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Abstract

In this review we address the relationship between cytochromes P450 (P450) and H2O2. This 

association can affect biology in three distinct ways. First, P450s produce H2O2 as a byproduct 

either during catalysis or when no substrate is present. This reaction, known as uncoupling, 

releases reactive oxygen species that may have implications in disease. Second, H2O2 is used as an 

oxygen-donating co-substrate in peroxygenase and peroxidase reactions catalyzed by P450s. This 

activity has proven to be important mainly in reactions involving prokaryotic P450s, and 

investigators have harnessed this reaction with the aim of adaptation for industrial use. Third, 

H2O2-dependent inhibition of human P450s has been studied in our laboratory, demonstrating 

heme destruction and also the inactivating oxidation of the hemethiolate ligand to a sulfenic acid (-

SOH). This reversible oxidative modification of P450s may have implications in the prevention of 

uncoupling and may give new insights into the oxidative regulation of these enzymes. Research 

has elucidated many of the chemical mechanisms involved in the relationship between P450 and 

H2O2, but the application to biology is difficult to evaluate. Further studies are needed reveal both 

the harmful and protective natures of reactive oxygen species in an organismal context.
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INTRODUCTION

Gillette et al. [1] first observed the NADPH-dependent production of H2O2 in microsomes, 

and the chemical, biophysical, and biological factors that govern the reactivity of H2O2 and 

oxygen radicals with cytochrome P450 (P450) have been studied extensively since then. 

However, there are still many unanswered questions regarding the P450 catalytic cycle and 

its context in biology. Are P450s as inefficient in vivo as they are in reconstituted systems? 

How are P450s regulated when no substrate is present to prevent futile cycling with NADPH 

and oxygen? These questions become much more difficult to answer in the context of cells, 

tissues, and organisms.

P450s play two major biological roles: (1) xenobiotic metabolism, with the goal being a 

decrease in the hydrophobicity of compound for ease of excretion and for further 

metabolism by enzymes such as sulfotransferases and UDP-glucuronyltransferases, and (2) 

biosynthesis of bioactive molecules including steroids, vitamins, and oxidized fatty acids 

[2]. A subset of the latter role is the deactivation and turnover of bioactive molecules, e.g. 

vitamins A and D [3, 4]. Many diseases are associated with specific P450 variants, and other 

diseases result from a lack of genes or the substitution of functionally inactive mutants [5–

7]. Extensive reviews of endogenous and exogenous substrates and metabolites of P450s 

have been published elsewhere [2, 8] and this area is beyond the scope of this review.

Iron reacts readily with molecular oxygen and H2O2 to produce species capable of 

performing a diverse array of oxidation reactions. Known broadly as Fenton reactions [9], 

when this chemistry is uncontrolled it can generate a mixture of nonspecific products with 

organic reactants and is generally unwanted in most biochemical systems [10]. These are 

generally controlled in vitro by the addition of iron chelating reagents such as EDTA. P450s, 

as well as some other iron-centered enzymes [11], control the reaction of oxygen with iron 

in a stereospecific and regiospecific manner. These enzymes have varying efficiencies and 

are dependent on numerous factors. The iron-oxo reaction also allows for action on a varied 
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number of substrates, because a general role in much of xenobiotic metabolism is to produce 

more hydrophilic compounds for facile excretion.

The various P450s are very diverse despite sharing common structural features. P450s are 

also some of the most promiscuous enzymes, with human P450 3A4 having thousands of 

reported substrates [12, 13]. Plants have greater numbers of P450-encoded genes than any 

other kingdom of organisms (e.g., wheat has 1476). These are extensively involved in the 

synthesis of secondary metabolites and defense molecules [14]. Prokaryotic P450s 

synthesize important secondary metabolites such as antibiotics and have also been used as 

model enzymes for the study of all aspects of the general P450 catalytic cycle [15]. The use 

of prokaryotic P450s to catalyze diverse chemical reactions that are difficult to perform 

synthetically has proved to be promising as well [16]. This includes the use of H2O2 and 

high-valent oxygen compounds as oxygen surrogates (e.g., peracids, hydroperoxides, 

iodosylbenzene) for chemical reactions [17]. In this review we discuss the known 

interactions of P450s with H2O2. This oxidative chemistry has implications important to the 

understanding of P450s in a biological context.

H2O2 in Signaling

In recent years H2O2 has been recognized as an important secondary signaling molecule, 

and several laboratories have characterized redox sensitive enzymes [18, 19]. Reactive 

oxygen species (ROS) have been shown to react specifically with several amino acids, but 

the sulfur-containing residues cysteine and methionine are the most susceptible to oxidation. 

