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Abstract

Motivation: The three-dimensional organization of chromatin plays a critical role in gene regula-

tion and disease. High-throughput chromosome conformation capture experiments such as Hi-C

are used to obtain genome-wide maps of three-dimensional chromatin contacts. However, robust

estimation of data quality and systematic comparison of these contact maps is challenging due to

the multi-scale, hierarchical structure of chromatin contacts and the resulting properties of experi-

mental noise in the data. Measuring concordance of contact maps is important for assessing repro-

ducibility of replicate experiments and for modeling variation between different cellular contexts.

Results: We introduce a concordance measure called DIfferences between Smoothed COntact

maps (GenomeDISCO) for assessing the similarity of a pair of contact maps obtained from chromo-

some conformation capture experiments. The key idea is to smooth contact maps using random

walks on the contact map graph, before estimating concordance. We use simulated datasets to

benchmark GenomeDISCO’s sensitivity to different types of noise that affect chromatin contact

maps. When applied to a large collection of Hi-C datasets, GenomeDISCO accurately distinguishes

biological replicates from samples obtained from different cell types. GenomeDISCO also general-

izes to other chromosome conformation capture assays, such as HiChIP.

Availability and implementation: Software implementing GenomeDISCO is available at https://

github.com/kundajelab/genomedisco.

Contact: akundaje@stanford.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The three-dimensional (3D) conformation of chromatin defines a

network of physical interactions among genomic loci, including

regulatory elements such as gene promoters, distal enhancers and

insulators (Krijger and de Laat, 2016). Thus, 3D chromatin architec-

ture plays a key role in gene regulation and cellular function.

Changes in 3D chromatin architecture at multiple scales, ranging

from large-scale rearrangement of compartments and topologically
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associating domains (TADs) to rewiring of enhancer–promoter

interactions, are associated with dynamic cellular processes such as

differentiation (Dixon et al., 2015; Fraser et al., 2015) and reprog-

ramming (Beagan et al., 2016; Krijger and de Laat, 2016), as well as

disease (Gröschel et al., 2014; Lupiá~nez et al., 2015).

The last decade has witnessed a revolution in high-throughput

sequencing-based assays and imaging techniques to map 3D chro-

matin architecture at multiple scales and resolutions, providing new

insights into spatial genome organization (Schmitt et al., 2016). The

sequencing-based methods (referred to as 3C-seq experiments) for

assaying 3D chromatin architecture, such as 3C (Dekker et al.,

2002), 4C (Simonis et al., 2006; Zhao et al., 2006), 5C (Dostie

et al., 2006), Hi-C (Lieberman-Aiden et al., 2009), Capture Hi-C

(Mifsud et al., 2015), ChIA-PET (Fullwood et al., 2009) and

HiChIP (Mumbach et al., 2016), are all variations of the chromo-

some conformation capture technique. In a Hi-C experiment,

genome-wide interactions are mapped by ligating proximal frag-

ments followed by deep sequencing. The result of such an experi-

ment is a genome-wide contact map, which is a matrix with a

sequencing readout of the contact frequency for every pair of gen-

omic loci.

A number of computational methods have been designed to nor-

malize (Hu et al., 2012; Imakaev et al., 2012; Knight and Ruiz,

2013; Servant et al., 2015; Yaffe and Tanay, 2011) and extract stat-

istically significant contacts from the different types of 3D chroma-

tin conformation assays (Ay et al., 2014; Cairns et al., 2016; Carty

et al., 2017; Mifsud et al., 2017; Ron et al., 2017). However, prin-

cipled methods for systematic comparisons of 3D contact maps are

equally important and form a core component of two key analyses.

First, as an essential quality control tool, it is useful to quantify the

concordance of replicate experiments. This is particularly relevant

because it is a common practice to pool reads across biological repli-

cates of a 3C-seq experiment before downstream analyses.

Significant differences between the pooled replicates could result in

suboptimal or misleading downstream results. Second, understand-

ing and quantifying similarity between replicates is also an essential

step in differential analysis, where the goal is to reliably identify stat-

istically significant differences between contact maps in different

biological conditions. Differences between conditions can only be

trusted if they exceed the differences between biological replicates.

