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Abstract

Adenosine to inosine RNA editing is an epigenetic process that entails site-specific modifications in double-stranded RNA
molecules, catalyzed by adenosine deaminases acting on RNA (ADARs). Using the multiplex microfluidic PCR and deep
sequencing technique, we recently showed that exposing adolescent female rats to chronic unpredictable stress before
reproduction affects editing in the prefrontal cortex and amygdala of their newborn offspring, particularly at the serotonin
receptor 5-HT2c (encoded by Htr2c). Here, we used the same technique to determine whether post-stress, pre-reproductive
maternal treatment with fluoxetine (5 mg/kg, 7 days) reverses the effects of stress on editing. We also examined the mRNA
expression of ADAR enzymes in these regions, and asked whether social behavior in adult offspring would be altered by
maternal exposure to stress and/or fluoxetine. Maternal treatment with fluoxetine altered Htr2c editing in offspring amyg-
dala at birth, enhanced the expression of Htr2c mRNA and RNA editing enzymes in the prefrontal cortex, and reversed the
effects of pre-reproductive stress on Htr2c editing in this region. Furthermore, maternal fluoxetine treatment enhanced dif-
ferences in editing of glutamate receptors between offspring of control and stress-exposed rats, and led to enhanced social
preference in adult offspring. Our findings indicate that pre-gestational fluoxetine treatment affects patterns of RNA editing
and editing enzyme expression in neonatal offspring brain in a region-specific manner, in interaction with pre-reproductive
stress. Overall, these findings imply that fluoxetine treatment affects serotonergic signaling in offspring brain even when
treatment is discontinued before gestation, and its effects may depend upon prior exposure to stress.
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Introduction

A-to-I RNA editing is a post-transcriptional modification medi-
ated by adenosine deaminases acting on RNA (ADAR) enzymes
[1–3]. ADARs bind to double-stranded RNA and convert adeno-
sine (A) to inosine (I), which is read by the translational machin-
ery as a guanosine (G). Occurring at both coding and non-coding
regions, ADAR-mediated RNA editing can contribute to transla-
tional variability [4] and to the stability and self-regulation of
the RNA molecule [5]. The development of high-throughput
sequencing-based techniques has enabled the discovery of
many novel editing sites in mammals [6].

A-to-I editing occurs in many mammalian tissues, including
the brain [7, 8]. Editing changes in coding regions affect key
aspects of neurotransmission [8–10]. For example, editing at
ionotropic alpha-amino-propionic-acid (AMPA) and kainate
(KA) glutamate receptors results in amino acid replacements
that lead to significant modifications of channel gating, perme-
ability, trafficking and maturation [11–14]. Another well-studied
example of A-to-I editing is the Htr2c gene, where editing can
occur at each of the five adenosines within the sequence that
encodes amino acids 156–160 (sites A–E). Editing at these sites
leads to altered encoding of triplet codons resulting in 32 puta-
tive isoforms of the G-protein-coupled serotonin receptor
[15, 16].

A-to-I editing at mRNA encoding glutamate and serotonin
receptors responds to environmental stimulation [17–25]. Using
a highly accurate high-throughput targeted approach (micro-
fluidics-based multiplex PCR and deep sequencing—mmPCR-
seq [26]), we recently showed that exposing adolescent female
rats to chronic unpredictable stress prior to reproduction (prere-
productive stress; PRS) affects A-to-I editing in the prefrontal
cortex (PFC) and amygdala of their newborn offspring. In partic-
ular, editing at the Htr2c was affected, resulting in a different
pattern of Htr2c isoforms in offspring of stress-exposed versus
naı̈ve females [22]. We have previously shown that exposure of
adolescent females to PRS also results in changes in behavior,
stress-related plasma hormone levels, cortical gene expression
and neuronal morphology in first- and second-generation off-
spring [27–31].

Fluoxetine (FLX) is a serotonin-specific reuptake inhibitor
(SSRI) commonly prescribed for depression and related affective
disorders [32]. FLX treatment affects levels of RNA editing at
several sites, including the Htr2c and glutamate receptor subu-
nits in culture [33, 34] as well as in the mouse [17, 35–37] and rat
[19] brain. Moreover, FLX administration in adulthood reverses
the effects of early life stress on RNA editing in the adult mouse
brain [35]. Here, we used the mmPCR-seq technique to deter-
mine whether post-stress maternal treatment with FLX could
reverse the effects of stress on RNA editing in the PFC and
amygdala of newborn first-generation (F1) offspring. We also
examined the mRNA expression of ADAR enzymes in neonatal
PFC and amygdala, and asked whether social behavior in adult
offspring would be altered by maternal exposure to stress and/
or FLX.