The first step of cysteine oxidation by H2O2 is formation of a sulfenic acid (-SOH), initially 

characterized as an anthraquinone-sulfenic acid by Fries [20] and later by Bruice [21]. This 

oxidation can occur at rates between 10−1 M−1 s−1 (glutathione, GSH) and 108 M−1 s−1 

(peroxiredoxin) [19] (Fig. 1). This large variation in reactivity is due at least in part to the 

pKa of the particular oxidized cysteine. Sulfenic acids are reactive species and readily react 

with free thiols to form disulfide bonds through a dehydration reaction or through a 

sulfenamide intermediate [22]. This is thought to be the general mechanism of physiological 

disulfide bond formation (Fig. 1). The reaction can occur in an intra- or intermolecular 

fashion with free thiols (including GSH) and can be reversed by an NADPH-dependent 

reaction catalyzed by glutaredoxin [23]. Sulfenic acids can be further oxidized to dioxidation 

(sulfinic acid, SO2
−) and trioxidation products (sulfonic acid, SO3

−), which are mostly 

irreversible and induce protein degradation and cellular stress responses (Fig. 1) [24].

Oxidative regulation of cysteines in proteins have been known for quite some time. Evidence 

of oxidative inhibition of glyceraldehyde phosphate dehydrogenase [25] and papain [26] led 

to an interest in the field [27]. After researchers determined conditions to promote the 

stability of sulfenic acids, they could be studied in a more systematic fashion [28–30]. 

Recently mechanisms of stability and function have been elucidated. In the case of 

epidermal growth factor receptor (EGFR), a sulfenic acid is formed in the kinase domain of 

the protein (Cys-797) in an H2O2-dependent fashion, causing autophosphorylation and 

activating the EGFR signaling cascade. This sulfenic acid is stabilized by a hydrogen bond 

with Arg-841, which, when mutated confers resistance to oxidative activation [31]. 

Additionally, tyrosine phosphoprotein phosphatase 1B (PTP1B) [32], glyceraldehyde 
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phosphate dehydrogenase (GAPDH) [33], Kelch-like ECH-associated protein-1 (Keap1) 

[34, 35], P450s [36, 37], and many others [38] have been found to be regulated by sulfenic 

acid formation. Methods for detecting and analyzing cysteine oxidation have remained 

challenging, but recent advances in chemical trapping methods and in our understanding of 

redox biology provide promising new ways to elucidate redox functions of cysteines [39, 

40].

H2O2 Production Through Pathway Uncoupling

Since the report of Gillette et al. [1] on the NADPH-dependent production of H2O2 in liver 

microsomes, there has been interest in this area of study. Several years later, a stoichiometric 

anomaly observed between NADPH, oxygen consumption, and product formation in liver 

microsomes [41] was accounted for when H2O2 and H2O production were measured as side 

products in P450 reactions [42, 43] . H2O2 production, plus the generation of superoxide 

anion by NADPH-P450 reductase [44] and P450 [45], led to the hypothesis that P450 

induction may be related to hepatic disfunctions such as ethanol-induced liver damage [46–

48]. Uncoupling has been proposed to have potentially damaging circumstances by 

contributing to ROS production and to accelerating the aging process [49].

ROS production can, at least in principle, occur at three intermediate stages during the 

normal P450 catalytic cycle (Fig. 2). The first is directly after molecular oxygen binding to 

the ferrous heme (Fig. 2, Reaction 1, dashed line). This has been described as the ferric 

superoxide complex, FeIII-O2
− [50]. This state is only 1 kcal mol−1 above the heme resting 

state (FeIII), and the oxygen-iron bond can easily be broken to form superoxide anion (O2
• −) 

and iron (III) heme [51]. Superoxide is quickly dismutated (non-enzymatically) to H2O2. 

The rate of this process (FeII → > FeIII + O2
•−), termed autoxidation, is related to the 

stability of the FeII-O2 complex and varies among P450s [52], and the rate of autooxidation 

is dependent on temperature [53, 54]. Structural studies with P450cam have elucidated a 

coordination sphere surrounding the heme-thiolate ligand, which reduces the sulfur charge 

and allows for reduction to ferrous heme [55]. This hydrogen bonding network appears to 

fine-tune the positioning and electron donating ability of cysteine sulfur [56].

The second and third stages at which ROS can be produced, following the second reduction 

step, are from the P450 peroxo (FeIII-O-O2−) and hydroperoxo (FeIII-O-OH−) complexes 

(“Compound 0”). The Fe-O bond of the peroxo complex can be broken, and the oxygen 

species can be doubly protonated to form H2O2 (Fig. 2, Reaction 2). In a similar fashion, 

after protonation the hydroperoxo complex can either be further protonated, forming 

Compound I (FeIV=O3+) and H2O, or the Fe-O bond can break, once again forming H2O2 

(Fig. 2, Reaction 3).

