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Abstract

Motivation: In a scenario where populations A, B1 and B2 (subpopulations of B) exist, pronounced

differences between A and B may mask subtle differences between B1 and B2.

Results: Here we present iterClust, an iterative clustering framework, which can separate more pro-

nounced differences (e.g. A and B) in starting iterations, followed by relatively subtle differences

(e.g. B1 and B2), providing a comprehensive clustering trajectory.

Availability and implementation: iterClust is implemented as a Bioconductor R package.

Contact: andrea.califano@columbia.edu or hd2326@columbia.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

In a scenario where two clusters may exist (A and B), with B

further divided into two sub-clusters (B1 and B2), the more pro-

nounced differences between A and B may prevent subtle differ-

ences between B1 and B2 from being revealed. To solve this

problem and to better describe the sub-cluster hierarchy, we pro-

pose to perform cluster analysis iteratively, such that individual

clusters may be subdivided into smaller ones until further subdiv-

isions are no longer statistically significant. Thus, for example,

differences between A and B would lead to identification of

two clusters in the first iteration, while B1 and B2 would be fur-

ther identified in iteration 2. Previous effort in iterative cluster-

ing analysis (Usoskin et al., 2015) lacks systematic criteria in

determining key clustering parameters, e.g. optimal number of

clusters among iterations. The iterClust Bioconductor R package

provides an unsupervised statistical framework for iterative

clustering analysis that can be used, for instance, to discover bio-

logical heterogeneity, especially in single cell analyses of hetero-

geneous tissues, where cell lineages impose a relatively strong

hierarchical structure, or solve general clustering problems.

2 Results

R function iterClust() performs iterative clustering analysis by

organizing user-defined functions in the following workflow:

1. ith iteration start

2. featureSelect(), select clustering features in this iteration.

3. clustHetero(), confirm observation sets to be splitted in this

iteration are heterogeneous.

4. coreClust(), for heterogeneous observation sets confirmed by

clustHetero(), generate several clustering schemes.

5. clustEval(), choose the optimal scheme given by coreClust().

6. obsEval(), evaluate how each observation is clustered.

7. obsOutlier(), poorly clustered observations are removed.

8. ith iteration end

iterClust takes diverse feature selection methods (Saeys et al.,

2007); clustering algorithms, e.g. partition-based, hierarchy-based

(Kaufman and Rousseeuw, 2009), density-based (Ester et al., 1996)

and graph-based (Newman and Girvan, 2004); and cluster/observa-

tion evaluation methods, e.g. sampling-based consensus score

(Monti et al., 2003) or regular silhouettes score (Rousseeuw, 1987).
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In addition, parameters for all user-defined functions can be set up

as a function of the iteration, for instance, clustHetero() can be set

up such that looser threshold parameters may be used as the iter-

ation depth increases to deal with more and more subtle heterogen-

eity. In addition, featureSelect() can be used to select clustering

features based on previous iterations. For instance this can help ex-

clude features used to identify coarser clusters in prior iterations to

unveil novel, more subtle heterogeneity at the current iteration.

Taken together, these two functions make iterClust a highly flexible

statistical framework for iterative cluster analysis. The results of

iterClust are organized by iteration. Within a specific iteration, for

each cluster, the corresponding observation names and clustering

features are recorded, providing a comprehensive clustering

trajectory.

As a statistical framework, the running time, as well as influenc-

ing factors of iterClust is majorly dependent on the clustering algo-

rithm in coreClust() function that is specified by the user. As an

example, we benchmarked iterClust on a public human PBMC

(Peripheral Blood Mononuclear Cell) scRNA-Seq dataset. The ori-

ginal dataset was subsampled into different sizes, and pam() func-

tion (Partition Around Medoids, in R package cluster) was used in

coreClust() function. In this case, running time increases exponen-

tially and linearly as number of cells and genes increases, respect-

ively, agreeing with the property of pam() function (Supplementary

Fig. S1).

We further tested the performance of iterClust in heterogeneity

detection. As shown in Figure 1, within the PBMC dataset, in the

first iteration, iterClust identified T-cell and APC (Antigen

Presenting Cell) clusters. In the second iteration, the algorithm fur-

ther separated the original two clusters into additional sub-clusters,

including monocyte and B-cells in the APC cluster (monocyte and

B-cell are two major types of APC), as well as effector T-cell and

naı̈ve/memory T-cells in the T-cell cluster. Critically, all clusters

identified by the analysis were characterized by well-established cell-

type-specific gene expression markers (Supplementary Fig. S2). The

finer grain sub-division was not the optimal solution using single

pass analysis (Supplementary Fig. S3). Taken together, iterClust can

correctly elucidate complex hierarchical substructures that contrib-

ute to tissue heterogeneity in PBMC single cell dataset, with more

pronounced differences in starting iterations, followed by relatively

subtle differences, providing a comprehensive clustering trajectory.

We further confirmed these conclusions on independent scRNA-Seq

datasets (Supplementary Figs S4 and S5), as well as general

benchmarking datasets for clustering analysis (Supplementary

Figs S6 and S7).
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Fig. 1. Revealing cell types within human PBMC using iterClust. For illustration purpose, the data was projected on 2D-space with t-SNE plots (Maaten and

Hinton, 2008), on which iterClust discovered clusters were colored. iterClust in first round (A) separated two major cell types, T-cell and APC (Antigen Presenting

Cell) and second round (B) further dissected these clusters, separating monocyte and B-cell in APC cluster, as well as Effector T-cell and Naı̈ve/Memory T-cell

among T-cell cluster
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