Experimentally derived contact maps exhibit certain properties

that are distinct from other types of functional genomic data. First,

contact maps explicitly encode the adjacency matrix of a multi-

scale, modular network consisting of large-scale compartments,

TADs, CTCF/cohesin mediated loops and potentially transient inter-

actions between other types of elements (Schmitt et al., 2016).

Second, the contact frequency between a pair of loci is strongly de-

pendent on their linear genomic distance (Ay et al., 2014; Dekker

et al., 2002; Duan et al., 2010) and affected by additional biases

such as restriction fragment size, GC content and mappability

(Cournac et al., 2012; Hu et al., 2012; Imakaev et al., 2012; Schmitt

et al., 2016; Yaffe and Tanay, 2011). Third, the resolution of a con-

tact map defined in terms of the size (in nucleotides) of the interact-

ing loci is often a free parameter and heuristically determined based

on the depth of sequencing (Rao et al., 2014). Finally, the noise

associated with estimates of contact frequencies is also strongly

associated with sequencing depth. These properties necessitate the

development of new computational methods specifically suited for

analysis of Hi-C data.

Statistical measures that have been developed to quantify the re-

producibility of one-dimensional functional genomics assays, such

as ChIP-seq, DNA methylation and RNA sequencing, cannot be

trivially applied to 3D contact maps. For instance, simple correl-

ation measures, which are most frequently used as measures of re-

producibility (Rao et al., 2014), do not correctly capture the

reproducibility of Hi-C data (Yang et al., 2017; Yardımcı et al.,

2017). This is partly because these simple correlation measures con-

sider each entry in a contact map as an independent measurement,

thereby ignoring the rich connectivity and dependence structure in

3D contact maps. More sophisticated reproducibility measures have

recently been introduced including comparison of eigenvectors (Yan

et al., 2017) and a stratified correlation coefficient (Yang et al.,

2017) and these methods alleviate many of the problems with trad-

itional correlation.

In this work, we introduce DIfferences between Smoothed

COntact maps (GenomeDISCO), a computational framework for

quantifying reproducibility or concordance of contact maps from

3C-seq experiments. We represent a contact map as a network or

graph, where nodes are genomic loci and edges are weighted propor-

tional to appropriately normalized contact frequency between a pair

of loci (nodes). We denoise the contact maps using random walks on

the graph, followed by comparison of the resulting smoothed con-

tact maps. We use systematic simulations to calibrate the method,

showing its ability to detect artificially introduced noise, differences

in distance dependence curves and differences in structural proper-

ties of contact maps. We then apply GenomeDISCO and other

related approaches to the largest existing collection of Hi-C experi-

ments (Rao et al., 2014) and benchmark their performance on a

comparison of replicate experiments and experiments from different

cell types. We also show that GenomeDISCO easily generalizes to

other types of 3C-seq assays, such as HiChIP. We provide an effi-

cient implementation of our method as well as comprehensive ana-

lysis reports and visualizations in a user-friendly software package

at https://github.com/kundajelab/genomedisco. GenomeDISCO is

also included in the 3D genome analysis suite recommended by the

encyclopedia of DNA Elements consortium at https://github.com/

kundajelab/3DChromatin_ReplicateQC (Yardımcı et al., 2017).

2 Materials and methods

2.1 A graph representation of chromatin contact maps
We represent a contact map as a graph or network of interactions

between genomic loci, with adjacency matrix A. Each node i in the

network is a genomic locus (segment) of a specified resolution or

size (in nucleotides). The weight of each edge Aij is a normalized, ex-

perimentally derived contact frequency between a pair of nodes

i and j. In this work, we normalize the contact map using the sqrtvc

normalization (for additional discussion of normalization methods

compatible with GenomeDISCO, refer to the Supplementary

Methods) and convert it to a transition probability matrix, such that

all rows sum to 1. This transition matrix is the weighted adjacency

matrix A used in the analyses in this study. We ignore interchromo-

somal interactions and hence represent all chromosomes as inde-

pendent graphs.

