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ANALYTIC PERSPECTIVE

Clarifying questions about “risk factors”: 
predictors versus explanation
C. Mary Schooling1,2* and Heidi E. Jones1

Abstract 

Background:  In biomedical research much effort is thought to be wasted. Recommendations for improvement have 
largely focused on processes and procedures. Here, we additionally suggest less ambiguity concerning the questions 
addressed.

Methods:  We clarify the distinction between two conflated concepts, prediction and explanation, both encom-
passed by the term “risk factor”, and give methods and presentation appropriate for each.

Results:  Risk prediction studies use statistical techniques to generate contextually specific data-driven models 
requiring a representative sample that identify people at risk of health conditions efficiently (target populations for 
interventions). Risk prediction studies do not necessarily include causes (targets of intervention), but may include 
cheap and easy to measure surrogates or biomarkers of causes. Explanatory studies, ideally embedded within an 
informative model of reality, assess the role of causal factors which if targeted for interventions, are likely to improve 
outcomes. Predictive models allow identification of people or populations at elevated disease risk enabling targeting 
of proven interventions acting on causal factors. Explanatory models allow identification of causal factors to target 
across populations to prevent disease.

Conclusion:  Ensuring a clear match of question to methods and interpretation will reduce research waste due to 
misinterpretation.
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Introduction
Biomedical research has reached a crisis where much 
research effort is thought to be wasted [1]. Recommen-
dations to improve the situation have largely focused 
on processes and procedures, such as addressing high 
impact questions, starting from what is already known, 
registration of protocols, and making data available [1]. 
Here we additionally suggest that ensuring the concep-
tual approach matches the question would avoid conflat-
ing different questions and mistaking the answer to one 
question for the answer to a different question. Much 
observational biomedical research concerns the role 
of “risk factors” in disease, which is conducted for two 
main reasons, (1) risk stratification or prediction and 

(2) assessing causality. These are two fundamentally dif-
ferent questions, concerning two different concepts, i.e., 
prediction versus explanation, which require different 
approaches and have substantively different interpreta-
tions. However, the use of the term “risk factor” as some-
thing which may predict and/or explain means that these 
two concepts may be conflated so that a study may not 
fulfill either objective, i.e., neither predicts nor explains. 
For example, major predictors of cardiovascular disease 
have long been assumed to be targets of intervention [2]. 
After extensive and expensive research investment over 
more than 35  years, including the development, test-
ing and failure of an entire new class of drugs (CETP 
inhibitors) [3], high density lipoprotein cholesterol has 
recently been identified to be a non-causal risk factor 
(i.e. predictor) for cardiovascular disease [4, 5]. Equally, 
factors that do not predict risk are very rarely identified 
as causal factors (such as factors that are ubiquitous in a 
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given community and thus are not caught as increasing 
risk) [6], which suggests interventions are being missed. 
Given, the importance of avoiding ‘low priority questions’ 
[1], here, we clarify the difference between these two con-
cepts and their use in observational studies.

Prediction models
Risk stratification, prediction models or ‘weather fore-
casting’ models identify people or groups at high or ele-
vated risk of a particular health condition, ideally so that 
they can be offered proven interventions, or other miti-
gation can be implemented. A very successful example of 
a risk stratification model is the Framingham score which 
predicts 10-year risk of heart disease in healthy people 
[7], to inform prevention, such as use of lipid modulators. 
Other examples include prognostic models for identify-
ing the best cancer treatment [8], or models for predict-
ing disease trends, such as Google Flu Trends [9]. These 
predictive models typically rely on statistical projections 
of previous patterns, and to be feasible usually rely on 
easily captured information. For example, the Framing-
ham score can be applied in daily clinical practice, even 
in resource poor settings, because it only requires assess-
ment of age, sex, smoking, blood pressure, lipids and dia-
betes, which are relatively cheap and quick to measure. 
Google flu trends was based on internet search terms for 
particular symptoms [9].

Prediction models are usually developed based on 
statistical criteria to fit the distribution of the data well, 
using techniques such as stepwise selection, or more 
recently machine learning techniques. Prediction models 
often include several “risk factors” to obtain a model that 
fits the data well and can explain the greatest amount of 
variance in the outcome health condition. The contribu-
tion of each “risk factor” is presented so that the reader 
can see the independent contribution of each one to 
the overall prediction, as well as measures of model fit. 
Prediction models are usually validated in similar popu-
lations. As with all statistical models they cannot be 
expected to predict well in novel circumstances [9], and 
are best developed using a representative sample of the 
population in which they will be applied. Consistently 
poor measurement will impair precision, because it adds 
noise. Inconsistently poor measurement will impair pre-
dictive power, because it may change the relation between 
risk factor and outcome. Prediction models may not be 
generalizable to populations that differ from the one in 
which they were developed because in a new population 
the correlation between predictive and true causal factors 
may be different. For example, the Framingham model 
often has to be calibrated to predict absolute risk of heart 
disease correctly in new populations [10]. While Google 
Flu trends is no longer providing estimates; it became 

