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Abstract

Summary: Identification of functional transcription factors that regulate a given gene set is an im-

portant problem in gene regulation studies. Conventional approaches for identifying transcription

factors, such as DNA sequence motif analysis, are unable to predict functional binding of specific

factors and not sensitive enough to detect factors binding at distal enhancers. Here, we present

binding analysis for regulation of transcription (BART), a novel computational method and soft-

ware package for predicting functional transcription factors that regulate a query gene set or asso-

ciate with a query genomic profile, based on more than 6000 existing ChIP-seq datasets for over

400 factors in human or mouse. This method demonstrates the advantage of utilizing publicly avail-

able data for functional genomics research.

Availability and implementation: BART is implemented in Python and available at http://faculty.vir

ginia.edu/zanglab/bart.

Contact: zang@virginia.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Transcriptional regulation of gene expression plays a critical role in

many cellular processes, including cancer development and progres-

sion (Bradner et al., 2017; Lambert et al., 2018). Identification of

functional transcription factors is essential for understanding gene

regulatory mechanisms in such processes. In gene expression profil-

ing studies, ontology and pathway analyses (Huang et al., 2009;

McLean et al., 2010; Subramanian et al., 2005) can identify func-

tional annotations of differentially expressed genes; however, this

approach is unable to predict transcription factors that regulate

those gene sets. Most existing methods for cis-regulatory prediction

rely upon detecting overrepresented DNA sequence motifs near the

gene promoters to identify sequence-specific DNA-binding factors

(Boeva, 2016). Such methods are limited by the context-specific na-

ture of transcription factor activity and by multiple factors sharing

similar motifs (Jolma et al., 2013). Moreover, most cis-regulatory

events in mammalian genomes occur at distal enhancers, which

cover much larger regions than promoters but without direct assign-

ment to target genes; these regions are usually difficult to capture by

motif scan alone (Shlyueva et al., 2014).

Several methods have been developed to overcome these limita-

tions of motif-based, promoter-biased approaches using comprehen-

sive epigenomic information (Dozmorov, 2017), such as DNaseI

hypersensitive sites (Sheffield et al., 2013). Model-based analysis of

regulation of gene expression (MARGE) is a method developed for

modeling differential gene expression using a compendium of public

H3K27ac ChIP-seq datasets (Wang et al., 2016). By quantifying the

regulatory potential of active enhancer histone mark H3K27ac on

each gene in the genome from each ChIP-seq dataset, MARGE uses

a semi-supervised learning approach to predict a genome-wide
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cis-regulatory profile for any query gene set. Leveraging over 6000

transcription factor ChIP-seq datasets available in the public domain

(Mei et al., 2017), we have developed binding analysis for regulation

of transcription (BART), a new method for prediction of functional

transcription factors by associating ChIP-seq binding information

with MARGE-predicted genomic cis-regulatory regions.

2 Materials and methods

BART identifies transcription factors whose genomic binding profile

correlates with a query cis-regulatory profile derived from either a gene

set or a ChIP-seq dataset (Fig. 1). BART uses a previously curated union

DNaseI hypersensitive sites (UDHS) as a repertoire of all cis-regulatory

regions in the genome (Wang et al., 2016). The UDHS has over 2.7 mil-

lion sites in human or 1.5 million in mouse, covering regions of 307

Mbp or 121 Mbp in the human or mouse genomes, respectively, includ-

ing most enhancers and promoters. We used UDHS to represent gen-

omic cis-regulatory regions, because for the vast majority of

transcription factor ChIP-seq datasets, over 80% of the identified peaks

(binding sites) overlap with UDHS (Supplementary Fig. S1).

Given a query gene set as input (‘geneset’ mode), MARGE is

applied to predict a genomic cis-regulatory profile that regulates the

gene set. For a ChIP-seq dataset input (‘profile’ mode), BART will

use the ChIP-seq read count near each UDHS site to quantify the

UDHS and generate the cis-regulatory profile (Fig. 1A).

For each transcription factor ChIP-seq dataset from the collected

data compendium (Mei et al., 2017), we map the identified peaks to

the UDHS and assign each UDHS site a binary score indicating

whether this site overlaps with a peak (Fig. 1B). To assess whether

the query cis-regulatory profile (as a ranking of the UDHS) is associ-

ated with each ChIP-seq profile, we generate a receiver operating

characteristic (ROC) curve using the factor-bound UDHS as true

positive and the cis-regulatory rank as the predictor. We use the area

under the ROC curve (AUC) score to quantify the association be-

tween the cis-regulatory profile and each dataset (Fig. 1C).

We then apply statistical tests to assess the significance of each

factor using the AUC scores from all transcription factor ChIP-seq

datasets. Given that each factor can have multiple ChIP-seq datasets

in the data compendium generated under different biological condi-

tions or by different labs, we first use the Wilcoxon rank-sum test

for each factor by comparing the AUC scores from ChIP-seq data-

sets of that factor with the AUC scores from all datasets (Fig. 1D).

Here, we take advantage of the collective information from many

ChIP-seq datasets for one factor as a trade-off of the cell-type speci-

ficity of transcription factor binding patterns, considering that the

genomic binding profiles of the same factor across different cell

types are usually more similar than the binding profiles of different

factors in the same cell type (Supplementary Fig. S2). To assess the

specificity of each factor, we build up background models using the

Wilcoxon test statistics obtained from each annotated gene set from

the Molecular Signatures Database (MSigDB) (Liberzon et al.,

2011) in the geneset mode, or using each H3K27ac ChIP-seq dataset

from the ChIP-seq data compendium (Wang et al., 2016) in the pro-

file mode, respectively (Fig. 1E, Supplementary Fig. S3). We then

calculate a standard Z-score for each factor, by comparing the test

statistic from the query data with those from the background.

