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Abstract

Motivation: Identification of novel therapeutic effects for existing US Food and Drug

Administration (FDA)-approved drugs, drug repurposing, is an approach aimed to dramatically

shorten the drug discovery process, which is costly, slow and risky. Several computational

approaches use transcriptional data to find potential repurposing candidates. The main hypothesis

of such approaches is that if gene expression signature of a particular drug is opposite to the gene

expression signature of a disease, that drug may have a potential therapeutic effect on the disease.

However, this may not be optimal since it fails to consider the different roles of genes and their

dependencies at the system level.

Results: We propose a systems biology approach to discover novel therapeutic roles for established

drugs that addresses some of the issues in the current approaches. To do so, we use publicly avail-

able drug and disease data to build a drug-disease network by considering all interactions between

drug targets and disease-related genes in the context of all known signaling pathways. This network

is integrated with gene-expression measurements to identify drugs with new desired therapeutic

effects based on a system-level analysis method. We compare the proposed approach with the drug

repurposing approach proposed by Sirota et al. on four human diseases: idiopathic pulmonary fibro-

sis, non-small cell lung cancer, prostate cancer and breast cancer. We evaluate the proposed

approach based on its ability to re-discover drugs that are already FDA-approved for a given disease.

Availability and implementation: The R package DrugDiseaseNet is under review for publication in

Bioconductor and is available at https://github.com/azampvd/DrugDiseaseNet.

Contact: sorin@wayne.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Despite enormous investments in research and developments (R&D),

it still takes approximately $800 million to $1 billion and 10–17 years

to approve a new drug for clinical use (Adams and Brantner, 2006;

Dickson and Gagnon, 2009; DiMasi et al., 2003). More than 90% of

drugs fail to pass beyond the early stage of development and toxicity

tests, and many of the drugs that go through early phases of the clinical

trials fail because of adverse reactions, side effects, or lack of efficiency.

Indeed, the rate of failure is still significantly higher than the rate of

approval (Booth and Zemmel, 2004; Dickson and Gagnon, 2009;

DiMasi et al., 2003). In order to overcome these challenges, drug

repurposing, an approach aiming to find new indications for existing

drugs (Chong and Sullivan, 2007), has emerged as an important strat-

egy for drug discovery (Ashburn and Thor, 2004). This approach can

also rescue drugs that are safe but fail to get to market due to the lack

of efficacy against their initial clinical indication (Collins, 2011).

Repurposing approaches can be categorized as drug-based or

disease-based. Disease-based approaches are developed to overcome

the lack of knowledge about the pharmacology of a drug (Dudley

et al., 2011). Drug-based approaches are preferred when drug data
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(e.g. transcriptomic data) are available. While each one of these

approaches faces several challenges, successful repurposing

approaches often take advantage of both drug and disease data.

In this area, a number of approaches have been developed based on

the analysis of transcriptomic data, such as gene expression signa-

tures, defined as the changes in the expression of genes under a cer-

tain condition (e.g. administration of a drug, or a disease). Some of

these approaches are based on the idea that if there is an anti-

correlation between a drug-exposure gene expression signature and

a disease gene expression signature, that drug may have a potential

therapeutic effect on the disease (Lamb et al., 2006; Sirota et al.,

2011). Drugs that are strongly anti-correlated with a disease are

likely to be candidates for repurposing. Resources such as LINCS

[new version of Connectivity Map (Lamb et al., 2006)] allow for

systematic search of candidates for drug repurposing.

The Connectivity Map (CMap) project (Lamb et al., 2006) was

the first systematic approach aimed at exploring functional connec-

tions between drugs, as well as between drugs and diseases. This

project led to the first repository of genome-wide expression data

from five human cancer cell lines exposed with 1309 compounds at

different dosages, and integrated with other sources such as NCBI

Gene Expression Omnibus (GEO). (Lamb et al., 2006) evaluate the

similarity of a query signature, that can be a drug-exposure gene ex-

pression signature or a disease gene expression signature, to each

drug signature in Connectivity Map database (reference data).

In (Sirota et al., 2011) the authors developed a systematic approach

based on the same idea originally proposed by (Lamb et al., 2006).

In this work, they use drug-exposure gene expression signature from

Connectivity Map as the reference data and query this reference

data with every single disease gene expression signature by applying

a pattern-matching method.

