp treatment of either AC or BHM soils.
However, there was a significant difference in commu-
nity composition between the two locations (ANOSIM
test statistic = 1.0, p value 0.003). Similarly, bacterial beta
diversity was not significantly altered by Tp treatment
within AC or BHM but varied significantly between
sites.

Treatment effect on the abundance of fungal and bacterial
communities at the phylum and genus levels
For fungi, 97% of all sequences could be assigned at the
phylum level, with seven phyla identified from AC and
five phyla identified from BHM. Both AC and BHM
were dominated by OTUs from Ascomycota and Basid-
iomycota, which comprised over 80% of the fungal com-
munities (Fig. 3a). Soil subjected to Tp treatment (105

conidia/g soil) showed no significant differences in the
phylum abundances for fungi at either AC or BHM
(Additional file 6). However, there was a significant in-
crease in Ascomycota for AC soil subjected to a higher
Tp treatment (106 conidia/g soil, Additional file 6),
which reflected the dramatic increase in Trichoderma in
these samples (Fig. 3b). Similarly, analysis at the genus
level revealed highly significant increases in Trichoderma
for both AC and BHM for both treatments, with few
other taxa being affected (Fig. 3b, Additional file 7). Al-
though no significant changes in Pseudogymnoascus
abundance were observed (Additional file 7), the genus
encompasses several species, which might not be influ-
enced by Tp treatment.
For bacteria/archaea, a total of 50 phyla were identified

from AC, whereas only 37 were identified from BHM
with 0.27% of the sequences designated as unclassified
(Bacteria; Other). The five most abundant phyla in AC
were Acidobacteria (28%), Proteobacteria (18%), Plancto-
mycetes (13%), Chloroflexi (10%), and Actinobacteria
(9.5%) (Fig. 3c). The most abundant phyla identified
from BHM included Planctomycetes (11%), Acidobac-
teria (10%), Firmicutes (10%), and Actinobacteria (8.8%),
with Proteobacteria (44%) comprising almost half of the
BHM bacterial community (Fig. 3c). Despite apparent
differences in the community richness and evenness be-
tween the AC and BHM, there were no significant differ-
ences in alpha diversity (Additional file 5). There were
also no significant differences in bacterial relative abun-
dances between untreated and Tp-treated soil (105 Tp
conidia/g soil) for AC at the phylum or genus level

(Additional files 8 and 9). For AC soil samples treated
with 106 Tp conidia/g soil, 12 phyla and 40 genera were
significantly affected compared to untreated soil samples
(Additional files 8 and 9). For BHM soil samples treated
with 105 Tp conidia/g soil, no phyla and only 12 genera
showed significant changes (Additional files 8 and 9).

Tp interaction with other cave/mine fungi—a culture-based
approach
A total of 39 fungal species were recovered from AC, and
of these, 85% belonged to Ascomycota, 13% belonged to
early diverging fungal lineage (EDFL), and 2% belonged to
Basidiomycota (Fig. 4a, Additional file 10). Of the 31 fun-
gal species recovered from BHM, 87% belonged to Asco-
mycota, 10% belonged to EDFL, and 3% belonged to
Basidiomycota (Fig. 4a, Additional file 11). Thus, Ascomy-
cota dominated the fungal species followed by EDFL and
Basidiomycota from both AC and BHM.

Dual challenge study
The dual interaction studies indicated that Tp is highly
specific in inhibiting Pd. In addition to Pd, only one fun-
gal isolate belonging to genus Microascus was inhibited.
The rest of the 67 fungal species collectively identified
from both AC and BHM were not inhibited, including
the closely related species Pseudogymnoascus pannorum
(Fig. 4b, Additional files 10 and 11).

Discussion
We demonstrated that the biocontrol agent Tp inhibited
Pd in the presence of microbes that are native to the soil
from the affected hibernacula. This finding further ex-
panded our earlier observations of the efficacy of Tp in
killing of Pd in autoclaved soil samples [29]. Another
important finding of this study was the specificity of Tp
for killing Pd with minimal to no impact on the micro-
bial diversity and community structures of soil samples
tested from both AC and BHM. Even though the micro-
bial community compositions of AC and BHM were
significantly different, they were not affected by Tp treat-
ment, suggesting that the soil communities are relatively
robust and indifferent to Tp treatment. The combined
culture-based and metagenomics approaches allowed us
to follow the fate of the biocontrol agent and its target
in the treated soil. Culture-based monitoring of Pd and
Tp was important to estimate loss of viable organisms
while DNA-based approaches provided better census of
microbial communities.
Several DNA and culture-based studies have revealed

wide distribution and persistence of Pd in bat hibernac-
ula [18, 21, 48, 49]. Other published cave fungal surveys
indicate that Pd could survive and persist in bat hiber-
nacula for prolonged periods and can have impact on
both WNS disease management and epidemiology [18].

