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Abstract

Computational network analysis has enabled researchers to investigate patterns of interactions 

between anatomical regions of the brain. Identification of subnetworks of the human connectome 

can reveal how the network manages an interplay of the seemingly competing principles of 

functional segregation and integration. Despite the study of subnetworks of the human structural 

connectome by various groups, the level of expression of these subnetworks in each subject 

remains for the most part largely unexplored. Thus, there is a need for methods that can extract 

common subnetworks that together render a network portrait of a sample and facilitate analysis of 

the same, such as group comparisons based on the expression of the subnetworks in each subject. 

In this paper, we propose a framework for quantifying the subject-specific expression of 

subnetworks. Our framework consists of two parts, namely subnetwork detection and 

reconstructive projection onto subnetworks. The first part identifies subnetworks of the 

connectome using multi-view spectral clustering. The second part quantifies subject specific 

manifestations of these subnetworks by nonnegative matrix decomposition. Positivity constraint is 

imposed to treat each subnetwork as a structure depicting the connectivity between specific 

anatomical regions. We have assessed the applicability of the framework by delineating a network 

portrait of a clinical sample consisting of children affected by autism spectrum disorder (ASD), 

and a matched group of typically developing controls (TDCs). Subsequent statistical analysis on 

the intra- and inter-subnetwork connections, revealed decreased connectivity in ASD group 

between regions of social cognition, executive functions, and emotion processing.
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1 Introduction

Identifying patterns of structural and functional connectivity in the human brain aids in the 

understanding of the neural substrates of the mind, its cognitive computations and its 

outward expressions in behavior [1]. Hence, research on the human connectome, with a goal 
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of identifying interpretable motifs of interactions between anatomical regions has drawn 

extensive attention in the neuroscience community. Methodologies developed for 

computational network analysis [2] have enabled researchers to investigate the overall 

communication design of the human brain by defining networks over a set of anatomical 

regions and their connections. This was established by advances in in vivo imaging 

techniques such as functional MRI and diffusion MRI, in conjunction with improvement in 

tools depicting connectivity between anatomical regions such as tractography [3].

While the overall attention directed to network analysis has increased at every level of study 

[4–6], studies performed at meso-scale currently form the main line of investigation. Meso-

scale structures refer to grouping of anatomical regions based on their distinctive 

connectivity patterns. In brain networks, the identification of meso-scale structures can 

reveal how the network manages an interplay of seemingly competing principles of 

functional segregation and integration [7], thereby how specific communication pathways 

between set of regions contribute to behavior. One of the best known examples of a meso-

scale structure is a module [8]. In the context of this paper, we adopt the term subnetwork 
instead of module since it has a broader scope that encompasses any cluster of anatomical 

regions with a distinctive connectivity pattern. Henceforth, the term meso-scale architecture 
will refer to decomposition of connectome into subnetworks, rendering a network portrait of 

a subject or a sample.

Although the extraction of subnetworks of the human connectome has been studied by 

various groups [6, 7, 9, 10], subsequent studies on identified subnetworks suffer from a 

common methodical deficiency. That is, the subnetworks are determined with the goal of 

architectural characterization i.e. characterizing the overall aggregation/segregation of 

regions. Other than a few exceptions [4, 11], the expression of these subnetworks in each 

subject followed by their quantification and subsequent comparison, remains for the most 

part largely unexplored. Thus, there is a need for methods that can extract the meso-scale 

architecture of a sample and facilitate analysis of the same, such as group comparisons based 

on the magnitude of expression of subnetworks in subjects.

In this paper, we propose a framework for quantifying the subject-specific expression of 

subnetworks, by decomposing connectomes into a basis set that is explicitly defined by these 

subnetworks. This is an important advancement since the proposed framework not only 

extracts subnetworks, but also quantifies their presence in a subject, enabling subsequent 

statistical comparison of individuals and different groups of individuals (e.g., cases vs. 
controls). Similar approaches have been explored in [4, 11], with critical differences in the 

way subnetworks were extracted and defined. In [11], the authors extracted subnetworks that 

corresponded to the most dominant sets of connections that were not spatially/anatomically 

correlated. This approach is useful for identifying important connections, but does not lend 