2.2 Motivation for our concordance score
A concordance score that aims to estimate the global similarity be-

tween a pair of contact maps must account for the specific proper-

ties of experimentally derived contact maps. First, contact maps

contain structural features that manifest at different scales, such as

large-scale compartments, sub-Mb scale TADs and sub-TADs that

manifest as densely connected diagonal blocks and CTCF/cohesin

mediated loops observed as focal points of enriched contacts. Thus,
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an ideal concordance score would be able to measure similarity

across multiple scales. Second, genome-wide contact maps such as

those from Hi-C experiments measure a very large space of possible

contacts and hence require deep sequencing (>billion reads) for reli-

able estimates of contact frequency. Due to cost and material con-

straints, typical Hi-C datasets are sequenced at significantly lower

coverage [e.g. 100 M reads (Lajoie et al., 2015)]. These under-

sampled datasets exhibit a large proportion of contacts with low

observed counts with high variance (Carty et al., 2017) including

some contacts with 0 observed counts, a phenomenon known as

stochastic dropout. To address this issue, we propose a denoising

approach to smooth contact maps by leveraging random walks on

the contact map graph, before comparing these maps.

2.3 The GenomeDISCO score for estimating the

concordance of contact maps
We estimate concordance between a pair of chromatin contact

maps, A1 and A2, as follows (Fig. 1A).

2.3.1 Equalizing sequencing depth

To avoid artificial differences due to sequencing depth (see

Supplementary Fig. S2), we first equalize the sequencing depth of

the pair of datasets to be compared by randomly subsampling the

count matrix to the minimum depth of the two datasets.

2.3.2 Denoising contact maps using random walks

We denoise each contact map independently using random walks on

the contact maps. For every pair of nodes i and j in a contact map,

we ask the question: if we start a random walk at node i based on

the observed contact map transition probability matrix and allow

the walk to take t steps, what is the probability we will reach node

j? If there are many high-probability paths in the network that con-

nect node i and node j, it increases our confidence that nodes i and j

are in contact. The probability of reaching node j after a random

walk of t steps starting from node i is the ði; jÞth entry of the matrix

obtained by multiplying the transition probability matrix with itself

t times, i.e. Atð Þij. We define the optimal value for the steps par-

ameter t for Hi-C data, as the one that maximizes the ability of the

concordance score to distinguish between biological replicates and

non-replicate reference datasets (See Section 2.4 for details).

2.3.3 Computing the difference between denoised contact maps

The denoised versions of contact maps A1 and A2, after t steps of

random walk are A1tð Þ and A2tð Þ, respectively. We compute the dif-

ference dtðA1;A2Þ between A1 and A2 as the L1 distance between

the two denoised contact maps A1tð Þ and A2tð Þ, divided by the aver-

age number of non-zero nodes in the two original contact maps A1

and A2:

dt A1;A2ð Þ¼
P

i

P
jjðA1tÞij�ðA2tÞijj

Nnonzero¼1
2 jfA1ij

P
jA1ij>0gjþjfA2ij

P
jA2ij>0gj

��

Since each row of A1 and A2 sums to 1, the weighted degree (sum

of weights of all edges to/from a node) of each node is 1. Hence,

dtðA1;A2Þ scores range from 0 to 2, with small values indicating

high similarity.

2.3.4 Converting the difference to a concordance score

We define the concordance score as R A1;A2; tð Þ ¼ 1� dtðA1;A2Þ.
The concordance scores range from �1 to 1, with larger values

indicating greater similarity. We obtain a single genome-wide score

as the average of the scores across all chromosomes.

2.4 Estimating the optimal number of random walk

steps (t)
The number of steps t of the random walk on the contact map graph

determines the amount of smoothing or denoising of a contact map.

We define an optimal value of t as one that would provide sufficient

denoising so as to improve concordance between contact maps of

replicate experiments while preserving differences between contact

maps from distinct cellular contexts. We used a collection of high

quality benchmark Hi-C datasets with replicate experiments from

diverse human cell-lines (Rao et al., 2014) to optimize t. Using half

the experiments as a training set and the remaining half as a test set,

we asked which value of t leads to the optimal separation of biolo-

gical replicates from non-replicate samples, as measured with the

A STEP 1. Smooth each contact map using  
random walks on graphs

Contact  
map A1

Contact  
map A2

t = 1 t = 2 t = 3

(A1) - (A2) (A1)2 - (A2)2 (A1)3 - (A2)3

Difference  
matrix

STEP 2. Obtain concordance score from comparing 
smoothed contact maps

B

Difference score (t) = 

(A1) (A1)2 (A1)3

(A2) (A2)2 (A2)3

 |(A1)t - (A2)t|ij

nonzero nodes

Concordance score (t) = 1 - Difference score (t)

Optimal (fixed) value of parameter t
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Fig. 1. Overview of GenomeDISCO. (A) GenomeDISCO consists of two steps.