This uncoupling appears to be dependent on several factors, including pH, substrate 

positioning in the active site, and a disturbed substrate binding pocket. The heme thiolate 

allows for the correct amount of “push” and “pull” of electrons for the successful completion 

of the P450 catalytic cycle [57]. Bacterial enzymes generally have very high coupling 

efficiencies for native substrates compared to mammalian P450s (Table 1). This difference in 

coupling efficiency may be due to the number of substrates mammalian P450s can 

accommodate compared to bacterial enzymes.
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ROS generated by P450 from inefficient reaction cycles can, in principle, oxidize cellular 

proteins, lipids, and DNA. This alteration in cellular redox balance can lead to signaling 

involved in antioxidant responses, create an oxidatively stressed environment, and 

potentially lead to disease [72]. Evidence for potential ROS-dependent toxicity of P450s in 

the CYP Subfamilies 1, 2, 3, and 4 has been reviewed recently [49, 73].

ROS-dependent toxicity originating from P450-mediated uncoupling has been difficult to 

establish in vivo. Many in vitro reconstituted, microsomal, mitochondrial, and cellular 

studies have provided evidence that induction of P450s can cause elevated ROS production 

[67, 74–80]. However, in vivo studies in rodents indicate that toxicity may stem from 

depletion of reducing pools found in cells, such as GSH and reduced pyridine nucleotides 

(NADPH and NADH) [81, 82]. Conversely, other studies indicate that P450s may have 

protective effects in the case of the P450 1A subfamily [83, 84]. A major unanswered 

question in this field is how much do P450s contribute to ROS production. Although much 

has been written about both topics, there are major issues. One is that much of the 

experimental work has been done in cell culture, often with the use of inappropriate cellular 

models (e.g., that do not normally express P450s), or else ROS has been measured using 

inadequate methods (e.g., several fluorescent dyes [85–87].) A number of papers have touted 

P450s as a major source of ROS [88–90] although others do not consider this to be as 

important as mitochondrial leakage, NADPH oxidase, and other sources [91]. In vivo work 

with both rats and mice, using F2-isoprostane formation [92] (still accepted as the “gold 

standard” [87]) showed that P450 induction elevated total tissue or urinary ROS only in the 

case of barbiturate induction, and that was at least in part due to an alteration in levels of 

pyridine nucleotides due to altered methyl transferase activity [81, 82]. However, other work 

done has shown that some localized changes (e.g., translocation of P450 2E1 to 

mitochondria and uncoupling there) may occur and be detrimental [74] (and these ROS 

changes were confirmed with isoprostane analysis). More in vivo studies will be needed to 

determine the contribution of P450s to proposed ROS-related toxicities [72].

H2O2 as a P450 Co-substrate

Reactions with H2O2 as the oxygen donor for P450 peroxygenase and peroxidase reactions 

are known [93, 94]. In these reactions, the ferric heme reacts directly with an oxygen of 

H2O2 or other hydroperoxide species and proceeds with heterolytic cleavage of the oxygen-

oxygen bond to form Compound I [95]. Other oxygen donating molecules (“oxygen 

surrogates”) have been noted to have oxidation activity including iodosylbenzene [96] and 

sodium chlorite [97]. Additionally, Rittle and Green used m-chloroperbenzoic acid as an 

oxygen surrogate for CYP119 to successfully isolate Compound I [98].

In the case of the peroxidase function of P450s, once Compound I is formed by either H2O2 

or an organic hydroperoxide, a one-electron oxidation is performed on a substrate, reducing 

the porphyrin radical of Compound I to form Compound II (FeIV=O) and a radical product. 

Compound II performs a subsequent one-electron reduction on another substrate generating 

ferric heme, water, and a second radical product [17]. Mammalian P450s are known to act 

on endogenous hydroperoxide species, reducing them to their corresponding alcohols [99, 
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100]. This may be one of the metabolic mechanisms to reduce the levels of reactive 

hydroperoxides in cells, although the overall contribution is unknown.

P450s can also perform peroxygenase reactions in which the enzyme can catalyze 

monooxygenase reactions without the requirement for ferric iron reduction or redox partner 

proteins. Peroxygenase reactions are thought to react in a chemically similar way to the 

monooxygenase activity. Various hydroperoxide substrates have been explored in the 

oxidation of P450 substrates [101–104]. This provides further evidence that P450s may 

utilize endogenous hydroperoxides as co-substrates in vivo. However, there are many 

technological challenges to study this hypothesis including the need for highly sensitive 

detection methods and the inherent instability of hydroperoxides [105].