Methods
Animals

Adolescent female Sprague-Dawley rats and adult males were
purchased from Envigo (Jerusalem). Housing conditions (except
during the stress procedure) included wood-flake bedding, ad lib
food and water, 12 h artificial lighting during the day (07–19 h)

and temperature maintained at 22 6 2�C. Animals were randomly
distributed across groups (see Experimental procedure below).
The number of animals per group appears in the figures. Rats
were handled in accordance with the NIH guidelines for the Care
and Use of Laboratory Animals, 8th edition [38] and were bred
and treated simultaneously to rats described in [22].

The study was approved by the University of Haifa
Committee on animal experimentation (294/13, 351/14).

Experimental Procedure

The experimental procedure is depicted in Fig. 1. Briefly, adoles-
cent [postnatal day (P)45] female rats were group housed
(4–6 rats per cage) in 56 � 35 � 19 cm cages. Cages were ran-
domly divided into control (C) and PRS groups. PRS rats under-
went a 7-day chronic unpredictable stress (CUS) procedure as
described previously [27–31]. Twenty-four hours later (P52),
females from C and PRS groups were injected i.p. with either ve-
hicle (VEH) or FLX (5 mg/kg, injection volume 0.5 ml), for 7 con-
secutive days. A week later (P66), behaviorally naı̈ve males rat
were introduced into a cage with 2 female rats and were re-
moved 7 days later. Female rats were returned to their home
cage; pregnancy was verified by weekly weighing. Each preg-
nant rat was moved to a 37 � 30 � 19 cm cage 7 days prior to
parturition.

Randomly selected offspring of control and PRS rats (O-C
and O-PRS, respectively) were sacrificed on the day of birth (P0)
and their PFC and amygdala were extracted for RNA editing and
gene expression analysis. Remaining pups were raised undis-
turbed until P30, then weaned and raised in same-sex, same-
condition groups of 4–6. Adults (P60) male and female rats were
tested for social preference (see below). Since the n’s for RNA
editing analysis did not allow to examine gender effects, and no
such effects were detected in the gene expression experiments,
data from male and female offspring were pooled together.
In the behavioral experiment, data for male and female off-
spring were analyzed separately.

Brain Removal and Dissection

Rats were sacrificed by decapitation and brains were removed
and placed on dry ice. Brains were mounted on a cryostat and
bilateral samples from PFC and amygdala from neonatal rats
were removed guided by the Atlas of the Neonatal Rat Brain [39]
and using 0.5 mm punches. Three punches were taken from the
PFC and two punches were taken from the amygdala in each
hemisphere. Punches from different rats were treated as indi-
vidual samples. All samples were immediately placed on dry ice
and kept at �80�C until further processing.

RNA Extraction and cDNA Preparation

RNA from brain tissue was extracted as described previously
[30, 31]. Dissected brain regions were homogenized in 300ml of

Figure 1: experimental design: intergenerational transmission of PRS/FLX effects
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TRIzol (Invitrogen, Carlsbad, CA) and 5ll glycogen (Sigma-Aldrich,
St Louis, MO), then suspended in a total of 500ml TRIzol. After add-
ing 100 ll chloroform to allow phase separation by centrifugation
(14 000 rpm, 150, 4�C), 250 ll ispropanol (Sigma Aldrich) was added
to the aqueous phase. After 12 h in �20�C, RNA was precipitated
by centrifugation (14 000 rpm, 150). The pellet was washed in 500ll
cold 100% ethanol freshly made and stored in �20�C, recentri-
fuged (7600 rpm, 50) and then rewashed in 500 ll cold 75% ethanol,
recentrifuged (7600 rpm, 50) then dried. RNA quantities were deter-
mined using a Nanodrop 2000 spectrophotometer (Thermo
Scientific, Wilmington, DE) or Qubit fluorometer (Thermo Fisher
Scientific, Waltham, MA). RNA quality assessment and cDNA
preparation were done as described previously [22].
The 260:280 nm absorbance ratio was measured to assess RNA
quality; samples were excluded if the ratio was outside the range
of 1.7–2.0, or if RNA concentration was too low. PureLinkVR RNA
Mini Kit (Ambion) was used to further purify some of these sam-
ples. cDNA was prepared using iScriptTM Advanced cDNA
Synthesis Kit (Bio-Rad, Hercules, CA) or High Capacity cDNA
Reverse Transcription kit (Applied Biosystems, Foster City, CA) or
Quanta (Bioscience, Manchester, UK). cDNA used in the mmPCR-
seq experiment were purified with AgencourtVR AMPureVR XP beads
(Beckman Coulter, Brea, CA).

