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Abstract

Background: Polygenic risk scores (PRS) describe the genomic contribution to complex phenotypes and
consistently account for a larger proportion of variance in outcome than single nucleotide polymorphisms
(SNPs) alone. However, there is little consensus on the optimal data input for generating PRS, and existing
approaches largely preclude the use of imputed posterior probabilities and strand-ambiguous SNPs i.e., A/T
or C/G polymorphisms. Our ability to predict complex traits that arise from the additive effects of a large
number of SNPs would likely benefit from a more inclusive approach.

Results: We developed PRS-on-Spark (PRS0S), a software implemented in Apache Spark and Python that
accommodates different data inputs and strand-ambiguous SNPs to calculate PRS. We compared performance between
PRSoS and an existing software (PRSice v1.25) for generating PRS for major depressive disorder using a community cohort
(N=264). We found PRSoS to perform faster than PRSice v1.25 when PRS were generated for a large number
of SNPs (~ 17 million SNPs; t =42.865, p = 5.43E-04). We also show that the use of imputed posterior probabilities and
the inclusion of strand-ambiguous SNPs increase the proportion of variance explained by a PRS for major depressive
disorder (from 4.3% to 4.8%).

Conclusions: PRSoS provides the user with the ability to generate PRS using an inclusive and efficient approach that
considers a larger number of SNPs than conventional approaches. We show that a PRS for major depressive disorder
that includes strand-ambiguous SNPs, calculated using PRS0S, accounts for the largest proportion of variance in
symptoms of depression in a community cohort, demonstrating the utility of this approach. The availability of this
software will help users develop more informative PRS for a variety of complex phenotypes.
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Background

Polygenic risk scores (PRS) provide an index of the cu-
mulative contribution of common variants to complex
traits [1]. The approach has been applied to a large
number of phenotypes, including height [2], body mass
index [3], and disease risk, most notably in the predic-
tion of psychiatric disorders [4—6]. PRS build on large
existing discovery genome-wide association studies
(GWAS), such as those provided by the Psychiatric Gen-
omics Consortium (PGC) [7], which provide weights
(odds ratios for binary outcomes and beta coefficients
for continuous traits) that index the association between
a single nucleotide polymorphism (SNP) and a pheno-
type of interest. Thus PRS are given by:

PRS = Z B,.Gi (1)

i=

Where B; = the natural logarithm of the odds ratio (or
beta coefficient) between the “i"™ SNP and phenotype of
interest and G; = allele count (e.g., 0,1,2) at the “th” SNIP.

PRS calculations are memory intensive, due to the
large number of SNPs considered in each PRS. PLINK
[8, 9] can be used to calculate PRS quickly. However,
datasets must first undergo a series of pre-processing
steps. PRSice v1.25 [10] is a software that simplifies this
process through semi-automation. It is written in R and
uses PLINK [8, 9] to calculate PRS. PRSice v1.25 uses
observed genotypes or imputed posterior probabilities
that have been converted to best guess genotypes (“hard
calls”) to calculate PRS. It can also accommodate im-
puted posterior probabilities but relies on a dated and
slower version of PLINK (version 1.07) [9]. Likewise,
PRSice v1.25 discards strand-ambiguous SNPs, which
are SNPs that have A/T or C/G alleles. If the strand as-
signment of the strand-ambiguous SNP is unknown,
misassignment can occur (see Fig. 1). Many GWAS do
not report the reference strand, which can lead to ambi-
guity on the identification of the “risk/effect allele” and
the corresponding weight that should be applied. Conse-
quently, strand-ambiguous SNPs are typically removed
prior to PRS calculations (e.g., [11-15]).

As a solution we propose to use allele frequency infor-
mation that many GWAS report (e.g, PGC [16, 17],
GIANT [18], STARRS [19]) to identify the “effect” allele
across datasets. The inclusion of the strand-ambiguous
SNPs would allow researchers to retain as much informa-
tion as possible from the discovery data, and likely give
rise to a better understanding of the complex phenotypes.