Systems biology can be used as an effective platform in drug dis-

covery and development by leveraging the understanding of inter-

actions between the different system components (Butcher et al.,

2004; Kitano, 2002). In this paper, we propose a systems biology

approach that takes advantage of prior knowledge of drug targets,

disease-related genes and signaling pathways to construct a drug-

disease network (DDN) composed of the genes that are most likely

perturbed by a drug. By performing a system-level analysis on this

network using disease gene expression signatures and drug-exposure

gene expression signatures, our approach estimates the amount of

perturbation caused by a drug on the genes that are associated to a

disease of interest. Drugs are ranked based on the amount of per-

turbation they exercise on specific disease-related genes, and highest

ranking drugs are proposed as candidates for repurposing.

We compare the results of our approach with the computational

drug-repurposing approach proposed by (Sirota et al., 2011) using

19 datasets involving 4 diseases: idiopathic pulmonary fibrosis

(IPF), non-small cell lung cancer (NSCLC), prostate cancer and

breast cancer. We show that our approach provides a more accurate

prediction based on its ability to identify drugs that are already

approved for the disease of interest.

2 Materials and methods

2.1 Data sources
Disease and drug gene expression data. Large scale drug-exposure

gene expression data are obtained from two databases: Connectivity

Map and the Library of Integrated Network-Based Cellular

Signatures (LINCS; Lamb et al., 2006; http://www.lincsproject.org/).

Disease expression data are obtained from NCBI Gene Expression

Omnibus (GEO; Edgar et al., 2002) and Lung Genomics Research

Consortium (http://www.lung-genomics.org).

In Connectivity Map, drug expression data are measured from

the exposure of five human cell lines to bioactive small molecules.

Differentially expressed genes (DEGs) are identified using a moder-

ated t-test (Smyth, 2005) by comparing treated samples and the cor-

responding control (untreated) samples. The resulting P-values are

FDR adjusted (Benjamini and Yekutieli, 2001) to correct for mul-

tiple comparisons.

The LINCS program, the successor of Connectivity Map (Lamb

et al., 2006), generated transcriptional gene expression data from

cultured human cells exposed to small molecules and knock-down/

overexpression of a single gene. The data is also available in GEO

(GSE70138). This program provides DEGs in terms of z-score signa-

tures by comparing two groups of samples (treatment versus con-

trol). In both Connectivity Map and LINCS, there are often more

than one replicate for each drug. Replicates with at least (1%) DEGs

(FDR-adjusted P-value< 0.025) are selected. Since measurements

are carried out on different platforms, we standardize gene identi-

fiers from chip specific probe identifiers to NCBI GeneID identifiers

using the affy package (Gautier et al., 2004). We average across dis-

tinct probe expression values when multiple probes mapped to the

same NCBI GeneID.

Drug-targets and disease-related genes. The proposed approach

needs to construct a network that includes all the shortest paths be-

tween the drug targets and genes known to be associated to the dis-

ease of interest. Drug targets and disease-related genes (genes

associated with the disease of interest) are retrieved from the

Comparative Toxicogenomics Database (CTD; Mattingly et al.,

2006) and Drugbank (Wishart et al., 2006). CTD is a database that

provides curated data describing cross-species chemical-gene/protein

interactions and gene-disease associations. Drugs with no known

targets are removed from the study. Such drugs are mostly not

FDA-approved.

Signaling pathways. We obtain signaling pathways from Kyoto

Encyclopedia of Genes Genomics (KEGG; http://www.genome.ad.

jp/kegg/). A signaling pathway in KEGG is modeled by a graph in

which nodes represent genes or proteins, and directed edges between

them represent signals between genes or proteins. The edges are

weighted based on the various types of signals, such as activation,

inhibition, etc.

2.2 Framework overview
The first part of the framework consists in building the drug-disease

network (DDN) by integrating knowledge about the disease-related

genes, drug targets and gene-gene interaction knowledge. Then, a

repurposing score is computed for each drug-disease pair by inte-

grating expression data into this network. Figure 1 represents the

proposed framework.