Singh et al. Microbiome  (2018) 6:139 Page 6 of 11



Fig. 3 (See legend on next page.)
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To eradicate Pd from bat hibernacula, we need highly
competent biocontrol agent, which can grow, sustain,
and selectively kill Pd without impacting the hibernacula
ecosystem. The Tp strain used in this investigation ful-
fills all these criteria, thereby strengthening the argu-
ment for application of Tp as a potential biocontrol
agent against Pd in caves and mines.
In concordance with metagenomics analysis, the

dual-culture challenge studies of Tp with several fungi
recovered from AC and BHM revealed that except for
one isolate of Microascus species, the growth of other
fungi was not affected by Tp. Microascus is a soil sapro-
phyte and a common agent of bio-deterioration [50].
Since other species in the genus Microascus were not
inhibited by Tp, we do not anticipate deleterious effects
on cave/mine ecosystem. Conversely, Tp grew well in
the presence of both fast- and slow-growing fungi, as
well as in the presence of other microbial communities
indigenous to the soil samples tested. The high survival
potential of Tp in hibernacula soil suggests its ability to
survive under unfavorable conditions and high repro-
ductive capacity.
Microbial communities play several critical roles in

the soil, including organic matter decomposition and

control of its cycle, regulation of mineral nutrient
availability, and nitrogen fixation [51]. Thousands of
bacterial, archaeal, and eukaryotic organisms are
present in natural soil and collectively contribute to
maintaining the myriad of functions of soil. Microbial
inoculation of a biocontrol agent can cause tremen-
dous changes in the number and composition of
taxonomic groups. These changes can increase the di-
versity of the soil samples while also having toxic ef-
fects on the indigenous microbes [52]. Thus, the
practical use of any microbial inoculation should be
rigorously tested in a laboratory setting to avoid any
deleterious effects to microbial diversity in soils. To
this end, we have rigorously tested the use of Tp as a
biocontrol agent for the eradication of Pd in cave and
mine soil samples and Tp treatment in large had no
impact on the native microbial communities other
than Pd.

Conclusions
The present study demonstrates the remarkable speci-
ficity and high potency of Tp for killing Pd in the
presence of indigenous microbial communities with
minimal to no impact on the microbial community

(See figure on previous page.)
Fig. 3 Relative abundance of fungal and bacterial communities in soil samples from bat hibernacula with or without Tp treatment. The soil samples
from Aeolus Cave (AC) and Barton Hill Mine (BHM) were treated with Tp at the concentration of 105 conidia/g soil (A1 & A2) or 106 conidia/g soil (B1 &
B2). Untreated soil samples (soil alone) were included for comparison. gDNA was extracted followed by PCR and high throughput sequencing. a The
relative abundance of fungal phyla is shown. Ascomycota dominated, followed by Basidiomycota and early diverging fungal lineages (Chytridiomycota,
Entomophthoromycota, Mortierellomycota, Mucormycota, and Rozellomycota) from both AC and BHM. b The relative distribution of 25 most abundant
fungal genera is shown. The increases in Trichoderma as represented by “T” in both AC and BHM were due to the exogenous addition of Tp. c The
relative abundance of bacterial phyla is shown. Acidobacteria dominated AC soil and Protobacteria dominated BHM soil

Fig. 4 Fungal recovery from bat hibernacula and their interaction with Tp. a Soil samples from Aeolus Cave (AC) and Barton Hill Mine (BHM) were
suspended in sterile water and then spread on culture media plates. Colonies recovered were identified by sequencing of the ITS and D1/D2
regions of the ribosomal gene followed by BLAST search. Pie charts represent the relative distributions of fungal phyla. Ascomycota dominated
followed by Early Diverging Fungal Lineage, and Basidiomycota in both AC and BHM. b Interaction of Tp with other fungal species isolated from
AC and BHM was carried out on SDA plate and the results of these interactions were assessed 18 days post-incubation at 10 °C. Upper panel
denotes Tp-induced inhibition of Pd and Microascus species (Ms). Lower panel denotes fungal species not inhibited by Tp. Two such examples are
Mortierella clonocystis (Mc) and Penicillium sopii (Ps)
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structure or diversity present in AC and BHM soil
samples. The study rigorously tested the application
of Tp in natural soil samples in a lab setting, with re-
sults that strengthens the argument for Tp’s applica-
tion as a biocontrol agent under field conditions.
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