We have developed a new software package, PRS-on-
Spark (PRSoS), which accommodates observed genotypes
or imputed posterior probabilities. Further, it includes a
novel function that retains strand-ambiguous SNPs by
using allele frequency data to identify the effect allele
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between discovery and target datasets. Here we test the
performance of PRSoS against PRSice v1.25 using genetic
data derived from a Canadian cohort and demonstrate the
enhanced predictive power of PRS generated from PRSoS
in the prediction of symptoms of depression.

Implementation
PRS-on-Spark  (PRSoS:  https://github.com/MeaneyLab/
PRSoS) is implemented in Apache Spark 2.0.0+ (Spark) and
Python 2.7. Spark is an open source cluster-computing
framework for big data processing that can be integrated
into Python programming. As such, Spark facilitates data
partitioning and parallel processing across multiple nodes
and cores. For the current analyses we ran PRSoS on Linux
CentOS 7, 24-core Intel Xeon server with 256GB RAM,
using Spark standalone mode and a distributed file system
(Apache Hadoop) with 12 cores across one worker (max-
imum available RAM =48GB). PRSoS can also be imple-
mented as a standalone version on a single cluster. PRSoS
runs on the command line in Terminal on Linux or Mac,
or Command Prompt in Windows. PRSoS is currently
compatible with both Oxford genotype files (.gen/ .sample)
and Variant Call Format (VCF) files.

Equation 2 describes our approach to PRS calculation
that accommodates imputed posterior probabilities typ-
ical of imputed genetic data:

n

PRS = > (2B, p(AA

i=1..x

i) +1B,.p(AB;) + 0B;.p(AA;)

(2)
Which gives:

n

PRS = > (2B,.p(AA:) + B.p(AB)))

i=1..x

Which gives:

PRS = i Bi-(2p(AA;) + p(AB;))

i=1..x

where p(AA;) is the probability of a homozygous geno-
type for the effect allele (AA) at the i SNP, p(AB)) is
the probability of a heterozygous genotype with one
copy of the effect allele at the i SNP and p(BB,) is the
probability of a homozygous genotype with zero copies
of the effect allele ie, BB genotype. This approach
(Eq. 2) can also be used with observed genotypes and
hard calls to calculate PRS. In the final step PRS are di-
vided by the SNP count to obtain the weighted average
across the number of SNPs called for each sample,
which can vary across participants. These SNP counts
for each sample are also provided in the PRSoS output.
PRSoS implements an allele frequency function to
match the target dataset’s allele to the effect allele
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Fig. 1 Allele matching for polygenic risk scores (PRS) between discovery and target data. The effect alleles and their reverse complements are
indicated in red. Matching the effect alleles from the discovery data with the reported alleles in the target data is straightforward when SNPs are
not strand-ambiguous (top and middle panel). The allele in the target data can be misassigned for strand-ambiguous SNPs (bottom)

reported in the discovery GWAS for ambiguous SNPs
ie, A/T or C/G allelic pairs. Note, this function does
not explicitly identify strandedness (e.g., forward nor re-
verse strand) or perform strand alignment, rather it tests
if the allele frequency of the effect allele (in the discovery
dataset) matches the allele frequency for a given allele in
the target dataset. The function will discard
strand-ambiguous SNPs with an allele frequency be-
tween 0.4 and 0.6, to ensure alleles can be matched with
a high degree of certainty. If both the allele frequencies
are less than 0.4, then the first allele in the target data is
scored. Likewise, if both the allele frequencies are
greater than 0.6, then the first allele in the target data is
scored. In contrast, if only one of the allele frequencies
is less than 0.4 (while the other is greater than 0.6) then
the second allele in the target data is scored (Fig. 2). This

setting can be disabled (e.g., when the allele frequency in
the discovery data is not provided). We note that this ap-
proach is best suited to discovery/target datasets that have a
similar population structure and should not be applied to
datasets with marked differences in ethnicity across cohorts.