In mammalian P450s the reaction with H2O2 is generally very inefficient and is dependent 

on high concentrations of H2O2 that are well above estimated physiological concentrations, 

suggesting that this reaction does not occur in vivo [106]. However, some bacterial enzymes 

are known to have fast catalytic rates and highly specific hydroxylation products of saturated 

fatty acids, e.g. P450SPα, P450BSβ [107], and OleT [108–110]. These enzymes and other 

bacterial P450s are highly stable in the presence of H2O2. P450 BM3 (102A1) has been an 

important enzyme in the study of peroxygenases, especially after engineering an increase in 

stability [111–113]. Other bacterial enzymes have also shown high stability in the presence 

H2O2 [114, 115].

More recently, scientists have recognized the utility of peroxygenase reactions in the 

development of P450s as industrial biocatalysts [116, 117]. This industrial role has potential, 

and ongoing discovery and characterization of novel peroxygenase- and peroxidase-

catalyzing P450s may lead to novel enzymes that are useful products, e.g., biofuels and 

molecules that are difficult or expensive to synthesize.

H2O2 as a P450 Inhibitor

It has been known that H2O2 and other peroxides can inhibit P450 activity as well through 

heme degradation [118, 119]. Furthermore, it has been shown that incubation with H2O2 can 

also inhibit P450 by oxidizing the heme thiolate ligand to a sulfenic acid, thus inhibiting 

P450 catalysis [36, 37]. This phenomenon, first identified in human recombinant P450 4A11 

[37], can affect other human P450 enzymes, as well as other drug metabolizing enzymes. 

Spectral studies indicated that loss of the proximal heme ligand inhibited carbon monoxide 

binding and/or ferric heme iron reduction by NADPH-P450 reductase but can be reversed 

using a reducing agent, e.g., dithiothreitol, tris-carboxyethylphosphine (TCEP), or sodium 

dithionite (Na2S2O4). In these studies, human P450s 2D6, 2C8, 3A4, and 4A11 exhibited 

redox sensitivity and P450 1A2 was redox insensitive, suggesting that there is differential 

redox regulation among P450s [36]. P450 1A2 was found to undergo extensive oxidation of 

one ancillary cysteine (Cys-159) that had no effect on catalysis. This was contrary to the 

case of P450 3A4, which showed an irreversible inhibition related to hyperoxidation of 

ancillary Cys-468. This may be reasonable, as Sevrioukova has recently reported a cysteine-

depleted P450 3A4 enzyme with higher catalytic activity [120].
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P450s 2D6, 2C8, and 4A11 seemed to behave similarly both in inhibitory and spectral 

aspects [37]. In anaerobic spectral studies, P450s in the presence of CO, NADPH-P450 

reductase, and NADPH exhibited a maximal absorbance of 420 nm, indicating a 5-

coordinate heme center. After the addition of dithionite, the typical 450 nm absorbance was 

observed. This change was interpreted as H2O2-dependent oxidation of the heme-thiolate 

ligand to a sulfenic acid which lost iron coordination. Dithionite was then able to reduce the 

sulfenic acid, allowing for re-liganding of the thiolate to the iron (Figure 3) [37 16183].

There have been multiple reports of variation in pharmacokinetics (PK) of drugs due to 

disease and/or inflammation [121]. PK differences have been observed in celiac patients 

(which were reversed with treatment [122]) in which ROS levels are elevated, in untreated 

rheumatoid arthritis patients with extended verapamil half-lives compared to treated patients 

[123], and in P450 1A2 activity in patients with heart failure [124]. Other reports 

highlighting a two- to fivefold change increase in the area under the curve (AUC) in P450 

substrates has been reviewed in detail recently by Coutant and Hall [125]. There is a strong 

link between autoimmune and inflammatory diseases to increased ROS production and also 

transcriptional downregulation of P450s [125, 126]. The redox sensitivity observed with 

some P450s may explain this variability, or at least contribute to it. Further testing in cellular 

and animal models is needed to confirm this, in that an alternate explanation is that the 

inflammation lowers overall levels of P450s at a pre-translational level or through other 

phenomena [127, 128].

This inhibition may function as a sensor where P450s are switched off when there is a high 

oxidizing environment and a low amount of NADPH may be present. The reducing 

equivalents of NADPH and/or NADH may be required to perform functions critical for life 

such as reversing glutathionylated GAPDH [33] or maintaining general redox homeostasis 

[129–131]. This may also be a negative feedback loop in place to limit uncoupling and 

further H2O2 production. Interestingly, in 1971 Hrycay and O’Brien hypothesized that 

heme-thiolate sulfenylation could occur and that modified P450s would preferentially 

catalyze peroxidase reactions over monooxygenase reactions [119]. This hypothesis requires 

further testing.