itself well to identify how anatomical regions contribute to function by their segregation and 

integration. This was improved in [4] where a subnetwork (or hub as the authors refer to it) 

consists of a set of anatomical regions and their intra-connections. However, subnetworks 

are not necessarily defined by sparse sets of regions and a thresholding is required to 

determine the final membership of regions to subnetworks.
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Our framework separates the stage of subnetwork identification from the stage of 

quantification of their expression in each subject. Hence, subnetworks that are extracted by 

different approaches such as community detection [8] or clustering [10] can be incorporated 

into our framework, making it a generic methodology for network analysis. The result is a 

quantified network portrait of a sample that renders a comprehensive low dimensional 

representation that is common to each subject, facilitating population studies. Additionally, 

subnetworks and their corresponding weights are estimated under non-negativity constraints, 

leading to easily interpretable results since each subnetwork is a connectivity matrix on its 

own.

We assessed the applicability of this framework by first identifying subnetworks in a clinical 

sample consisting of children affected by autism spectrum disorder (ASD), and a matched 

group of typically developing controls (TDCs). The coefficients that quantify the expression 

of these subnetworks in each subject were estimated. Subsequent statistical analysis on these 

coefficients revealed group differences between TDC and ASD groups, in terms of differing 

connectivity patterns.

2 Method and Materials

The proposed methodology consists of two parts, namely subnetwork detection and 

reconstructive projection onto subnetworks. The first part identifies subnetworks of the 

connectome by assigning anatomical regions into different clusters based on their 

connectivity. We use multi-view spectral clustering [12] to extract a meso-scale architecture 

that is common to all subjects of a group. This facilitates a decomposition of the connectome 

into common subnetworks. The second part quantifies subject specific manifestations of 

these subnetworks. This is achieved by nonnegative matrix decomposition [13] to calculate 

the strength of expression of each subnetwork. Positivity constraint is imposed to get 

nonnegative components and coefficients so that each subnetwork is a connectivity matrix 

on its own. This enables us to treat each subnetwork as a structure depicting the connectivity 

between specific anatomical regions. The output is a subject specific vector of coefficients 

corresponding to weights of identified subnetworks in this subject (depicting both intra- and 

inter-connectivity). These coefficients, inherently, can be used for subsequent statistical 

analyses such as group differences.

2.1 Multi Subject Subnetwork Detection

Subnetwork detection in the human connectome aims at finding grouping of anatomical 

regions depicting the meso-scale architecture of the brain [4]. Each group consists of several 

regions that are densely connected to each other and sparsely connected to regions outside 

their group. Several methods have been proposed to extract subnetworks in the human 

connectome either by utilizing algorithms specifically developed for complex network 

analysis such as modularity maximization [8] or by using domain general clustering 

algorithms such as spectral clustering [10]. Recently, a few approaches have been also 

proposed to extract structures that are common to a group of subjects [10, 14, 15]. In this 

work, we adapt multi-view spectral clustering approach [12] that identifies both common 

clusters and subject-level variations, to extract subnetworks from a sample.
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The classical spectral clustering for a single subject starts with the construction of the 

normalized (or un-normalized) Laplacian (L) of the connectivity (adjacency) matrix A of the 

subject. A is a symmetric matrix where the element Aij is the connectivity between the 

regions i and j. Then, a simple clustering technique such as k-means is used on the 

eigenvectors (U) corresponding to the smallest k eigenvalues of L to determine groupings of 

nodes. This can be formulated as the following minimization problem:

minU tr(UTLU), subject to UTU = I . (1)

Solution of (1) is to choose the aforementioned eigenvectors of L. The centroid based co-

regularization approach as proposed by Kumar et al. [12] formulates the problem of finding 

a common architecture among multiple subjects, by minimizing the disagreement between 

subject specific subnetworks and the common subnetworks. Similar to the formulation of 

spectral clustering, we have the following minimization problem:

minU1, …, UN, Uc
∑s = 1

N  tr(Us
TLsUs) − ∑s = 1

N λstr(UsUs
TUcUc

T), (2)

where the centroid eigenvector matrix Uc encodes the common set of subnetworks. 