Drug-disease network (DDN) construction. As shown in

Figure 1A, first, we construct a global network (GN) by performing

the union of all nodes and edges of KEGG human signaling path-

ways. In a number of KEGG pathways, a gene ‘a’ interacts with

gene ‘b’, through an intermediate pathway ‘A’. This is represented

by a link that starts from gene ‘a’ to gene ‘b’ through pathway ‘A’.

For example, in the Adherence Junction pathway, TGFbR activates

Smad3 through the TGF-beta signaling pathway. Interactions be-

tween genes belonging to the pathway ‘A’ and genes ‘a’ and ‘b’ are

not included in our model. There are some interactions between

genes/pathways through DNA or small molecules in KEGG. For in-

stance, there is a link between MAPK signaling pathway and
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Phosphatidylinositol signaling system through a small molecule

(compound) IP3 in KEGG. Such interactions are not part of the

scope of this analysis and we do not include them in constructing

the global network. We used ROntoTools package (Voichiţa and

Dr�aghici, 2013; version 1.2.0) to calculate the union all KEGG sig-

naling pathways that are represented by the adjacency matrices and

obtain a unified adjacency matrix. In this step, we included some im-

plicit interactions between the genes by performing the union of ad-

jacency matrices representing KEGG signaling pathways. For

example, suppose gene ‘a’ activate gene ‘b’ in pathway ‘A’ and gene

‘b’ activates gene ‘c’ in pathway ‘B’. A path between gene ‘a’ and

gene ‘c’ may be constructed by our analysis, while there was no path

between them before this analysis.

Next, given the two sets of disease-related genes as

Diseaset ¼ fx1; x2; . . . ;xng, and drug targets as Drugt ¼
fy1; y2; . . . ; yng, we extract a subgraph of GN that consists of all the

shortest paths connecting genes belonging to these sets. It means

that a gene from either Diseaset or Drugt can be a source or destin-

ation of the shortest path extracted from GN. This subgraph called

Drug-disease network (DDN) represents all the interactions between

drug targets and genes related to the given disease, through all the

interactions described in KEGG signaling pathways.

Drug-disease repurposing score computation. In this stage, we

capture the impact caused by a drug exposure or a disease on the

genes that are specific to the condition of interest. In order to inte-

grate the drug and disease gene expressions signatures, we generate

gene perturbation signatures by computing the amount of perturb-

ation upon the genes belonging to the drug-disease network (DDN)

for all drug-disease pairs, as shown in Figure 1B. The gene perturb-

ation signatures are calculated using the impact analysis method

Dr�aghici et al. (2007) on the subgraph of global network we

constructed in previous step. The impact analysis (IA) takes into ac-

count the structure and dynamics of a signaling pathway by con-

sidering a number of important aspects, including the measured

gene expression changes, the direction and type of every gene signal

and the position and role of every gene in a pathway. A perturbation

factor for each gene, PF(gi), is calculated using the impact analysis

method Dr�aghici et al. (2007), as follows:

A perturbation factor for each gene, PF(gi), is calculated using

the impact analysis method (Dr�aghici et al., 2007), as follows:

PF gið Þ ¼ DE gið Þ þ
Xn

j¼1

bij

PF gj

� �

Nds gj

� � ; (1)

where the term DE gið Þ denotes the signed normalized measured ex-

pression change of a gene gi, added to the sum of all perturbation

factors of the genes gj that are direct upstream of the gene gi, nor-

malized by the number of downstream genes of gj, Nds gj

� �
. The co-

efficient bij represents the type of the interaction, bij ¼ 1 for

activation and induction and bij ¼ �1 for inhibition and repression.

The second term in Equation (1) involves the PF values of those

genes that are upstream of the gene for which the perturbation fac-

tor is calculated. For a gene with no upstream genes, the PF will be

the measured expression gene DE gð Þ.
Next, we calculate the repurposing scores for drug-disease pairs

by computing the Pearson correlation coefficient between their gene

perturbation signatures. The result score is from –1 to 1, where a high

positive score shows that the drug and the disease both cause similar

perturbations in the system, and therefore, that drug may cause the

same effect as the disease. Conversely, a high negative score shows

that the drug and disease have opposite gene perturbation signatures.