Primer Preparation and mmPCR-seq

Editing sites were selected and primer preparation for mmPCR-
seq was performed as described previously [22]. Briefly, we
designed 48 pools of 2–3 plex multiplex PCR primers (see [22]) to
amplify 146 sites. The sizes of the amplicons ranged from 150 to
350 bp. We loaded cDNA and primer pools into the 48.48 Access
Array IFC (Fluidigm) and performed target amplification as de-
scribed previously [26, 40]. PCR products of each sample were
then subjected to a 15-cycle barcode PCR and pooled together.
All pools were combined at equal volumes and purified via
AgencourtVR AMPureVR XP beads. The library was sequenced using
NextSeq 500 (Illumina, USA) with 76 bp paired-end reads.
Paired-end reads were combined and mapped onto the genome
(rn4) using BWA samse allowing 9 mismatches per read [41]. We
aligned the sequencing reads to a combination of the reference
genome and 70 bp exonic sequences surrounding known splic-
ing junctions from available gene models (obtained from the
UCSC genome browser). We quantified editing levels as de-
scribed [22] by dividing the fraction of reads containing a ‘G’ nu-
cleotide by the total reads at each editing site. Only sites
covered by 50 mmPCR-seq reads were included. For each com-
parison, we excluded editing sites that had less than 3 biological
replicates, and samples where >30% of editing sites were miss-
ing. Custom scripts used to process data are available upon
request.

Cluster Analysis of Htr2c Isoforms from
mmPCR-seq Data

A-to-I RNA editing of the Htr2c gene (Rattus norvegicus 5-hy-
droxytryptamine serotonin receptor 2C) occurs at 5 sites (A
through E) and can result in 32 mRNA variants that translate to
24 protein isoforms. We performed editing cluster analysis as
described previously [22, 42]. Briefly, we aligned the reads with
samtools mpileup (v0.1.18; s [41]), to get the sequence informa-
tion per genomic location, keeping the data of the original
reads. Using an in-house computer program, we were able to
find the editing sites in the Htr2c cluster in each read. We used
only reads that included all cluster editing sites. For each

sample, we summed the different combinations of actual edit-
ing locations, and found the percentage from the total number
of reads that covered all the locations for each isoform.
Isoforms that include the E site were not included in the calcu-
lations, since editing was not detected at this site.

Quantitative Real-Time PCR

Some of the samples used for RNA editing assessment were
also assessed for mRNA expression of RNA editing enzymes and
Htr2c. In some cases, additional samples were added for qRT-
PCR analysis, since RNA quantities were insufficient for both
RNA editing and gene expression studies. Primers (see [22])
were designed using Primer3 [43] software, and synthesized by
Integrated DNA Technologies (Coralville, IA). Primer suitability
was determined using standard curve analysis, melting curve
analysis and linearity at threshold [44, 45]. Quantitative real-
time PCR (qRT-PCR) was performed as described previously [31].
Data analysis was performed on dCt values (Ct values) normal-
ized to the housekeeping gene hypoxanthine phosphoribosyl
transferase (HPRT). ddCt was calculated relative to the control
brain region (amygdala) or group (O-C/VEH). Data is represented
as fold change, calculated using the ddCt method [45], with
standard error of fold change values [44].

Social Preference

The social preference test is commonly used to assess rodent
sociability, and has been modified and conducted as described
previously [46, 47]. The arena (40lx70wx30h cm) was divided
into 2 unequal compartments by a transparent perforated
Plexiglas panel, allowing for intact visual and olfactory cues.
The experiment rat was placed in the larger compartment and
an unfamiliar con-specific partner rat of the same sex and age
was placed in the smaller (40lx15wx30h cm) compartment. Rats
were habituated to their respective compartments for 5 min.
Twenty-four hours later, the partner rat was placed in the
smaller compartment, and an unfamiliar object (plastic, 5 � 5 �
8 h, 11 � 8 � 8 h cm) was placed in the larger compartment,
10 cm diagonally from the corner of the arena. One minute later
the experiment rat was placed in the arena for 5 min. Several
objects and partner rats were used throughout the experiment,
and were counterbalanced between groups. Time spent explor-
ing the partner rat and the object was measured using
Ethovision XT10.0 software (Noldus Information Technology,
Leeburh, VA). Rats that did not complete 30 s of total exploration
time (4 rats in total, 1 from each group) were excluded from the
experiment.