PRSoS can also provide a SNP log documenting the
SNPs included in a PRS at any given p-value threshold
(Table 1). This SNP list can be used for subsequent gene
ontology, pathway, or network analysis. The SNP log also
identifies SNPs that have been excluded from the PRS, for
example, when alleles in the discovery data and the target
data are not identical, such as for multi-allelic SNPs.

Sample data and polygenic risk scoring
We used genotype and phenotype data from the Maternal
Adversity, Vulnerability and Neurodevelopment (MAVAN)
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Fig. 2 PRS0S allele matching solution for strand-ambiguous SNPs. The effect alleles and their reverse complements are indicated in red. The
discovery effect allele and the target allele 1 are the same if their allele frequencies are both less than 0.4 or both more than 0.6 (top). The target
allele 1 is not the effect allele if one has low allele frequency and the other has high allele frequency (middle). Strand-ambiguous SNPs with an
allele frequency between 0.4 and 0.6 are excluded to increase the certainty of matching alleles

study [20] as our target dataset. Details about the inclusion,
selected measures, genotyping, quality control, and imput-
ation are described in Additional file 1. Depressive symp-
toms were assessed using a well-validated, standardized
questionnaire [21]. Table 2 provides a summary of the sub-
sample used. We used the PGC major depressive disorder
(MDD) GWAS as our discovery data [16]. We used the
PGC MDD clumped file (pgc.mdd.clump.2012—04.txt) for
all analyses. Clumping uses a greedy algorithm to selectively
prune SNPs within regions of linkage disequilibrium based
on the association p-value between each SNP and the
phenotype e.g., MDD of interest [22].

Performance analysis
We compared the performance (processing times in sec-
onds) of PRSice v1.25 and PRSoS across three types of

data input: 1) imputed posterior probabilities (Imputed
PP); 2) imputed genotypes converted to hard calls (Im-
puted HC), and 3) observed genotypes (Array Data).
However, PRSice v1.25 and PRSoS are best-suited for
different file formats: PLINK (.bed/.bim/.fam) format
and Oxford (.gen/.sample) format, respectively. Further,
.bed/.bim/.fam files are not compatible with imputed
posterior probabilities. Therefore, we first compared
PRSice v1.25 and PRSoS using the same format (Oxford
files) for the Imputed PP. Thereafter, we compared
PRSice v1.25 and PRSoS using their optimal formats for
the other two data inputs (PRSice = .bed/.bim/.fam and
PRSoS = .gen/.sample). We used PRSoS and PRSice
v1.25 to calculate PRS at five p-value thresholds (Pt =0.1,
0.2, 0.3, 04, 0.5) in a single run for each data input.
Strand-ambiguous SNPs were not considered in this test.
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Table 1 PRS0S optional data output Table 3 Genotyping file information
PRS_0.001 PRS_0.001_flag ~ PRS_0.5 PRS_0.5_flag  Discard Genotyping file File size SNP
51115507 Al (51115507 Al 52503243 format (GB) count
(517602604 A2 511661323 A2 (5519113 PRSice v1.25 Array Data .bim/.bed/fam 0.03 316,480
(54544201 A2 (12296077 Al Lr:wcputed .bim/.bed/fam 1.66 17,434,284
56683133 AT (ST26TIBTT Al Imputed gen/fam 2902 17,434,284
rs7609940 A2 1517024456 Al PP
157620685 Al 1s17692694 A2 PRSoS Array Data .gen/.sample 0.51 316,480
154544201 A2 Imputed .gen/.sample 28.09 17,434,284
16683133 Al HC
7609940 AD IFEEputed .gen/.sample 29.02 17,434,284