Our hypothesis is that if the perturbation caused by a particular drug

in the system is the reverse of the perturbation caused by a disease,

that drug may have the potential to treat the given disease. Thus, we

rank drugs from the strongly anti-correlated to the strongly corre-

lated, according to their repurposing pathway perturbation scores.

In order to estimate the statistical significance of drug candidate

repurposing scores, we generate 1000 random drug gene expression

A B

Fig. 1. Framework overview. (A) We construct a global network (GN) that is the union of all KEGG human signaling pathways. For each drug-disease pair, we

extract a subgraph of GN, namely DDN, consisting of all shortest paths between two sets of disease-related genes and drug targets. (B) We then generate gene

perturbation signatures of drug-disease pairs by applying a system-level analysis on their gene expression signatures in the drug-disease network (DDN). A com-

parative analysis is applied on drug and disease gene perturbation signatures. A repurposing score is assigned to each drug-disease pair. Finally, a ranked list of

drugs with potential therapeutic effects for the given disease is generated based on repurposing scores
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signatures (by permuting gene labels) and then calculate random

repurposing scores for all drug-disease pairs. We compute P-values

as the percentage of the random scores higher than the observed

score.

A systematic method to select repurposing candidates. We used a

systematic method in order to rank repurposing candidates. To do

this, given a ranked-list of drugs (drug instances) obtained by apply-

ing our approach on a disease dataset, we first compute a score for

each drug that indicates how better or worse that drug is ranked in

comparison to already FDA-approved drugs as follows:

score Drugxð Þ ¼ a – b; (2)

where a denotes the number of already FDA-approved drugs (gold

standards) that are ranked worse than Drugx, and b denotes the

number of FDA-approved drugs that are ranked better than Drugx

(Supplementary Fig. S3). For instance, if there were N FDA-

approved drugs for a condition and an instance of a repurposing

candidate were ranked higher than all N FDA approved drugs, the

score of this candidate would be N. Conversely, if the candidate

were ranked lower than all N FDA approved drugs, its score would

be-N.

Using this objective measure, we then calculate an average

score for each drug across different disease datasets (Supplementary

Fig. S4B). Finally, we compute an average score for each distinct

drug across different instances, if there are multiple instances for

that drug (Supplementary Fig. S4C). We select the top 5% drug can-

didates from the ranked lists obtained by applying our approach on

disease datasets and rank such drugs based on the scores computed

by the this method, from highest to the lowest.

3 Results

To validate our approach, we analyzed 19 datasets from four dif-

ferent conditions: idiopathic pulmonary fibrosis (IPF; 6 datasets),

non-small cell lung cancer (NSCLC; 4 datasets), prostate cancer

(3 datasets) and breast cancer (6 datasets). The results of NSCLC,

prostate cancer, and breast cancer are included in Supplementary

Material. We compare the results of three computational drug

repurposing approaches: our system-level approach, the most popu-

lar approach proposed by (Sirota et al., 2011; henceforth drug-dis-

ease) and a classical method based on disease and drug signature

anti-correlation (henceforth anti-correlation).

Both the drug-disease and the anti-correlation approaches are

based on the hypothesis that if gene expression signature is per-

turbed in one direction in a disease state, and in the opposite (re-

verse) direction upon a drug exposure, then that drug may have the

potential therapeutic effect for the disease. The difference between

the two approaches is related on the approach used to calculated the

match between a disease and a drug. Given a disease gene expression

signature (query signature) and a drug gene expression signatures

(reference signature), the Sirota et al.’s drug-disease similarity ap-

proach calculate an enrichment score for the up-regulated and

down-regulated disease genes [by applying a Kolmogorov–Smirnov

(KS) test]. We use the R implementation of this approach available

in the package DrugVsDisease (Pacini, 2013).

In contrast, the classical anti-correlation method calculates a

similarity score for drug-disease pairs by computing the Pearson

correlation coefficient between the drug gene expression signature

and the given disease gene expression signature. Drugs are ranked

from the highly anti-correlated to the highly correlated, according to

their score.

In this study, we compare the various approaches based on their

ability to identify drugs that have already been FDA-approved for

that condition (gold standard), based exclusively on the molecular

data. In essence, a good repurposing approach should place already

approved drugs at the very top of the list of drugs proposed for that

particular disease. We used the Wilcoxon rank sum test (Wilcoxon,

1945) to determine whether the proposed approach is significantly

better than the existing approaches.