Conclusions

In summary, P450s and H2O2 have an intricate intertwined relationship which has both 

potentially harmful and beneficial results. P450 uncoupling seems to have the potential to be 

harmful and cause toxicity, but this uncoupling inefficiency may be a cost paid by P450s to 

allow for reactivity with many substrates. Hence, more in vivo studies are needed to fully 

understand the contributions P450s have to ROS-dependent toxicities and to determine if 

prevention of uncoupling is a reasonable defense against these diseases. Peroxidase and 

peroxygenase activities of P450s most likely do not occur in mammals, due to the amount of 

H2O2 required for catalysis, but are important for some prokaryotes in metabolism of 

specific substrates. Discovery and characterization of novel P450s that catalyze reactions 

with H2O2 as a co-substrate is a promising field and should be pursued further. Reversible 

H2O2-dependent inhibition of P450s is also an interesting interaction that needs further 

evaluation. Both in vivo and in vitro studies are required to fully understand if the 
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sulfenylated heme-thiolate ligand have implications regarding uncoupling, peroxidase 

activity, and protein stability.
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HIGHLIGHTS (Bullet Points)

• P450s produce H2O2 during the reaction cycle, a process known as 

uncoupling, thus releasing reactive oxygen species that may have implications 

in disease.

• H2O2 is used as an oxygen-donating co-substrate in peroxygenase and 

peroxidase reactions catalyzed by P450 and has implications in industrial 

chemical synthesis.

• H2O2-dependent inhibition of human P450s occurs through the inactivating 

oxidation of the heme-thiolate ligand to a sulfenic acid (-SOH), which may 

have physiological implications.
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FIG. 1. General redox cycle of protein thiols
In the presence of H2O2, thiols can be oxidized to sulfenic acids, which may elicit a 

physiological response. Sulfenic acids can then form disulfide bonds, which can be reduced 

to free thiols. Sulfenic acids can also be further oxidized to sulfinic or sulfonic acids, which 

can trigger cellular damage responses.
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FIG. 2. P450 Production, Reaction, and Inhibition with H2O2
P450s can produce H2O2 in three separate reactions after molecular oxygen binds to the 

ferrous heme (red circle, numbered reactions). H2O2 can also be used as a co-substrate and 

oxygen donor in peroxygenase and peroxidase reactions (green oval). Additionally, H2O2 

can inhibit catalysis through sulfenylation of the heme-thiolate ligand (blue oval).
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FIG. 3. Mechanism of loss of activity due to sulfenylation
In the presence of H2O2, the heme-thiolate ligand becomes oxidized and loses its 

coordination with the heme iron. The sulfenic acid is not reduced by NADPH-P450 

reductase but can be reduced by dithionite, re-forming the heme coordination.
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Table 1

Human P450: Coupling efficiency (Product/NADPH ratio)

P450 Substrate % coupling efficiency Reference

1A1 Phenacetin 2.5 [58]

1A2 Methanol 7.5 [58, 59]

7-Ethoxycoumarin 1.2

Phenacetin 5.1

2A6 Coumarin 25 [60]

2B6 17-α-ethynylestradiol 48 [61]

Efavirenz 42

2C9 (S)-flurbiprofen 21 [62]

(S)-Warfarin 4

2D6 Bufuralol 39 [63, 64]

3-Methoxyphenylethylamine 43

4-Methoxyphenylethylamine 42

2E1 N-Nitrosodimethylamine 5.6 and 59 (± b5) [65]

2J2 Ebastine 2–17 [66]

3A4 Testosterone 10–16 [67]

4A11 Lauric acid 31 [68]

17A1 Progesterone 22, 41 [69, 70]

17α-Hydroxyprogesterone 1.3, 10

Pregnenolone 97, 61

17α-Hydroxypregnenolone 4, 44

19A1 Androstenedione 5 [71]

19-Hydroxy androstenedione 34

19-Aldehyde androstenedione 33

J Inorg Biochem. Author manuscript; available in PMC 2019 September 01.


	Abstract
	Graphical Abstract
	INTRODUCTION
	H2O2 in Signaling
	H2O2 Production Through Pathway Uncoupling
	H2O2 as a P450 Co-substrate
	H2O2 as a P450 Inhibitor

	Conclusions
	References
	FIG. 1
	FIG. 2
	FIG. 3
	Table 1