The first step in comparing two contact maps, A1 and A2, consists of smooth-

ing each contact map using random walks. Depicted are the smoothed con-

tact maps, at different levels of smoothing controlled by the parameter t ,

which specifies the number of steps of random walk used for denoising. The

second step consists of computing a difference score between the smoothed

contact maps, as a function of t . (B) Procedure for identifying the optimal

value for t . We computed concordance scores for pairs of samples that are ei-

ther biological replicates from the same cell type or pairs of samples from dif-

ferent cell types. We assume that the optimal value of t will produce scores

that can accurately classify pairs of samples into ‘biological replicates’ and

‘different cell types’. For each value of t , we measure classification perform-

ance using the auPRC, finding t ¼3 to be optimal
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area under the precision-recall curve (auPRC). We found t ¼ 3

achieved the best performance on the training set (auPRC of 0.95,

Fig. 1B), associated with an auPRC of 0.92 on the test set. The opti-

mal value of t ¼ 3 identified using reference Hi-C datasets general-

ized to HiChIP data (see Fig. 4) and to Hi-C datasets from other

species such as Drosophila [see (Yardımcı et al., 2017)]. It is possible

that for other applications of GenomeDISCO, other values of t may

be optimal. In such cases, we suggest users perform a similar calibra-

tion experiment to identify the optimal value.

3 Results

3.1 Benchmarking GenomeDISCO on simulated

perturbations to 3C-seq datasets
We expect an effective concordance score for 3C-seq datasets to be

sensitive to key types of noise and artifacts that typically affect these

data (Supplementary Fig. S1).

We benchmarked the behavior of GenomeDISCO using it to

compute concordance between a reference Hi-C contact map and a

version of the map that is explicitly perturbed with different types

and levels of simulated noise (See Supplementary Methods). We

performed our analyses at 50 kb resolution, as this is a resolution

frequently used in the analysis of Hi-C datasets. We compared

GenomeDISCO to two other recently developed methods for

estimating concordance of Hi-C data: HiCRep, which measures

correlation of contacts stratified by distance (Yang et al., 2017),

and HiC-Spector, which computes an eigendecomposition of the

Laplacian of the graph, and then compares the L2 distance between

eigenvectors of the two contact maps (Yan et al., 2017).

We examined the sensitivity of the concordance scores to per-

turbations that involve random dropout of edges and nodes as well

as misalignment of domain boundaries in the perturbed contact map

relative to the reference. Indeed, we found that concordance scores

from all three methods decrease with increasing edge drop out

(Fig. 2A), increasing node drop out (Fig. 2B) and increasing domain

boundary misalignment (Fig. 2C, see Supplementary Methods).

Next, in order to understand the effect of sequencing depth of

the contact maps, we repeated the above three perturbation analyses

for reference and perturbed maps subsampled to four depths: 100,

10, 1, 0.1% of 10 million reads restricted to chromosome 21. As ex-

pected, we found that the GenomeDISCO score was the highest for

the most deeply sequenced samples. Concordance scores dropped

consistently with decreasing sequencing depth across all types and

levels of perturbations (Fig. 2). The scores were found to plateau as

the sequencing depth increased from 1 million to 10 million reads,

which is expected since for a 50 kb resolution, one would need �0.8

million reads for chr21 (see Supplementary Methods).

Contact maps can also differ in their fundamental distance de-

pendence curves that capture the probability of contact as a function

of linear genomic distance. Distance dependence curves have been

found to change due to cell cycle stage (Naumova et al., 2013;

Nagano et al., 2017) or as a function of perturbation of proteins

involved in chromatin 3D architecture, such as RAD21 knockout in

yeast (Mizuguchi et al., 2014) or WAPL and SCC4 knockouts in

human HAP1 cells (Haarhuis et al., 2017). Replicates from the same

condition are often pooled, and if they have different distance

dependence curves, the result will be an average that is not represen-

tative of either replicate. Hence, being sensitive to differences in dis-

tance dependence curves is a useful property of a concordance score.