Statistical Analyses

Data were analyzed with SPSS 23 Statistics software (IBM,
Chicago, IL ) and R package version 3.2.5. A nonparametric
Mann-Whitney U test with Benjamini–Hochberg multiple test-
ing correction was used, with FDR¼ 0.1, was used to analyse
RNA editing data [22, 42]. We used specifically constructed R
package scripts (available upon request). Analysis of variance
(ANOVA) and multivariate analysis of variance (MANOVA) were
used to analyze gene expression, isoforms distribution and be-
havioral data. LSD post-hoc tests were applied when interac-
tions were significant. Means and SE are presented in the
figures. Significance level was set at P < 0.05. Results that ap-
proach significance were defined as .05 � P � 0.075.
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Results
Editing Levels Are Lower in Neonatal PFC Compared
with Amygdala

We previously showed that editing levels were generally lower
in the neonatal rat PFC compared with the amygdala [22]. Here,
we asked whether maternal pre-reproductive FLX treatment
would affect these regional patterns. We detected editing at all
146 sites. Editing levels at 10 editing sites were different in
PFC compared with the amygdala; in 9/10 sites, editing
was lower in PFC (Mann–Whitney U test, FDR¼ 0.1; Fig. 2A; see
Supplementary Table S1 for mean editing levels at each site in
PFC and amygdala). mRNA expression levels of Adar and Adarb1
were also lower in PFC (one-way ANOVAs, Adar, F1,11 ¼ 17.759,
P¼ 0.0014; Adarb1, F1,11 ¼ 8.788, p¼ 0.013; Fig. 2B). There were no
regional differences in Htr2c mRNA levels (NS, not shown).

Maternal Treatment with FLX and Exposure to Stress
Prior to Pregnancy Affect RNA Editing Enzyme and Htr2c
mRNA Expression at Birth

We previously showed that PRS affects mRNA expression levels
of Adar and Adarb1 (which encode ADAR1 and ADAR2, respec-
tively) differentially in the PFC and amygdala of F1 offspring at
P0. The mRNA expression of Htr2c (encoding the serotonin
5HT2C receptor) in offspring is also sensitive to maternal PRS
[22]. Here, we asked whether maternal post-stress FLX treat-
ment would reverse the effects of PRS, and/or have its own im-
pact on expression levels. The effects of PRS on expression
levels were previously reported [22] and are depicted in the gray
panels in Fig. 3. Since FLX-exposed offspring samples were col-
lected at the same time as non-exposed samples, we combined
the data from the previous experiment [22] with the present
one and applied a 2-way ANOVA analysis for each gene. We
found that in the PFC (Fig. 3A), FLX increased Adar and Adarb1
mRNA expression in offspring of control, but not PRS, dams,
and reversed the PRS-induced increased in Adarb1 [Fig. 3A1:
Adar, main effect of group F1,25 ¼ 5.030, P¼ 0.034, group � drug

interaction F1,25 ¼ 8.528, P¼ 0.007, post hoc C-FLX > C-VEH
(P¼ 0.017); Fig. 3A2: Adarb1, group � drug interaction F1,22 ¼
15.49, P¼ 0.0007, post-hoc C-FLX>C-VEH (P¼ 0.057), PRS-FLX<
PRS-VEH (P¼ 0.001)]. FLX also led to an increase in Htr2c mRNA
expression in O-C, but not O-PRS, rats [Fig. 3A3, main effect of
drug F1,23 ¼ 32.139, P¼ 0.000009, group � drug interaction F1,23 ¼
24.920, P¼ 0.0000476, post-hoc C-FLX>C-VEH P¼ 0.0003)]. In the
amygdala, we previously observed a PRS-induced decrease in
the expression of RNA-editing enzymes and Htr2c in offspring of
VEH-treated rats ([22], Fig. 3B gray panels). A similar effect of PRS
was observed in offspring of FLX-treated rats (main effect of
group, Fig. 3B1: Adar, F1,20 ¼ 3.757, P¼ 0.067; Fig. 3B2: Adarb1,
F1,21 ¼ 12.277, P¼ 0.0021; Fig. 3B3: Htr2c, F1,21 ¼ 15.93,
P¼ 0.00066). In addition, FLX increased Adar (main effect Drug,
F1,20 ¼ 26.548, P¼ 0.0000484) and Htr2c expression (main effect
drug, F1,21 ¼ 7.104, P¼ 0.014) regardless of PRS exposure.

Maternal FLX Treatment Affects A-to-I RNA Editing at
the Htr2c

Since maternal FLX treatment affected RNA editing enzyme ex-
pression in offspring PFC and amygdala at birth, independently
of PRS effects, we examined the effects of FLX on A-to-I RNA
editing levels in the same regions in stress-naı̈ve (O-C) off-
spring. In the PFC, editing levels at the 146 detected sites were
not affected by maternal FLX (Mann–Whitney U test, FDR¼ 0.1;
see Supplementary Table S2 for mean þ SE editing levels). In
the amygdala, out of 146 detected editing sites we found FLX-
induced differences only at the Htr2c: maternal FLX led to a de-
crease in editing at the A, B and C sites (Fig. 4; Mann–Whitney U
test, FDR¼ 0.1; mean þ SE data in Supplementary Table S2).

