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Abstract

Motivation: A series of recently introduced algorithms and models advocates for the existence of a

hyperbolic geometry underlying the network representation of complex systems. Since the human

protein interaction network (hPIN) has a complex architecture, we hypothesized that uncovering its

latent geometry could ease challenging problems in systems biology, translating them into meas-

uring distances between proteins.

Results: We embedded the hPIN to hyperbolic space and found that the inferred coordinates of

nodes capture biologically relevant features, like protein age, function and cellular localization.

This means that the representation of the hPIN in the two-dimensional hyperbolic plane offers a

novel and informative way to visualize proteins and their interactions. We then used these coordi-

nates to compute hyperbolic distances between proteins, which served as likelihood scores for the

prediction of plausible protein interactions. Finally, we observed that proteins can efficiently com-

municate with each other via a greedy routing process, guided by the latent geometry of the hPIN.

We show that these efficient communication channels can be used to determine the core members

of signal transduction pathways and to study how system perturbations impact their efficiency.

Availability and implementation: An R implementation of our network embedder is available at

https://github.com/galanisl/NetHypGeom. Also, a web tool for the geometric analysis of the hPIN

accompanies this text at http://cbdm-01.zdv.uni-mainz.de/~galanisl/gapi.

Contact: galanisl@uni-mainz.de or andrade@uni-mainz.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Proteins are very complex machines in and of themselves, but their

interactions with other proteins foster the formation of a very intri-

cate molecular system. This level of complexity has propelled the

development of methods to facilitate the analysis of protein interac-

tion networks (Alanis-Lobato, 2015) and has led to notable advan-

ces in biology and medicine (Barabási et al., 2011; Huttlin et al.,

2017; Luck et al., 2017; Taylor and Wrana, 2012; Vidal et al.,

2011).

Of special interest are a series of algorithms and models that

advocate for the existence of a geometry underlying the structure of

complex networks, shaping their topology (Bogu~ná et al., 2009;

Cannistraci et al., 2013b; Krioukov et al., 2010; Kuchaiev et al.,

2009; Papadopoulos et al., 2012; Pr�zulj et al., 2004; Serrano et al.,

2012; You et al., 2010) [see (Barthélemy, 2011) for an extensive

review]. In particular, the Popularity-Similarity model (PSM) sus-

tains that the emergence of strong clustering and scale invariance,

properties common to most complex networks, is the result of cer-

tain trade-offs between node popularity and similarity

(Papadopoulos et al., 2012). This model has a geometric interpreta-

tion in hyperbolic space (H2), where distance-dependent connection

probabilities lead to link formation, accurately describing the
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growth of complex systems (Alanis-Lobato and Andrade-Navarro,

2016; Bogu~ná et al., 2010; Garcı́a-Pérez et al., 2016; Krioukov

et al., 2010, 2012; Papadopoulos et al., 2012).

In the PSM, the N nodes comprising a network lie within a circle

of radius R � lnN, at polar coordinates ðri; hiÞ. The radial coordi-

nate ri represents the popularity or seniority status of a node i in the

system. Nodes that joined the system first have had more time to

accumulate links and are close to the circle’s centre, whereas

younger nodes lie on the circle’s periphery and have only a few part-

ners. The angular coordinate hi allows one to determine how similar

a node i is to others. Finally, the hyperbolic distance between nodes,

d
H

2 ðs; tÞ � rs þ rt þ 2lnðhst=2Þ, abstracts the optimization process

mentioned above, in which a new node aims at forming a tie not

only with the most popular system components but also with the

ones that are most similar to it (Papadopoulos et al., 2012).

The PSM is markedly appealing to network biologists because

the human protein interaction network (hPIN), the focus of this

study, exhibits an approximately scale-free node degree distribution

and has a strong clustering (see Supplementary Table S1).