We simulated pairs of contact maps from a common reference

contact map by sampling reads according to two different distance

dependence curves, obtained from Hi-C maps from pairs of different

cell types (see Supplementary Methods). We split the pairs of con-

tact maps into pairs with similar distance dependence curves and

pairs with different curves (see Supplementary Methods) and com-

pared the scores we obtained at different sequencing depths (as

above) using all three methods. GenomeDISCO samples with differ-

ent distance dependence curves obtain lower concordance scores. As

in the other simulations, the margin between the two sets of pairs

decreased as we decreased sequencing depth (Fig. 2D). HiC-Spector

was also sensitive to differences in distance dependence curves,

while HiCRep was not. GenomeDISCO had the best margins of sep-

aration at lower sequencing depths.

Finally, we asked whether pairs of simulated pseudo-replicates

sampled from the same reference Hi-C map would be deemed more

concordant than pairs of samples from different cell types. All three

methods successfully discriminated the two sets of pairs with mar-

gins decreasing with decreasing sequencing depth (Fig. 2E).

3.2 Benchmarking GenomeDISCO on Hi-C datasets
We used more than 80 high quality Hi-C datasets from (Rao

et al., 2014) spanning multiple human cell-lines (GM12878,

HMEC, HUVEC, IMR90, K562, KBM7 and NHEK) to

benchmark the behavior of our concordance score (Fig. 3,

Supplementary Tables S1 and S2). Due to the lack of explicit

ground truth about the nature of noise in real datasets, we

evaluate the validity of the concordance score by expecting

A

B

C

D

E

Fig. 2. GenomeDISCO exhibits desired features for a reproducibility score.

(A–D) Scores as a function of edge dropout (A), node dropout (B), domain

boundary misalignment (C) and difference in distance dependence curves (D)

for GenomeDISCO, HiC-Spector and HiCRep methods. (A)–(C) Error bars rep-

resent 1 SD from the mean score based on independent simulations across

all cell types profiled in the work of Rao et al. (2014). (D) We split pairs of sam-

ples into ‘similar distance dependence’ and ‘different distance dependence’

using a threshold of 0.005 Jensen–Shannon divergence between the curves

of the samples compared (see Supplementary Methods). (E) Results on simu-

lations comparing replicates with non-replicates obtained from different cell

types. (D) and (E) Values above the plots are P-values of a Mann-Whitney U

test
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higher scores when comparing pairs of biological replicates of

Hi-C data with similar distance-dependence characteristics

as compared to scores obtained by comparing Hi-C datasets

from different cell types. We focused our analysis on a subset

of experiments defined as those done with in-situ Hi-C (see

Supplementary Table S2).

Next, we used GenomeDISCO, HiCRep and HiC-Spector to

compute concordance scores for all the pairs of biological replicates

and pairs of samples from different cell types. Hierarchical cluster-

ing of the samples based on the matrix of all pairwise concordance

scores revealed that samples from the same cell type cluster together,

for all three methods (see Supplementary Fig. S5). For each method,

we defined an empirical threshold for classifying sample-pairs into

one of two categories labeled high concordance and low concord-

ance. The threshold was determined as the highest score across all

pairs of samples from different cell types, since we expect concord-

ant biological replicates to be at least as concordant as samples from

different cell types. We then analyzed the similarities and differences

between the three methods in terms of their classification of the

pairs of biological replicates. (Fig. 3A).

Out of 149 pairs of biological replicates in the test set, we found

that the methods agreed across most samples (94/149 biological rep-

licate pairs were classified consistently between GenomeDISCO and

HiCRep and 102/149 between GenomeDISCO and HiC-Spector).