inaccurate, possibly because the model needed dynamic 
recalibration of the relation between search terms and 
influenza to stay on track [9]. Tried and tested predic-
tion models are immensely valuable for identifying target 
populations, i.e. people or groups in need of prevention 
or treatment, but the “risk factors” that predict a health 
condition are not necessarily targets of intervention. For 
example flu symptoms do not cause influenza, and are 
not targets of intervention to prevent the occurrence of 
flu. Whether the “risk factors” that predict health con-
ditions in risk stratification models are also targets of 
intervention has to be established from different stud-
ies designed to assess effects of interventions. As such, it 
is not appropriate to calculate a population attributable 
risk or proportion for “risk factors” from a risk prediction 
model, because removal of these “risk factors” might or 
might not affect population health. Similarly, the purpose 
of predictive models is to explain the greatest amount of 
the variance in the outcome, so only factors that contrib-
ute to explaining the variance need to be included. The 
concepts of confounding, mediation and effect measure 
modification are not applicable to predictive models. 
Interaction terms can be added to predictive models to 
improve model fit, but these interactions should not be 
interpreted as indicating different effects by subgroup.

Explanatory models
Explanatory models can be thought of as simplified, 
abstract, propositional models for some particular aspect 
of how the world works, which provide a guide as to how 
to manipulate items of interest. As such, explanatory 
models are based on potentially causal factors i.e., factors 
whose manipulation changes the outcome [11]. Studies 
assessing causality are explanatory rather than predic-
tive. Explanatory models are designed to assess whether 
a particular “risk factor” explains the occurrence, or 
course, of disease and as such is a valid target of inter-
vention. “Risk factors” selected as potential causal factors 
might be based on “risk factors” from predictive models, 
might be theoretically based or might be hypothesized 
from other sources. For example, the Framingham score 
includes factors, such as smoking and blood pressure, 
which undoubtedly cause heart disease, but also other 
“risk factors”, such as age, sex and high-density lipopro-
tein, whose causal role in heart disease is less clear [12]. 
In contrast, factors that do not predict disease might be 
identified as possible causal factors based on physiology 
or well-established theories. For example, observation-
ally telomere length does not appear to predict renal cell 
cancer, but people with genetically longer telomeres are 
at greater risk [13], suggesting a causal role in renal cell 
cancer, as in other cancers [14].
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Studies assessing the role of causal factors need to 
avoid the major sources of bias in observational studies 
designed to assess causality, which can be most simply 
thought of as confounding and selection bias [15, 16]. 
In addition, measurement error is often thought of as an 
additional source of bias, although non-differential meas-
urement error usually biases towards the null and dif-
ferential measurement error can be thought of as a form 
of selection bias. Confounding occurs when extraneous 
common causes of the putative cause and health condi-
tion are omitted so that a spurious relation is observed. 
For example, smoking causes both yellow fingers and 
lung cancer, so any assessment of the causal effect of yel-
low fingers on lung cancer would need to take smoking 
into account. Confounding is difficult to avoid unless all 
the common causes of the putative cause and disease are 
known. One of the simplest options, when experimental 
studies (randomized controlled trials) are not possible, is 
to use methods, such as Mendelian randomization, that 
are less open to confounding [17]. No method is assump-
tion free, and Mendelian randomization has stringent 
assumptions, nevertheless it has clarified some contro-
versies over the causes of cardiovascular disease, such 
as the role of high density lipoprotein-cholesterol [18]. 
A  sufficient set of confounders needs to be identified 
from external knowledge of causality, measured accu-
rately in the study and included in the analytic model, 
so that any residual confounding does not cause incor-
rect causal inference. Given, the difficulty of assessing 
both known and unknown confounders, demonstrating 
that estimates for other associations subject to the same 
confounding are coherent with known causal effects 
gives greater credence to any new estimates from the 
same study [19, 20]. For example, observational studies 
of hormone replacement therapy (HRT) in women found 
apparent benefits for accidents as well as for cardiovas-
cular disease [21], which suggests residual confound-
ing for cardiovascular disease because HRT would not 
be expected physiologically to protect against accidents. 
The apparently protective findings were also not coherent 
with estrogen having no benefit for men in the Coronary 
Drug project trial [22] and possibly causing myocardial 
infarction in young women [23]. Nevertheless, confound-
ing can, potentially, be addressed in an observational 
study by collecting sufficient relevant information 
about the study participants, so that all confounding is 
accounted for by adjustment, inverse probability of treat-
ment weighting or standardization.