Eigenvector matrices Us correspond to individual subnetworks of subjects (s = 1…N). λs‘s 

are the weights of each regularization term. Once this problem is solved for Uc, k-means 

clustering is applied on Uc to get the common k subnetworks. The solution is obtained by a 

two-step iterative scheme after initializing Uc: (a) solve for Us by fixing Uc and (b) solve for 

Uc by fixing Us. This is repeated until convergence is achieved for Uc. Given Uc, Us are 

determined by solving

minU1, …, UN
∑s = 1

N tr(Us
T(Ls − λsUcUc

T)Us) . (3)

This is equivalent to calculating eigenvectors corresponding to the smallest k eigenvalues of 

the modified Laplacian Ls = Ls − λsUcUc
T. Then by fixing Us, Uc is determined by solving

maxUc
∑s = 1

N λstr(UsUs
TUcUc

T), (4)

that is again equivalent to finding the eigenvectors corresponding to the largest k eigenvalues 

of ∑s = 1
N λsUsUs

T.

2.2 Reconstructive Projection onto Subnetworks

Subnetwork detection determines membership of each anatomical region to a specific 

subnetwork. Based on these memberships, a connectivity matrix of a subject can be 

decomposed into blocks (after reordering rows and columns), each corresponding to 
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connections in a subnetwork or between two subnetworks. This is illustrated in Fig. 1. The 

block structure of a connectivity matrix, as illustrated in Fig. 1, naturally defines a 

generative model for the multiple subject case: for each block we define a common basis 

(Mij) that includes connections in a subnetwork or between two subnetworks, and subject 

specific coefficients (αi j
s ).

Then the connectivity matrix As of a subject s is assumed to be generated as

As = α11
s M11 + α12

s M12 + … + α22
s M22 + … + αkk

s Mkk, (5)

where Mij (corresponding to a block in Fig. 1) defines a common basis of connections in the 

subnetwork i (if i = j) or between subnetworks i and j (if i ≠ j), including zeros everywhere 

except at the region corresponding to the connections encoded by Mij. The coefficients αi j
s

are subject specific weights. The estimation of each Mij can be done independently since 

they do not share any connection. Thus, each basis component and corresponding 

coefficients are determined by solving

minm, p f (m, p) = ‖X − mpT‖F
2 ,  subject to m > 0, p > 0 (6)

where the sth column of matrix X has the elements of matrix As in the block corresponding 

to Mij. m is a vector including only non-zero elements of Mij. p is a vector including the 

coefficient αi j
s  as its sth element. This is solved independently for each Mij by a projected 

gradient descent algorithm for nonnegative matrix factorization [13]. The solution is found 

iteratively by updating the current estimate of parameters θt ≡ (mt, pt) as

θt + 1 = P[θt − βt ∇θ f (θt)], (7)

P[x]def
x if  l < x < u,
u if  x ≥ u,
l if  x ≤ l,

(8)

∇θ f def((mpT − X)p, mT(mpT − X)) . (9)

The step size parameter βt is selected so that the following inequality is satisfied.

f (θt + 1) − f (θt) ≤ σ ∇θ f (θt)T(θt + 1 − θt), (10)
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where σ is any value between 0 – 1. The projection function P[x] projects the value of x into 

the range defined by the lower and upper bounds l, u.

2.3 Population Studies

The coefficients of generative model (5), αi j
s , are subject-specific and encode the overall 

strength of connections in a subnetwork or between subnetworks. These coefficients that 

provide a comprehensive low dimensional representation of each subject facilitate 

population studies. Similar to edge-wise comparison of groups [5], we can compare two 

groups, such as controls vs. Patients, on a subnetwork-wise basis i.e. we can identify which 

group has higher/lower expression of a subnetwork or connections of an inter-subnetwork 

communication. This approach also increases statistical power by lowering the 

dimensionality of the comparison. Instead of comparing each edge individually, we divide 

the connectome into subnetworks and compare only coefficients that depict the overall 

communication pattern of these subnetworks, reducing the problem of multiple 

comparisons.