For a small subset of replicate-pairs, HiCRep and/or HiC-Spector

classified them as high concordance, while GenomeDISCO classified

them as low concordance: of these 21/34 of the comparisons deemed

concordant by HiCRep and 12/23 by HiC-Spector, the comparisons

involved samples with large differences in distance dependence

curves (difference in distance dependence curve higher than 0.005, a

value that was found to distinguish pairs of biological replicates

in the high-concordance class from those in the low-concordance

class). For example, samples HIC070 and HIC072 (biological repli-

cates for the K562 cell line) are classified as low concordance by

GenomeDISCO (score 0.644) but classified as high-concordance by

HiCRep (score 0.910). These samples have a marked difference in

their distance dependence curves (ranked as the largest difference in

distance dependence curve among all biological replicate pairs)

(Fig. 3C). In fact, GenomeDISCO scores in general drop propor-

tional to the difference in distance dependence curves between the

pair of samples being compared (Fig. 3B). Finally, we find 18 cases

ranked as non-concordant by both HiCRep and HiC-Spector but

deemed concordant by GenomeDISCO. For 6/18 of these, the

GenomeDISCO score is equal to the threshold concordance of 0.8.

Similarly, there are 18 cases deemed concordant only by HiCRep

and 7 deemed concordant only by HiC-Spector.

We also found that 18 replicate pairs were deemed low con-

cordance by all three methods. In particular, in eight of these cases,

replicate pairs classified as low concordance by all three methods

involved sample HIC014 from the GM12878 cell type (specifically

HIC014 versus any of HIC004, HIC006, HIC010, HIC018,

HIC022, HIC038, HIC042 and HIC048). Upon closer inspection,

we found that HIC014 exhibited an unusual pattern of uneven

coverage across the genome (Fig. 3D), likely explaining the observed

results.

Finally, we also used the Hi-C data to check whether

GenomeDISCO is able to detect differences in protocols or restric-

tion enzymes used for each experiment (see Supplementary Fig. S4).

We found that GenomeDISCO scores are lower for comparisons be-

tween samples prepared with dilution Hi-C versus in situ Hi-C

(Supplementary Fig. S4 A). This observation is expected because di-

lution Hi-C experiments capture more random ligations between

nuclear and mitochondrial DNA than in-situ Hi-C (see (Rao et al.,

2014)). We also found that GenomeDISCO scores are higher for ex-

periments performed with the same enzyme, compared to different

enzymes (Supplementary Fig. S4B).

3.3 Benchmarking GenomeDISCO on HiChIP data
We applied GenomeDISCO to a set of H3K27ac HiChIP datasets

from (Mumbach et al., 2017), covering two to three replicates

for seven cell types (GM12878, HCASMC, K562, My-La and

three types of T-cells: Naı̈ve, Th17 and Treg, see Supplementary

Table S1). As for Hi-C, we binned the HiChIP reads at a resolution
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Fig. 3. GenomeDISCO distinguishes biological replicates from nonreplicates,

taking distance dependence curves into account A) Scatterplot of scores

obtained with GenomeDISCO versus those obtained with HiCRep and HiC-

Spector. For each of the three methods, we define a threshold that separates

low-concordance from high-concordance pairs of samples. The threshold is

chosen as the highest score obtained by a comparison between different cell

types. GenomeDISCO largely agrees with the other methods. There is a sub-

set of scores that GenomeDISCO selectively ranks as low-concordance, and

those involve pairs of contact maps with large differences between their dis-

tance dependence curves. Comparisons are split into “Low distance depend-

ence difference” and “High distance dependence difference” based on a

threshold of 0.005 Jensen-Shannon divergence between the contact probabil-

ity distributions of the matrices compared (see Supplementary Methods). B)

Concordance scores as a function of difference in distance dependence func-

tions. The difference is measured as the Jensen Shannon divergence

between the contact probability distributions (see Supplementary Methods).

C) Example of different distance dependence functions that GenomeDISCO

deems non-concordant but HiCRep defines as concordant. D) Row sums for

each genomic bin for sample HIC014 are non-uniform, compared to e.g.

HIC005, at a similar sequencing depth of �300 million reads
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of 50 kb and normalized the contact maps using sqrtvc. We then ran

GenomeDISCO on all pairwise comparisons and checked whether

biological replicates are deemed more concordant than pairs of sam-

ples from different cell types. We found that GenomeDISCO scores

correctly separate biological replicates from non-replicates, for the

non-T-cell comparisons, using the same parameters as for Hi-C and

the same threshold for defining concordance (from Fig. 3), suggest-

ing that GenomeDISCO generalizes seamlessly to HiChIP data

(Fig. 4). We obtained similar results for HiCRep and HiC-Spector.