Supplementary Table S3 presents the change in % distribu-
tion of Htr2c isoforms in PFC and amygdala of O-C rats, exclud-
ing isoforms containing the E site where editing was not
detected. As can be seen, there was no difference in distribution
of Htr2c isoforms between VEH and FLX in PFC, but in the amyg-
dala, the prevalence of 3 isoforms (VSVABCD, F1,8¼ 8.923,
P¼ 0.0174; VSIABC, F1,8¼ 6.611, P¼ 0.033; VNIAB, F1,8¼ 5 7.675,
P¼ 0.024), was significantly different in offspring of FLX-treated

Figure 2: A-to-I RNA editing and ADAR gene expression in the neonatal PFC and amygdala. Significant differences in % RNA editing (A) and fold changes (means 6 SE

of the fold change relative to amygdala) in mRNA gene expression of editing enzymes (B) in the PFC and amygdala at P0. All samples are from offspring of control

females treated with FLX prior to gestation. *P<0.05. **P<0.001. N’s, RNA editing; PFC 7, amygdala 7; gene expression; Adar 7, 6; Adarb1 6, 7
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compared with VEH-treated dams. Notably, prevalence of the
highly edited isoform VSVABCD was decreased in offspring of
FLX-treated dams.

Maternal FLX Treatment Can Reverse or Enhance the
Effects of PRS on A-to-I Editing in the PFC

We next asked whether maternal FLX treatment would reverse
some of the effects of PRS on editing in offspring PFC and amyg-
dala. Previous analysis of multiple sites where editing affects
neurotransmission and the stress response (29 sites in total;

[22]), revealed significant PRS-induced changes in editing at the
Htr2c in PFC [22]. Here, we assessed the difference in editing lev-
els between O-PRS and O-C samples at each of these sites, and
asked whether maternal FLX treatment would alter this differ-
ence. Figure 5 presents sites where the editing in O-PRS samples
was significantly different from O-C samples (Mann–Whitney
analysis, FDR¼ 0.1), in either VEH or FLX groups. In the PFC
(Fig. 5A), PRS led to significant changes in editing at the A and B
sites of the Htr2c, and FLX reversed this effect. However, FLX
treatment enhanced the effect of PRS on editing at mRNA
encoding AMPA and KA glutamate receptor subtypes, leading to
differences between O-PRS and O-C groups that were not pre-
sent in VEH samples. In the amygdala (Fig. 5B), PRS led to signif-
icant changes in editing at mRNA encoding serotonin and
glutamate receptors. FLX reversed the effects of PRS at some of
the sites and left differences intact at others. Unlike in the PFC,
FLX did not enhance the difference between O-PRS and O-C
samples at any of the sites examined (see Supplementary Table
S4 for full results).

Supplementary Table S5 presents the difference in Htr2c iso-
form prevalence between O-PRS and O-C samples, separately
for VEH- and FLX-treated groups (differences between VEH-
treated O-PRS and O-C groups were previously published [22]).
As can be seen, FLX treatment affected the prevalence of iso-
forms in offspring PFC and amygdala in interaction with the
effects of PRS. Particularly notable is the effect of FLX on the
prevalence of the INI isoform (no editing at any of the Htr2c
sites) in the PFC: whereas PRS had no effect on its prevalence in
VEH-treated samples, it increased its prevalence by 22% when
dams were treated with FLX.

Figure 3: maternal PRS- and FLX-induced changes in Adar, Adarb1 and Htr2c gene expression in the offspring brain. (A) Fold changes in mRNA gene expression of Adar

(A1), Adarb1 (A2) and Htr2c (A3) in the PFC of offspring of PRS (O-PRS) and control (O-C) dams treated with VEH or FLX prior to gestation. (B) Fold changes in mRNA gene

expression of Adar (B1), Adarb1 (B2) and Htr2c (B3) in the amygdala of offspring of PRS (O-PRS) and control (O-C) dams treated with VEH or FLX prior to gestation. Fold

change values are presented as means 6 SE of the fold change relative to O-C). #P< 0.075. *P<0.05. **P<0.001. Gray panels show previously published data [22]. N’s,

Adar, PFC: VEH, O-C 5, O-PRS 8, FLX, 6,7; amygdala: VEH, 4,9, FLX 7,5. Adarb1, PFC: VEH, O-C 5, O-PRS 8, FLX, 7,7; amygdala: VEH, 4,8, FLX 7,6. Htr2c, PFC: VEH, O-C 6, O-

PRS 8, FLX, 7,8; amygdala: VEH, 4,8, FLX 6,6.

Figure 4: maternal FLX treatment-induced changes in A-to-I RNA editing in off-

spring amygdala at birth. Percent RNA editing at the Htr2c A–D sites in the amyg-

dala of neonatal offspring of rats treated with VEH or FLX prior to reproduction.