Confounding is a causal concept and not relevant for 
predictive models [24]. Confounding cannot reliably be 
assessed from observational data; meaning that testing 
confounders for inclusion in an analytic model based 
on statistical correlations or changes in estimates is not 

valid. Conversely, factors that are not confounders should 
not be included in the analytic model because they may 
prevent assessment of the full effect of the hypothesized 
cause in question. For example, an observational study 
designed to assess the effect of alcohol on stroke should 
not include blood pressure in the model as a confounder. 
Blood pressure may cause stroke but is more likely a con-
sequence of alcohol use than a cause of alcohol use, mak-
ing blood pressure likely a mediator not a confounder. As 
such, adjusting the model for blood pressure would not 
give the full effect of alcohol on stroke. Studies designed 
to assess the role of potential causal factors should only 
present the effect estimate for the hypothesized cause 
in question, because estimates for other factors in the 
model are unlikely to be correctly controlled for con-
founding (sometimes referred to as the “Table  2 fal-
lacy”) [25]. However, it may be helpful to present models 
adjusting for different sets of confounders because of the 
difficulty of unambiguously identifying confounders. Fur-
ther, presenting both the crude and adjusted estimates 
for the hypothesized cause may elucidate the extent to 
which the effect estimate is influenced by the hypoth-
esized confounders.

Selection bias occurs when the sample is inadvertently 
constructed in such a way as to generate a spurious rela-
tion, most often inadvertent selection on common effects 
of hypothesized cause and outcome [24], hence some-
times described as “collider bias”. For example a study 
assessing the relation of smoking with lung cancer in very 
old people might find no relation because the sample is 
by definition only those who have survived their smoking 
habit i.e., is dependent on smoking and not getting lung 
cancer [26]. Selection bias is difficult to detect because it 
may require conceptualizing the relation of hypothesized 
causal exposure with disease in the sample absent from 
the study. For example, a study assessing the relation of 
obesity with death in people with diabetes [27] will not 
give a valid causal estimate unless it takes into account 
the relation of obesity with death in the people with dia-
betes who are absent from the study because of illness 
or previous death. Similarly, a spurious link between 
potential cause and disease may arise from measurement 
dependent on potential cause and disease. Recovering 
from selection bias is only possible in certain circum-
stances, for example when external data is available, but 
cannot be guaranteed [16].

Biomedical “risk factors” in explanatory models 
are potentially causal, i.e., manipulating the “risk fac-
tor” changes the outcome, and like all causal factors, 
in everyday experience, would be expected to be con-
sistent within their particular area of application, and 
hence generalizable (or more precisely transportable 
[11, 24]) to other situations. However, this consistency 
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may not always be apparent or relevant, because not all 
parts of an explanatory model may be applicable in all 
situations. For example, an explanatory model for lung 
cancer could include smoking and asbestos, among 
other factors, but attempting to reduce lung cancer by 
manipulating smoking would not be effective in a non-
smoking population. As such, consideration needs to 
be given as to how to apply the explanatory model so 
as to act on relevant causal factors in any given popu-
lation [24]. It is appropriate to calculate population 
attributable risks or proportions for explanatory fac-
tors, because these are causal factors whose manipu-
lation could impact population health. However, 
attributable risks or proportions tells us what propor-
tion of the outcome would not have occurred had the 
exposure been absent, but does not guarantee that will 
be the effect of removing the exposure.

Summary
Predicting and explaining risk of health conditions are 
answering two fundamentally different questions with 
completely different approaches and implications. In 
this context, researchers need to identify the intent 
or purpose of their study, as identifying who is at risk 
(risk stratification) or what would be an effective inter-
vention (explanation), so as to ensure research ques-
tions are addressed appropriately and effectively. Some 
“risk factors” can be both predictors and explanatory 
factors, at the same, which may lead to conflation of 
these terms in the research community. For example, 
blood pressure is both a predictor and a cause of car-
diovascular disease. However, studies where blood 
pressure was considered as a risk predictor would have 
a different purpose, research question and approach 
from studies where blood pressure was considered 
as an explanatory factor. Prediction and explana-
tion typically require different approaches in terms 
of conceptualization, modelling, analysis, validation, 
presentation, interpretation, generalizability and risk 
attribution as summarized in Table  1. Risk predic-
tion studies are using statistical techniques to gener-
ate contextually specific data-driven models requiring 
a representative sample that identifies people at risk 
of disease efficiently, but do not necessarily identify 
targets of intervention. Explanatory studies, ideally 
embedded within an explanatory model of reality, test 
causal factors that might be targets of intervention. 
Predictive models allow public health practitioners to 
identify populations at elevated risk of disease to ena-
ble targeting of proven interventions on causal factors. 
Explanatory models allow public health professionals 

to identify causal factors to target across populations 
to prevent disease.

Conclusion
Explicitly distinguishing between the different pur-
poses of observational biomedical studies and explicitly 
matching the approach, interpretation and wording to 
the researcher’s intent will enable more focused and 
productive use of research resources. Avoiding the 
imprecise term “risk factor” and using a word, such as 
‘predictor’, in risk stratification studies and ‘explana-
tory’ factor in causal studies might bring clarity of 
thought and thereby reduce unwarranted assumptions 
in biomedical research.
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