For the comparisons between T-cells, all three methods produced

similar scores for both comparisons between biological replicates

and those between different types of T-cells, with the biological

replicates receiving the highest scores in almost all cases. Using the

thresholds of concordance derived for Hi-C, we find that for

GenomeDISCO, T-cell related comparisons pass the threshold above

a sequencing depth of 50 million reads, while HiCRep deems all

T-cell comparisons as concordant and HiC-Spector deems a smaller

subset as concordant. Overall, we find that GenomeDISCO behaves

as expected for HiChIP data, without any modifications to the

method.

4 Discussion

Here, we present GenomeDISCO, a new approach specifically de-

signed for evaluating concordance and reproducibility of chromatin

contact maps. Our benchmarking experiments on simulated contact

maps and high quality real Hi-C and HiChIP datasets, which include

systematic comparisons to two other methods HiCRep and HiC-

Spector, indicate that GenomeDISCO displays competitive accuracy

in distinguishing biological replicates from different cell types with

the desired sensitivity to sequencing depth, node and edge dropout

noise, changes in domain boundaries and subtle differences in dis-

tance dependence.

GenomeDISCO introduces a novel approach of using random

walks on the contact map graph for progressive smoothing and

evaluation of concordance at multiple scales. A weighted graph is a

natural representation of a chromatin contact map. A random walk

on a contact map graph progressively upweights direct edges involv-

ing node pairs that have many high-weight indirect paths of progres-

sively increasing lengths that connect the node pairs.

Furthermore, GenomeDISCO is sensitive to subtle differences

in distance dependence curves. Since it is a common to pool multiple

Hi-C replicates, it is essential to know if samples exhibit differences,

so as to not eliminate signal during pooling, especially since in

some cases variation in distance dependence curves is biologically

meaningful.

On the other hand, two datasets can have different distance de-

pendence curves but still be concordant in terms of enrichments of

contacts when accounting for the different distance dependence

function of each dataset. Thus, if one is interested in evaluating con-

cordance of contact enrichment (e.g. as measured by methods that

call significant contacts), then one can normalize the observed

contact frequencies by the expected distance-dependent contact fre-

quencies (which would correct for most differences in distance de-

pendence) for the pair of contact maps before feeding them into

GenomeDISCO. One can obtain these observed/expected ratios or

associated q-values from Fit-Hi-C (Ay et al., 2014).

Furthermore, GenomeDISCO provides a variety of diagnostic

analyses that are useful for digging deeper in the potential reasons

for low concordance. The diagnostic analyses include the compari-

son of distance dependence curves and a difference matrix between

smoothed contact maps (Figs 1 and 3).

Finally, what determines a good threshold for concordance of

biological replicates? Based on our extensive analyses of simulated

datasets and extensive collections of Hi-C data, we define an empir-

ical GenomeDISCO score threshold of 0.8 at 50 kb resolution. We

also provide a set of precomputed standards based on pseudo-

replicates for frequently used resolutions, allowing a direct calibra-

tion of a given score to an upper bound.

While GenomeDISCO summarizes concordance in a single score,

a future direction of research consists of developing methods that

specifically focus on measuring concordance of distinct features of

the contact map, such as TADs, compartments and loops. For cases

where concordance is low, such methods will be instrumental to pin-

point the specific feature of the contact maps that accounts for the

observed difference.

3D chromatin architecture is the next frontier in deciphering

genome function. Ensuring high quality reproducible experiments is

an essential part of this revolution in understanding chromatin

architecture. GenomeDISCO is a user-friendly, efficient and accur-

ate diagnostic tool for evaluating the reproducibility of 3D chroma-

tin conformation capture experiments.
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Fig. 4. GenomeDISCO benchmarks on HiChIP data. A) Scores obtained on

HiChIP data for GenomeDISCO, HiC-Spector and HiCRep. The scores are split

into two categories: comparisons between T-cells and the remaining compar-

isons (labeled as “Non T-cells”). Scores of replicates are plotted offset by 5

million reads, to improve visibility of points that would otherwise overlap
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