*P<0.05. N’s, VEH 5, FLX 7
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Maternal FLX Treatment Leads to Enhanced Social
Preference in Adult Offspring

Since FLX affected RNA editing and gene expression patterns in
offspring independently of stress exposure, particularly at
mRNA encoding glutamate receptors (Fig. 5), we examined the
effect of pre-reproductive FLX treatment in interaction with PRS
on social preference (Fig. 6A). Social preference is a task that
measures the animal’s tendency to preferentially explore an
unfamiliar social stimulus versus an unfamiliar inanimate ob-
ject, and relies on intact NMDA receptor-mediated glutamate
neurotransmission in the PFC [48, 49]. We first compared the
performance of male and female rats in the task, and found
that exploration duration of the social stimulus was higher in
females (mean¼ 116.350, SE¼ 4.677) compared with
males (mean¼ 94.156, SE¼ 4.284; main effect of sex F1,88 ¼
12.434, P¼ 0.00067). No differences in non-social stimulus explo-
ration time were found (NS; N’s: Females; VEH, O-C 13 O-PRS 10,
FLX, O-C 17 O-PRS 10).

A separate analysis of FLX and PRS effects in males
and females revealed that male, but not female, offspring were
affected by pre-reproductive FLX treatment (Fig. 6, data for
females not shown). A two-way ANOVA analysis of partner
exploration time revealed a significant main effect of
drug F1,42 ¼ 4.488, P¼ 0.04, and a group � drug interaction

F1,42 ¼ 6.230, P¼ 0.0165. Post-hoc analysis revealed that mater-

nal FLX treatment increased partner exploration time in O-C
animals (O-C/FLX>O-C/VEH, P¼ 0.0043), but not in offspring of
rats exposed to stress (O-PRS/FLX< O-C/FLX, P¼ 0.0733).

Discussion

The present study shows that treatment of female rats with the
antidepressant drug FLX prior to reproduction and gestation
affects RNA editing patterns, gene expression of editing
enzymes and behavior in offspring. Pre-gestational FLX modu-
lates some of the effects of prior exposure to stress, but also pro-
duces independent consequences. These findings have
implications on current understanding of serotonergic signaling
and its sensitivity to maternal exposure to stress and antide-
pressant drug treatment.

Pre-gestational treatment of adolescent female rats with FLX
affects RNA editing patterns in their offspring at birth. FLX
alters serotonergic transmission by blocking the serotonin
transporter and increasing synaptic serotonin levels [50].
Although in our study FLX treatment was discontinued a week
prior to gestation, a direct influence of the drug on the develop-
ing fetus cannot be ruled out, as previous studies have shown
that FLX and particularly its active metabolite, norfluoxetine,

Figure 5: maternal FLX-induced modulation of PRS effects on RNA editing levels in offspring PFC. Significant differences in RNA editing in the PFC (A) and amygdala (B)

between O-C and O-PRS rats are presented as delta % editing. Dams were treated with VEH or FLX prior to reproduction. Blue panels highlight editing changes at Htr2c.

Pink panels highlight editing changes in glutamate receptor subunits. Insets: Editing sites where editing differences were between �0.2 and 1. N’s, PFC: VEH, O-C 5, O-

PRS 8; FLX, 7, 5; amygdala: VEH, 5, 9; FLX, 7, 6
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have relatively long elimination half-lives and can remain in
the plasma after drug administration is discontinued [51, 52].
FLX and other SSRIs cross the placenta, enter fetal brain tissue
and are present in breast milk [53–56]. Gestational exposure to
FLX was shown to induce age-specific and region-specific alter-
ations in serotonin levels and receptor densities in offspring
brain [57–59]. We showed that pre-gestational exposure to FLX
increased mRNA expression of Htr2c (Fig. 3), and selectively al-
tered editing at this receptor (Fig. 4) while leaving editing at 142
non-serotonergic sites intact. These alterations could be due to
a direct interaction of FLX with developing serotonergic signal-
ing pathways, or to indirect effects of FLX on the developing fe-
tus which give rise to editing and gene expression changes in
the neonatal brain. Another possibility is that serotonin reup-
take inhibition directly affects oocytes, leading to changes in
offspring gene expression patterns. Serotonin and elements of a
regulatory serotonergic system are present in oocytes and may
be modified by FLX treatment [60]. We previously showed that
PRS alters the expression of stress-related corticotropin releas-
ing hormone receptor type 1 (CRFR1) in oocytes and in offspring
brain at birth [31]. We did not find editing changes in stress-
exposed oocytes [22], but FLX-induced changes in editing, edit-
ing enzymes and molecules that regulate serotonergic activity
in oocytes should be the subject of future exploration.