2.4 Dataset

Our clinical sample consists of 172 male participants, including 97 children (age: 12.6 ± 2.9 

years) affected by autism spectrum disorder (ASD), and a matched group of typically 

developing controls (TDCs) (age: 12.2 ± 3.3 years). Participants with a community diagnosis 

of an ASD were recruited in part through autismMatch (https://autismmatch.org), and 

diagnoses were confirmed using diagnostic instruments and expert consensus clinical 

judgment by two independent psychologists following Collaborative Programs of Excellence 

in Autism (CPEA) diagnostic guidelines.

Diffusion tensor imaging was acquired in two epochs on the same scanner with different 

scanner parameters. In the first set, DTI was acquired using a monopolar+ sequence, with 

repetition time (TR)/echo time (TE) = 11000/75 ms, resolution = 2 × 2 × 2 mm, collecting 

30 directions with b-value = 1000 s/mm2 and 1 b = 0 image on a Siemens Verio 3T scanner. 

In the second epoch, DTI TR/TE was 11000/76 ms using a monopolar sequence. DTI 

measures of FA and MD were verified not to vary between scans within the two epochs. T1-

weighted (TR/TE = 1900/2.54) MRI images with resolution 0.4 × 0.4 × 0.9 mm were also 

acquired. The T1 image of each subject was segmented into 95 anatomical regions of 

interest (ROIs) of the Desikan atlas [16] using Freesurfer [17]. FSL’s bedpostx was fit to 

each voxel in the DTI image, and FSL’s probtrackx was used to perform tractography 

seeded from each of the 95 ROIs and going to the others [18]. A 95 × 95 connectivity matrix 

A was created for each subject, where Aij = (Sij/Si) · Ri. In this formula, Sij represents the 

number of fibers connecting seed region i to target j, and Si represents the total number of 

fibers emanating from region i. Ri, the surface area of region i, accounts for the different 

sizes of the 95 ROIs.

3 Results

Here, we first review our projection approach introduced in Sect. 2.2. Then, experimental 

results for group comparison will be presented. In the generative model (5), we assume a 
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single common basis Mij for each block of the connectivity matrix (see Fig. 1). Estimating 

Mij in (6) corresponds to finding a single basis for connections that are included in Mij. The 

feasibility of this assumption can be easily validated by observing singular values1 of the 

matrix X in (6). This is illustrated in Fig. 2 (top) where our dataset was used to identify eight 

common subnetworks. The matrix X for each subnetwork has only one dominant singular 

value and the remaining singular values diminish quickly. One expects to have even clearer 

dominance as the number of subnetworks increases, since with increasing number of 

subnetworks, variation of connection strength in each subnetwork tends to decrease. In Fig. 

2 (bottom left and right), the connectivity matrix that was reconstructed by the estimated 

components Mij and mean coefficients αi j
s  is compared to the average connectivity matrix of 

our dataset. Overall agreement between two matrices, thereby the quality of reconstruction is 

clear.

In order to use our framework for group comparisons, we first extracted the mesoscale 

architecture of the sample. We created several network portraits consisting of different 

numbers of subnetworks. The actual choice of the number depends on the level of detail 

required for the hypothesis being investigated. Figure 3 illustrates two network portraits 

consisting of 8 and 12 subnetworks that are common to all subjects, to provide a 

representation of how subnetworks are formed at different resolutions. Statistical analysis 

was performed on the coefficients αi j
s  that describe the expression of these subnetworks in 

each of the subjects. Figure 4 shows sets of connections that differ significantly between 

TDC and ASD groups (p < 0.01), when the 12-subnetwork portrait was used to describe the 

population. For the remainder of the paper where we discuss extracted subnetworks, we refer 

to the subnetworks of the 12-subnetwork portrait, unless otherwise stated.

Overall symmetry of the meso-scale architectures in Fig. 3 conforms to previously published 

findings on the structural core of human connectome [9]. Meso-scale architectures (both for 

8 and 12 subnetworks) define spatially correlated subnetworks, each characterized mostly by 

local (short-range) connections. This is consistent with the fact that cortical communication 

in the human brain is dominantly characterized by short-range connections [19]. Inter-

hemispheric connections (Subnetworks #2 and #12) exist between bilateral temporal lobes 

and sub-cortical regions (Subnetwork #2), or within frontal lobe (Subnetwork #12). We 

should note that the meso-scale architectures illustrated in Fig. 3 only shows intra-

subnetwork connections. More inter-hemispheric connections appear when statistically 

analyzing the inter-subnetwork communication.