157620685 Al

Example of the SNP log included in the PRSoS output. The SNP log records
the SNPs that are used in the PRS at each p-value threshold and whether the
first allele column (“A1”) or the second allele column (“A2") in the target data
was scored. SNPs are recorded in the Discard column if the SNPs are discarded
due to non-matching alleles between the discovery and the target data

We performed this calculation three times for each soft-
ware. We used a paired t-test to describe differences in
total processing time. In addition, we tested if the optional
SNP log available in PRSoS (see Table 1) significantly in-
creases PRS computation time. Table 3 provides a sum-
mary of the genotype data input. All PRSoS calculations
were performed using 12 physical cores in our server, with
one thread of execution per core. PRSice v1.25 does not
have a multi-thread option; thus it used one thread on
one core. In a supplementary analysis, we illustrate the
enhanced performance of PRSoS across an increasing
number of cores (see Additional file 2: Fig. S1).

We also tested the performance of PRSice v1.25 and
PRSoS at an increasing number of p-value thresholds.
Specifically, we used the Imputed HC to generate PRS at
5, 10, 25, 50, 100, 125, or 200 p-value thresholds
(Pt range: 0-0.5). See Additional file 1 for the

Table 2 Maternal Adversity, Vulnerability and Neurodevelopment
(MAVAN) cohort demographics. Symptoms of depression were
assessed using the Center for Epidemiological Studies — Depression
(CES-D) scale

Cohort Demographics

Sample size
Genotyping data only (used in software performance test) N =264
Genotyping data with symptoms of depressive score (CES-D)  N=236
Mean age at time of assessment in years (SD) 34.65 (4.89)
Mean symptoms of depressive score (SD) 10.07 (8.81)

Reported ethnicity among sample with genotyping data and CES-D data

Caucasian N =201
Others N=34
Not reported N=1

The file size and SNP count provide an idea of how much data processing
needs to be done by each software in our analysis. The file formats that we
used in PRSice and PRSoS are different due to differences in file compatibility.
All files have the same sample size (N =264)

executable commands used for these comparisons. Add-
itional optional features in PRSice v1.25 (i.e., clumping
and regression analysis) and PRSoS (i.e., the SNP
log) were disabled in the tests to ensure that the com-
parisons focused solely on PRS computation.

Finally, we used PRSoS and each of the three datasets
(i.e., Imputed PP, Imputed HC, Array Data) to test if the
inclusion of strand-ambiguous SNPs increased the pre-
dictive value of PRS for MDD. We used linear models
and compared the proportion of variance explained by
PRS with and without strand-ambiguous SNPs.

Results

PRSoS calculated PRS (Pr=0.1, 0.2, 0.3, 0.4, 0.5) using
the Imputed PP in 169.6 s (SD = 0.93 s). The same calcu-
lation using PRSice v1.25 took 8461.3 s (SD =334.6 s),
which was significantly longer than PRSoS (t=42.865,
p = 5.43E-04, two-tailed; Fig. 3). Figure 3 also shows the
performance of PRSice v1.25 and PRSoS using the Im-
puted HC and Array Data. PRSoS calculated PRS more
quickly than PRSice v1.25 when using the Imputed HC
(t=62.627, p = 2.55E-04, two-tailed) but not when using
the smaller Array Data (t=-24.978, p=1.60E-03,
two-tailed), where PRSice v1.25 performed best. The
addition of the SNP log output did not significantly in-
crease processing times.

The number of p-value thresholds affects PRSoS
performance

PRSice v1.25 provides a “high-resolution” option, creat-
ing PRS at a large number of p-value thresholds in a sin-
gle run. We tested the performance of PRSoS against
PRSice v1.25 at different resolutions (up to 200 p-value
thresholds) using the Imputed HC. PRSice v1.25 took
0.09 s (SD=0.07 s) to calculate PRS for each threshold
in addition to 795.7 s (SD=6.6 s) for other processing
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operations (e.g., reading data). PRSoS processing times
increased linearly with the number of thresholds (inter-
cept=156.8 s, slope=2.14 s/threshold). PRSoS took
2.14 s (SD =0.04 s) to calculate PRS for each additional
threshold in addition to 156.8 s (SD = 4.1 s) for other pro-
cessing operations. Although PRSoS took longer to
calculate PRS for a single threshold, PRSoS calculated
PRS more quickly than PRSice v1.25 in all other
comparisons (Fig. 4).