Previous studies have shown that the expression of ADAR
enzymes and A-to-I RNA editing at sites encoding serotonin,
glutamate and GABA receptors are altered by FLX treatment
[17, 33–35, 37, 61]. Curiously, here we found that maternal treat-
ment with FLX led to opposite effects on Htr2c editing and ADAR
mRNA expression levels in offspring: whereas editing at the
Htr2c A and B sites decreased, mRNA expression of editing
enzymes increased. We and others [22, 23, 62–67] previously
found that changes in editing levels correlated poorly with
ADAR mRNA or protein expression levels. Differences between
mRNA and protein expression or between expression and activ-
ity levels, compensatory or self-regulatory mechanisms could
account for the non-linear relationship between editing rates
and editing enzyme expression levels [68]. Furthermore, ADAR
enzymes regulate additional processes, e.g. miRNA biogenesis
and function [68], which could be affected by PRS and/or FLX.

Interestingly, we found that editing rates as well as ADAR
mRNA expression levels in offspring of FLX-treated rats were
higher in the amygdala compared with the PFC (Fig. 2), in line

with our previous findings in offspring of VEH-treated rats [22]
and with the maturational profile of these regions [48, 49]. This
positive correlation could be due to the fact that regional differ-
ences in editing were not limited to the Htr2c, as were FLX-
induced effects.

Htr2c editing affects the expression and activity levels of this
G-protein-coupled receptor, so that increased editing generally
results in reduced sensitivity to ligands, reduced basal activity
[15, 69], decreased G-protein coupling [70] and decreased intra-
cellular signaling [71]. Here, maternal FLX treatment decreased
A and B site editing (Fig. 4) and increased Htr2c mRNA levels
(Fig. 3) in the amygdala, and these effects were accompanied by
decreased prevalence of the unedited INI isoform and increased
prevalence of the highly edited (and presumably less functional)
VSV isoform (Supplementary Table S3). Notably, the very pro-
nounced FLX-induced increase in Htr2c mRNA expression in the
PFC (>28-fold) was not accompanied by changes in receptor
editing. While the present study does not enable us to deter-
mine whether changes in editing enzyme or substrate expres-
sion preceded changes in editing, one possibility is that
maternal FLX treatment affected serotonergic signaling in the
developing fetus and led to increased Htr2c mRNA expression in
neonate offspring, which in turn impacted Htr2c editing rates
and editing enzyme levels.

Pre-gestational, post-stress treatment of rats with FLX
reverses some of the effects of PRS on the mRNA expression of
RNA editing enzymes in offspring brain. Chronic unpredictable
stress in adolescence, a vulnerable time period in neural devel-
opment, is associated with the emergence of psychiatric disor-
ders in adulthood [72]. FLX and other SSRIs are the most
frequently prescribed anti-depressants, and are increasingly
prescribed in adolescence and during pregnancy [73–76].
Chronic unpredictable stress is a rodent model of depression
and anxiety [77], and FLX as well as other SSRIs were shown to
reverse the effects of stress on depression-like behavior and
HPA axis function in rodents [78]. While this is the first study to
investigate the interaction between PRS and pre-gestational FLX
exposure, several studies examined the consequences of peri-
natal FLX exposure in rodent models of depression. For exam-
ple, a recent study showed that perinatal treatment (from
Gestational Day 10-P21) with FLX reversed pre-gestational
stress-induced abnormalities in serotonin levels and turnover
in offspring PFC [79]. Other studies showed that perinatal FLX

Figure 6: FLX maternal PRS- and FLX-induced changes in social preference in adult male offspring. (A) A representation of the social preference behavioral paradigm.

Rats explore a novel inanimate (non-social) or a social stimulus for 5 min. (B) Time spent exploring social and non-social stimuli in male adult offspring of control (O-C)

or stressed (O-PRS) dams treated with VEH or FLX. No differences in non-social stimulus exploration were found (NS). *P< 0.05. N’s, VEH, O-C 8, O-PRS 16; FLX, 11, 11
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can reverse the effects of maternal stress on immobility in the
forced swim test, hippocampal neurogenesis, and 5-HIAA levels
in the hippocampus of juvenile or adolescent offspring [79–81].

Similarly, in the present study pre-gestational treatment
with FLX reversed the consequences of PRS on editing abnor-
malities at the Htr2c in PFC and amygdala of offspring. Our
results indicate that discontinuation of treatment prior to preg-
nancy does not alter FLX effects. As discussed above, this may
be due to the long half-life of FLX and its metabolites and its
ability to cross the placenta and enter fetal brain tissue, or to di-
rect effects on serotonin dynamics in exposed oocytes. FLX and
other SSRIs were hypothesized to exert their antidepressant
actions by normalizing hypothalamic-pituitary-adrenocortical
(HPA) system hyperactivity, a central clinical feature of depres-
sion. Salari et al. [81], for example, found that the effects of ges-
tational stress on corticosterone elevations in mice were
reversed by either gestational or perinatal (P10-20) FLX treat-
ment. However, in other studies FLX treatment during gestation
or in adult rodents potentiated HPA system hyperactivity on its
own rather than reducing the effects of stress [81–85].