Supplementary Table S2 shows the proposed candidates and the

preliminary evidence that support the usefulness of those candidates

in treatment of four human diseases: IPF, NSCLC, prostate cancer

and breast cancer.

3.1 Drug repurposing using IPF data
The list of IPF datasets we used in our analysis is summarized in

Supplementary Table S3. We compare the results of our approach

with the existing approach proposed by (Sirota et al., 2011; drug-

disease), as well as the classical method (anti-correlation). The lists

of the top 10 drugs are summarized in Table 1.

Gold standard: The gold standard for this disease is Nintedanib.

This drug was approved for the treatment of IPF by FDA on

October 2014. It is a small molecule inhibiting multiple tyrosine kin-

ases (RTKs) and non-receptor tyrosine kinases (nRTKs). It is high-

lighted in Table 1.

As shown in Supplementary Table S4, We select the top 5% of

drugs ranked lists obtained by applying our approach on 6 IPF data-

sets. We rank these drugs based on the scores computed by the sys-

tematic method from the highest to the lowest.

Proposed candidates: We propose Sunitinib (P¼0.0009),

Dabrafenib (P¼0.0009) and Nilotinib (P¼0.0009) as repurposing

candidates for treatment of IPF. Saracatinib, Linifanib, Buparlisib,

GDC-0941 and Alvocidib are also highly ranked by our approach

for treatment of IPF. Although these drugs are not approved by FDA

yet, they can be considered for further experimental tests.

Sunitinib is a small molecule that inhibits multiple receptor

tyrosine kinases (RTKs), including vascular endothelial growth

factor receptors (VEGFR) and platelet-derived growth factor recep-

tors (PDGFR). It is approved by FDA for the treatment of

Gastrointestinal stromal tumor, advanced renal cell carcinoma and

progressive well-differentiated pancreatic neuroendocrine tumors

(Demetri et al., 2006; Motzer et al., 2007). It was investigated for its

anti-fibrotic and anti-angiogenic properties. Its efficiency was ex-

perimentally proved in a bleomycin-induced mouse model and it has

been proposed for the treatment of IPF (Knoerzer et al., 2013).

Results of in vitro studies and animal models show that receptor

tyrosine kinases, such as PDGFR, VEGFR and FGFR, and non-

receptor tyrosine kinases, such as the Src family, play crucial roles in

the pathogenesis of IPF (Grimminger et al., 2010; Richeldi et al.,

2011).

Dabrafenib is approved by FDA for the treatment of patients

with unresectable or metastatic melanoma. Recent clinical studies

demonstrate that the extracellular signal regulated kinase (ERK) and

mitogen-activated protein kinase (MAPK) are up-regulated in lung

tissues of patients with IPF (Madala et al., 2012; Yoshida et al.,

2002). In particular, results of studies on MAPK signaling pathways

show that the level of serine/threonine-protein kinase B-Raf (BRAF)

is increased in patients samples compared to the normal ones, sug-

gesting the potential therapeutic effects of MEK/ERK inhibitors for

pulmonary fibrosis (Madala et al., 2012; Olsen et al., 2014). This

supports the idea that the BRAF inhibitor Dabrafenib may have

atherapeutic effect on IPF.
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Nilotinib is another FDA-approved drug we propose to be repur-

posed for the treatment of IPF. Nilotinib is a transduction inhibitor

targeting BCR-ABL, c-kit and PDGF, that is approved by FDA for

treatment of patients who are newly diagnosed with Philadelphia

chromosome positive chronic myeloid leukemia (PhþCML). It is

also used for treatment of patients with PhþCML in chronic phase

and accelerated phase if they were resistant (or intolerant) to previ-

ous treatments. The potential roles of PDGFs in IPF have been

shown by many studies (Antoniades et al., 1990; Allen and Spiteri,

2001; Cao et al., 2000; Homma et al., 1995; Wollin et al., 2015).

The advantage of PDGF inhibition in IPF is well studied and sup-

ported by several studies (Abdollahi et al., 2005; Chaudhary et al.,

2007; Wollin et al., 2015). Authors of (Grimminger et al., 2015;

Rhee et al., 2011) confirmed the potential effect of Nilotinib in

decreasing the extent of pulmonary fibrosis in a mouse model.