Strand-ambiguous SNPs explain additional variance in
phenotype

We sought to determine the optimal data input (i.e., Array
Data, Imputed HC, and Imputed PP datasets with and
without strand-ambiguous SNPs) to derive PRS that
accounted for the largest proportion of variance in symp-
toms of MDD. We observed a positive association between
PRS for MDD and depressive symptoms across all datasets
(Fig. 5) however the “best-fit” p-value threshold varied

800
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o
o
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Software : PRSicev1.25 @ PRSoS
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Fig. 4 PRSice v1.25 and PRSoS performance across increasing number of p-value thresholds. Line plot shows the results of the performance test
comparing PRSice v1.25 and PRSoS across increasing number of p-value thresholds to construct in a single run using a dataset based on imputed
posterior probabilities converted to “hard calls” (Imputed HC)
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across different datasets. For example, the PRS at Pt =0.2
accounted for the largest proportion of variance of all
PRS generated from the Array Data. In contrast, the
PRS at Pr=0.1 performed best for both the Imputed
HC and Imputed PP. PRS generated from the Im-
puted PP that included strand-ambiguous SNPs
accounted for the largest proportion of variance in
depressive symptoms (R*=0.048, F (1,234)=11.88,
p=6.71E-04). In all models, the inclusion of
strand-ambiguous SNPs increased the proportion of
variance explained by PRS for MDD (Fig. 6).

Discussion

PRS-on-Spark (PRSoS) is a flexible and efficient software
for generating PRS. We show that PRSoS, which makes
use of parallel computing, outperforms PRSice
v1.25 when using imputed posterior probabilities (Im-
puted PP) at a number of p-value thresholds. We also
show that PRSoS accommodates strand-ambiguous
SNPs, which increase the proportion of variance ex-
plained by a PRS for MDD.

This is the first report to date comparing different
strategies for calculating PRS for MDD. Our analyses
demonstrate that a PRS based on imputed posterior
probabilities, which includes strand-ambiguous SNPs, is
the most informative predictor of symptoms of depres-
sion. Our findings also highlight the need for a more in-
clusive approach when generating polygenic risk
predictors. This inclusive approach requires allele fre-
quency information from the discovery GWAS. Allele
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frequency can vary across cohorts with different popula-
tion structure, thus we recommend that this feature is
used across datasets with comparable population
structure [13]. We also encourage colleagues to pro-
vide allele frequency information in GWAS summary
statistics rather than allele frequencies from reference
datasets e.g., 1000 genomes project, which will facili-
tate the more accurate identification of effect alleles
across datasets [23, 24].

While PRSoS outperformed PRSice v1.25 for a number
of comparisons we do note that PRSice v1.25 calculated
PRS more quickly when using the smallest dataset of ob-
served genotypes (Array Data). The difference in per-
formance between PRSice v1.25 and PRSoS when using
the array data may reflect the “overhead” i.e., the time
taken to parallelize the analysis of PRS when using
PRSoS. Likewise, the difference in input file sizes be-
tween PRSice v1.25 (.bed file size = 0.03GB) and PRSoS
(.gen file size = 0.51GB) may also contribute to the dif-
ferences in performance using the Array Data. We note
that PRSice v1.25 shows consistent performance across
all numbers of p-value thresholds and is likely to outper-
form PRSoS when generating PRS at higher resolution
(e.g., > 200 p-value thresholds). This crossing point likely
varies depending on the availability of computational re-
sources (e.g., number of cores and nodes, available mem-
ory) and the input data (e.g., file type, number of
samples and SNPs). The recent beta release of PRSice-2
written in C++ improves the performance of PRSice
[10] to a level somewhat comparable to PRSoS (see
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Fig. 6 Best-fit PRS model selection. Bar plots show the proportion of variance in depressive symptoms explained by PRS for major depressive
disorder (MDD) as a function of dataset with and without strand-ambiguous SNPs. Only the best-fit models are shown (Py: Imputed PP =0.1,
Imputed HC = 0.1, Array Data = 0.2). Numbers in boxed inserts refer to the number of SNPs included in each PRS. Imputed PP =imputed posterior
probabilities, Imputed HC = imputed posterior probabilities converted to “hard calls”, Array Data = observed genotypes