The 5-HT2C receptor is implicated in the response to chronic
stress and maintains reciprocal relations with the HPA system
[86, 87]. Chou-Green et al. [88] found that 5-HT2cR knockout
mice are hyper-responsive to stress, and others have shown
that stress alters Htr2c editing patterns. Both elevated and re-
duced editing levels can have deleterious effects on behavior.
For example, mice expressing either the fully edited or fully un-
edited form of the 5-HT2c exhibit anxiogenic behavior, particu-
larly in the BALB/c strain commonly used as a mouse model of
anxiety and depression [89, 90]. In our study, FLX increased the
proportion of the unedited (INI) isoform in offspring of PRS-
exposed, but not control rats (Supplementary Table S5). In the
context of previously published literature, our findings imply
that FLX treatment leads to increased signaling at the 5-HT2c
receptor particularly when the HPA axis is activated.

While reversing the effects of PRS on editing at the Htr2c, FLX
treatment led to enhanced differences between C and PRS-
exposed offspring at glutamate receptors, particularly in the
PFC (Fig. 5). Disrupted glutamatergic neurotransmission is im-
plicated both in the pathogenesis of affective disorders and in
the outcome of pharmacological treatments [91–94]. Editing of
AMPA and KA receptor subunits was shown to have a signifi-
cant effect on transmission dynamics (e.g. [11, 95, 96], and is
sensitive to environmental manipulations, e.g. learning and
stress [23, 97]. In our hands, pre-reproductive chronic unpredict-
able stress did not affect editing at glutamate receptors in af-
fected female rats or their offspring [22]. In line with previous
studies that showed minor effects of FLX on glutamate receptor
editing [98], in the present study we showed that pre-
gestational FLX treatment on its own also had no effect on edit-
ing in newborn offspring. However, FLX treatment potentiated
differences in editing of glutamate receptors between offspring
of control and stress-exposed rats. This interaction between
stress and drug effects seemed to be specific to glutamate
receptors, was particularly pronounced in the PFC, and encom-
passed different editing sites at AMPA and KA receptors (Fig. 5,
Supplementary Table S4). This finding may support the interac-
tion between serotonergic and glutamatergic transmission in
the modulation of stress effects, and provide a possible mecha-
nism for plasticity in response to environmental adversity.

Deficits in social function are shared by several psychiatric
disorders, including autism, depression and schizophrenia [99].
Treatment with SSRIs, including FLX, ameliorates social deficits
in depressed and anxious individuals [100], and reverses

aberrant social behavior in animal models of psychopathology
(e.g. [101]). Here, we found that pre-gestational treatment with
FLX-enhanced social preference in adult male, but not female,
offspring (Fig. 6). Assuming that pre-gestationally administered
FLX had a direct effect on the developing fetus, this finding can
be explained by the known effects of perinatal FLX administra-
tion on the developing serotonergic system [102]. A sexually di-
morphic effect of pre- or perinatal SSRI exposure on social
behavior has been previously reported (see [103] for review). For
example, Svirsky et al. [104] found that prenatal FLX increases ag-
gression in male offspring and delays the onset of maternal be-
havior in females. Interestingly, in our study the effect of FLX on
social behavior was attenuated in offspring of stress-exposed
females. In agreement with this finding, exposure to prenatal
stress diminished the prenatal FLX-induced increase in social
(aggressive) behavior in male offspring [105]. The mechanism for
this stress � drug interaction on social behavior in offspring
remains to be elucidated, but may be related to opposite effects
of PRS and FLX on the HPA axis. Furthermore, the interaction be-
tween PRS and FLX effects on measures of anxiety and cognitive
behavior are to be explored in future studies. Finally, a relation-
ship between FLX-induced changes in Htr2c RNA editing or ex-
pression levels at birth and FLX-induced changes in adult social
behavior cannot be deduced from this study but may provide im-
portant clues for the role played by intact development of the se-
rotonergic system in early life and social function in adulthood.

In summary, this is the first study to investigate the effects of
pre-gestational treatment with FLX on offspring, as most human
and animal model investigations focus on the effects of SSRI
treatment during pregnancy. We found that FLX administration
to female rats prior to gestation affected 5-HT2C receptor expres-
sion and editing in neonatal offspring brain, led to enhanced so-
cial preference in adult offspring, and interacted with the effects
of prior exposure to stress. Chronic unpredictable stress is com-
monly used to model depression in humans, and FLX is often
the first line of treatment for stress-related depression in adoles-
cents and during pregnancy. Here, we demonstrate that even
when discontinued prior to gestation, FLX has long-lasting
effects on serotonin dynamics and on social behavior.
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