Finally, we obtain the transcription factor prediction based on the

average rank of Wilcoxon P-value, Z-score and the maximum AUC

among datasets for that factor (Fig. 1F). More details can be found

in the Supplementary Material.

3 Results and discussion

We tested BART on several gene sets derived from differentially ex-

pressed genes after activation or inhibition of known transcription

factors, including ESR1, AR, NR3C1, PPARG, NOTCH1, and

POU5F1 (Wang et al., 2016). In the BART result, the true functional

factor was ranked on top (1/454) of the candidates in 4/6 gene sets;

and ranked No.2 and No.47 for ESR1 and NR3C1, respectively

(Supplementary Fig. S4). The highest ranked factor predicted from

NR3C1 target genes is NR2A1, another nuclear receptor. The cor-

rect predictions are robust and not affected by randomness in

MARGE outputs (Supplementary Fig. S5). These results indicate

that BART can successfully predict transcription factors that regu-

late a given gene set. To evaluate the performance of BART, we

compare BART with four other transcription factor prediction tools

that take a gene set as query, including the ENCODE ChIP-seq

Significance Tool (Auerbach et al., 2013), HOMER (Heinz et al.,

2010), iRegulon (Janky et al., 2014) and Pscan (Zambelli et al.,

2009) (Supplementary Table S1). On prediction of the true factor

from the six gene sets, BART outperforms other methods for five

cases, except NR3C1 (Supplementary Table S2).

BART can identify transcription factors that regulate any gene set

or associate with any genomic profile. BART provides functional in-

terpretations to differential gene expression analysis. BART makes

predictions based on direct binding information from public ChIP-seq

data only, as an orthogonal approach to conventional DNA sequence

motif search. It focuses on transcription factor binding at open chro-

matin regions in the genome represented by UDHS, most of which are

located at enhancers far from coding genes, providing an effective and

extensive coverage for cis-regulatory events in the genome.

BART can have broad applications in transcriptional regulation

studies. Leveraging abundant information from public data, BART

can help generate hypotheses about functional transcriptional regu-

latory mechanisms in any human or mouse cell system, especially

the cases where functional transcription factors are unknown, such

as effects of external treatments like drugs or exposures, during a de-

velopmental process and comparing tumor with normal cells. Any

transcriptomic profiling experiment that generates differentially ex-

pressed gene sets comparing two states can be subject to BART
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Fig. 1. BART workflow. (A) Cis-regulatory profile is generated from query gene

set by MARGE or from a ChIP-seq dataset by genomic mapping. Yellow bars in-

dicate UDHS. (B) Each transcription factor binding profile from a ChIP-seq data-

set is converted to a binary string showing presence or absence at each UDHS.

(C) Top: Each ROC curve represents the prediction performance of a transcrip-

tion factor profile from B by the query cis-regulatory profile from A; Bottom:

Area under the ROC curve (AUC) is calculated for all datasets. (D) AUC are

grouped by factor, and Wilcoxon test is performed for each factor compared

with all datasets as background. In this example, cumulative distributions show

significantly higher AUC for TF_a (red). (E) Wilcoxon test statistic is calculated

for each transcription factor from each dataset in the background for Z-score

calculation. (F) BART outputs a ranked list of all transcription factors
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analysis. It can also be applied to validate the knock-down or

knock-out experiments and help look for novel co-factors associated

with known transcription factors.

When applying BART for transcription factor prediction, users

should also be aware of several limitations of this method. First,

BART prediction is based on information from existing ChIP-seq

data. Even though we have included as many ChIP-seq datasets as

possible and will continue to update the compendium as more data

become available, there are still many factors that do not have pub-

licly available ChIP-seq data in any cellular system. Second, in the

‘geneset’ mode, the cis-regulatory profile prediction using MARGE is

based on H3K27ac signals. Although H3K27ac has been shown as

the histone mark that separates active enhancers from poised enhan-

cers (Creyghton et al., 2010; Rada-Iglesias et al., 2011), other histone

modifications such as H3K4 methylations have also been implicated

as hallmarks of enhancers (Henriques et al., 2018). Similar

approaches can be adopted on other histone marks alone or collect-

ively as extension of MARGE and BART in the future. Third, while

taking advantage of the collectivity of multiple binding profiles of the

same transcription factor in different cell types and conditions, BART

does not particularly focus on the cell-type specificity of transcription

factor binding patterns. The considerations are (i) cell-type specificity

of the query gene set has been addressed in the MARGE prediction,

where the regression-selected H3K27ac profiles contain the cell/tissue

type information (Wang et al., 2016); (ii) the genomic binding pat-

terns of the same factor across different cell types are more similar

than the binding patterns of different factors in the same cell type

(Supplementary Fig. S2). Therefore, in case the true transcription fac-

tor’s ChIP-seq data in the right cell type is not available, BART would

still be able to identify the true factor from its similar binding patterns

in different cell types, rather than finding a false factor from that

same cell type. After all, due to the incomplete coverage of cell and

tissue types from public chromatin accessibility profiling data and

ChIP-seq data, the ability of BART in identifying transcription factors

binding at specific cis-regulatory regions in an uncharacterized cell

system is limited. In those cases, we suggest using BART in combin-

ation with other approaches such as motif- or co-expression-based

methods to improve predictions. Despite these limitations, BART pro-

vides a framework for accurate prediction of functional transcrip-

tional regulation by utilizing public data.
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