The phosphatidylinositol 3 kinase (PI3K) inhibitors Buparlisib

and GDC-0941 are undergoing clinical trials for a number of dis-

eases. Buparlisib is in Phase III of clinical trials for treatment of

breast cancer and in and Phase II for several other solid tumors.

GDC-0941(Pictilisib) has been used in clinical trials for the treat-

ment of several cancers, including breast cancer. Preclinical studies

proved that PI3K inhibitors have potential roles in treatment of IPF

by interfering with the fibrogenic effects of TGF� b1 signaling

(Beyer and Distler, 2013; Conte et al., 2013; Hsu et al., 2017;

Mercer et al., 2016). Based on this evidence, Buparlisib and

GDC-0941 may have potential therapeutic effects on IPF.

The tyrosine kinase inhibitors Saracatinib and Linifanib are also

highly ranked by our approach for treatment of IPF. Saracatinib

(AZD0530) is an oral, tyrosine kinase inhibitor selective for Src. It

underwent clinical tests at AstraZeneca for the treatment of cancer

(Gucalp et al., 2011; Lara et al., 2009; Messersmith et al., 2010;

Poole et al., 2010). However, it failed to show a sufficient efficacy in

these studies. Subsequently, it was proposed for other usages such as

Alzheimer’s disease (in Phase II; Nygaard et al., 2015). Linifanib

(ABT-869) is also a multi-targeted receptor tyrosine kinase inhibitor

that is intended to suppress tumor growth. It is investigated for treat-

ment of leukemia (myeloid), myelodysplastic syndrome and solid

tumors (Chen et al., 2016; Chiu et al., 2013; Wang et al., 2012). The

efficiency and tolerability of Linifanib versus Sorafenib has been as-

sessed in patients with advanced hepatocellular carcinoma (Cainap

et al., 2013). The tyrosine kinase inhibitors are proven to be effective

in treatment of IPF (Adamali and Maher, 2012; Beyer and Distler,

2013; Grimminger et al., 2015; Richeldi et al., 2011; Wollin et al.,

2014). In particular, the Src kinase inhibitor Saracatinib is reported to

be useful in treatment of IPF through targeting the TGF� b signaling

pathway (Hu et al., 2014). These represent additional and independ-

ent evidence supporting out findings that Linifanib and Saracatinib

are expected to be useful in the treatment of IPF.

Alvocidib is a cyclin-dependent kinase (CDK) inhibitor that is

undergoing clinical trials for a number of cancers: esophageal can-

cer, leukemia, lung cancer, liver cancer and lymphoma. Studies of

murine models show that the CDK inhibitors block the epithelial

apoptosis and decrease the tissue fibrosis in pulmonary fibrosis

(Inoshima et al., 2004; Leitch et al., 2009). As a result, CDK inhibi-

tors have been suggested as a novel therapeutic strategy against IPF

(Zhou et al., 2014).

4 Conclusion

In this paper, we presented a systems biology approach to discover

new uses of existing FDA-approved drugs. We take advantage of

known knowledge of disease-related genes, drug targets information

and signaling pathways to discover drugs with the potential desired

effects on the given disease. We estimate a network of genes poten-

tially perturbed by drugs and integrate this network with drug and

disease gene expression signatures to conduct a more powerful ana-

lysis at system level. To evaluate the proposed approach for drug

repurposing, we analyzed four different diseases (IPF, NSCLC, pros-

tate cancer and breast cancer) using three approaches: proposed,

drug-disease and anti-correlation. For each disease, there is at least

one FDA-approved drug that is used to treat that disease in our in-

put drug data. The already FDA-approved drugs for a given disease

are considered as the gold standard because such drugs successfully

passed all the pre-clinical and clinical trials for that disease and were

demonstrated to be efficacious in each disease. The approach is vali-

dated by its ability to identify drugs that are already approved by

FDA for these conditions. The proposed approach was able to find

such drugs based on the molecular profile alone, while existing

repurposing approaches failed to do so. Specific drugs have been

identified as repurposing candidates for the four diseases studied

here. Although the proposed approach is studied in the context of

drug repurposing, it also can be used to identify novel targets for

FDA-approved drugs and understanding their mechanism of action.
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