Four sets of connections related to inter-subnetwork communication were found to be 

significantly lower in ASD group (Fig. 4). Lower structural connectivity supports the 

underconnectivity hypothesis for ASD [20]. Specifically, connections related to the regions 

involved in social cognition such as amygdala, insula, caudate (Subnetworks #6 and #7) [21] 

and regions involved in executive functions as well as social cognition such as left 

orbitofrontal cortex and left middle frontal cortex (Subnetwork #5) [20], [22] were found to 

be lower in the ASD group. In addition, connections related to the regions involved in 

1Note that X is not a square matrix; hence, we cannot speak of its eigenvalues.
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emotion processing such as right superior temporal and supramarginal cortex (Subnetwork 

#3) [23] were significantly lower in the ASD group. Accordingly, identified group 

differences revealed decreased connectivity between regions of social cognition, executive 

functions, and emotion processing, which is very consistent with common conceptualization 

of ASD [24].

4 Conclusion

We have developed a framework for creating a quantified network portrait of a population. 

Our framework quantifies the subject-specific expression of subnetworks, by decomposing 

connectomes into a basis set that is explicitly defined by these subnetworks. The approach 

introduced here separates the subnetwork extraction that is usually performed with 

community detection or clustering methods from the stage of quantification of identified 

subnetworks in each subject. Hence, subnetworks that are extracted by different approaches 

can be incorporated. Our framework provides a novel way of identifying subnetworks, and 

subsequent analysis both at the population and subject level. Subject level coefficients can 

be correlated with clinical measures to identify the imaging correlates of clinical 

manifestations.

The resulting meso-scale architecture of the sample renders a comprehensive low 

dimensional representation that is common to each subject, facilitating population studies. 

This approach also increases statistical power since we divide the connectome into 

subnetworks and compare only coefficients that depict the overall communication pattern of 

these subnetworks, instead of comparing each edge individually, alleviating the problem of 

multiple comparisons.

The applicability of the framework was assessed on a clinical sample consisting of children 

affected by ASD and a matched group of TDCs. The extracted meso-scale architecture of the 

sample was consistent with previously published findings on the structural core of human 

connectome. Subsequent statistical analysis on the intra- and inter-subnetwork connections 

revealed decreased connectivity between regions of social cognition, executive functions, 

and emotion processing. Overall, the results support the underconnectivity hypothesis for 

ASD.

Group differences at the level of meso-scale structures reveal important changes in 

integration/segregation of anatomical regions, which would not be possible with traditional 

edge-wise analyses. Our results provide insights on how overall communication between 

cortical clusters pertaining to different faculties such as social cognition, executive functions, 

and emotion changes between TDC and ASD groups.
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Fig. 1. 
Decomposition of a connectivity matrix into blocks corresponding to connections in a single 

subnetwork (B1, B2, B3, B4) or between two subnetworks (B1–2, B1–3, …). Each matrix Mij 

includes zeros everywhere except at the region corresponding to the encoded block. Note 

that in case of a single subject, this decomposition defines an exact reconstruction of the 

original connectivity matrix.
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Fig. 2. 
Top: Singular values of X in Eq. (6), for eight subnetworks. For each subnetwork, we have 

one clearly dominant singular value. Bottom left: Mean connectivity matrix of our clinical 

sample. Bottom right: Reconstructed mean connectivity matrix using (5). Similarity between 

the two is easily noticeable, illustrating the reliability of reconstruction.
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Fig. 3. 
Common meso-scale architectures of our clinical sample, depicting network portraits of 8 

(left) and 12 (right) subnetworks. Only intra-subnetwork connections are displayed (Color 

figure online).
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Fig. 4. 
Connections with significant (p < 0.01) group differences between TDC and ASD samples, 

for the 12 subnetwork case. Colors of edges correspond to the subnetworks that they are part 

of (see Fig. 3). They are all two-colored since they are connections between two 

subnetworks. Connections that are significantly different are between subnetworks #3 

(brown), #5 (blue), #6 (green), and #7 (pink) (Color figure online).
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