Additional file 3: Figure S2). Despite the enhanced per-
formance of PRSice-2, this new software does not provide
the allele frequency function available within PRSoS, which
helps to identify effect alleles from stand-ambiguous SNPs
across discovery and target datasets.

Conclusions

We have developed a new software that makes use of
parallel computing to accelerate PRS calculation. The
increased efficiency of PRSoS and its inclusive ap-
proach to strand-ambiguous SNP together with its
SNP data output will facilitate the application of PRS
to better understand the polygenic basis of complex
traits.

Availability and requirements

Project name: PRS-on-Spark

Project home page: https://github.com/MeaneyLab/
PRSoS

Operating systems: platform independent (tested on
Linux CentOS 7 server and Ubuntu 16, MacOS Sierra,
and Microsoft Windows 10 standalone computers)

Programming language: Python

Other requirements: Python 2.7, Spark 2.0.0 or higher,
Scala 2 or higher, Java 7 or higher, Hadoop 2.6 or higher,
Python modules (matplotlib, statsmodels, pandas,
numpy)

License: GNU GPL v3, Apache License 2.0

Any restrictions to use by non-academics: None

Additional files

Additional file 1: Supplementary Methods and Data Analysis. Additional
information on the MAVAN cohort. Genetic data quality control and
supplementary data analyses are provided. (Additional file 4: Figure S3,
Additional file 5: Figure S4). (PDF 142 kb)

Additional file 2: Figure S1. PRSice v1.25 and PRSoS performance
across the number of cores used to generate PRS and five thresholds
using the Imputed Hard Call dataset. PRSice v1.25 could only run on 1
core. PRSoS performance was tested with 1, 4, 12, 20, and 24 cores on a
Linux CentOS 7, 24-core Intel Xeon server. Error bars indicate standard
deviations. (PDF 4 kb)

Additional file 3: Figure S2. PRSice v1.25, PRSice-2, and PRS0S
performance across datasets. Bar plot shows the results of the
performance test comparing running PRSice v1.25, PRSice-2, and PRSoS
across the datasets. Processing time (y-axis) uses a log base 10 scale. Error
bars indicate standard deviations. Numbers in boxed inserts indicate the
size of the genotype data input. "Note that the file sizes used for the
Imputed PP are same for PRSice v1.25 and PRSoS, thus illustrating the
processing speed difference with same file size input. Genotype input
formats are different across all three software for the other performance
tests. Imputed PP =imputed posterior probabilities, Imputed HC = imputed
posterior probabilities converted to “hard calls”, Array Data = observed
genotypes. (PDF 34 kb)

Additional file 4: Figure S3. Software performance of generating PRS
at five p-value thresholds in a single run with different sample sizes. The
left panel shows the results using the Imputed Hard Call dataset (N = 264).
The right panel shows the results using simulated data based on the
Imputed Hard Call dataset with five times the sample size (N = 1320). Error
bars indicate standard deviations. (PDF 4 kb)

Additional file 5: Figure S4. Software performance between datasets

across number of PRS p-value thresholds to generate in a single run.
Imputed HC =imputed posterior probabilities converted to “hard calls”,

Array Data = observed genotypes. (PDF 5 kb)
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