Furthermore, uncovering the hidden geometry of the hPIN could

ease challenging problems in systems biology (Chuang et al., 2010),

allowing us to address them from a geometric perspective. For

example, the prediction of protein interactions would translate into

the identification of disconnected protein pairs that are unexpect-

edly close to each other in the network’s latent space.

To investigate whether H
2 represents a good host space for the

hPIN, we developed an accurate and efficient algorithm for hyper-

bolic network embedding (Alanis-Lobato et al., 2016b) and

explored whether the popularity and similarity dimensions inferred

for each protein have a biological interpretation. Furthermore, we

exploited the hyperbolic distance between proteins for link predic-

tion and the reconstruction of signal transduction pathways.

2 Materials and methods

2.1 Protein interaction network construction
The hPIN used here represents a stringent subset of release 2.0 of

the Human Integrated Protein-Protein Interaction rEference

(HIPPIE) (Alanis-Lobato et al., 2017; Schaefer et al., 2012). HIPPIE

retrieves interactions between human proteins from major expert-

curated databases and calculates a score for each one, reflecting its

combined experimental evidence. Only physical interactions that

belong to the largest connected component (LCC) were considered.

To test the validity of our findings under varying levels of noise, we

constructed hPINs using confidence scores � f0:69;0:70; 0:71;

0:72;0:73g. The 0.72-network was preferred because it has the high-

est percentage of edges supported by more than one experiment.

This network comprises N¼10 824 nodes and L¼66 154 edges.

Structural information about all networks is listed in Supplementary

Table S1. The networks themselves are provided in Supplementary

Material S1.

2.2 Protein age determination
To determine the birth-time of hPIN nodes, we grouped proteins

from SwissProt based on near full-length similarity and high thresh-

old of sequence identity using FastaHerder2 (Mier and Andrade-

Navarro, 2016). Briefly, age was assigned to human proteins

according to the oldest common ancestor of its orthologs (sequences

in different species that evolved from a common ancestor by specia-

tion). For example, if a protein was found only in humans, it would

have emerged recently, and it is considered a very young protein.

If it had orthologs in all extant organisms, it is considerd an old pro-

tein. The resulting age groups, from oldest to youngest, were:

6-Cellular organisms, 5-Metazoa, 4-Chordata, 3-Mammalia,

2-Euarchontoglires and 1-Primates.

2.3 Identification of proteins classes
We integrated information from several resources to identify pro-

teins with transcription factor (TF), receptor, transporter or RNA-

binding activity; as well as constituents of the cytoskeleton, proteins

involved in ubiquitination/proteolysis and cancer proteins. TFs were

retrieved from the Animal Transcription Factor Database 2.0

(Zhang et al., 2015a), the census of human TFs (Vaquerizas et al.,

2009) and the Human Protein Atlas (Uhlen et al., 2015). From the

latter we also retrieved constituents of the cytoskeleton, proteolysis-

and cancer-related proteins, receptors, transporters and RNA-

binding proteins (RBPs). Additional receptors and transporters were

taken from the Guide to Pharmacology (Southan et al., 2015). We

also took into account RBPs from the RBP census (Gerstberger

et al., 2014). Protein class membership is reported in Supplementary

Material S2.

2.4 Mapping the human protein interactome to

hyperbolic space
We embedded the hPIN to H

2 using LaBNEþHM (Alanis-Lobato

et al., 2016b), an approach that combines manifold learning

(Alanis-Lobato et al., 2016a) and maximum likelihood estimation

(Papadopoulos et al., 2015) to uncover the hidden geometry of com-

plex networks. LaBNEþHM expects a connected network as input,

typically the LCC. The other components cannot be mapped due to

the lack of adjacency information relative to the LCC. The

Laplacian-based Network Embedding (LaBNE), in charge of the

manifold learning part of the algorithm, generates a first geometric

configuration of a network in H
2. This intermediate mapping is then

passed on to HyperMap (HM), a maximum likelihood estimation

method that searches the space of PSMs for the one that best fits the

input network (Papadopoulos et al., 2015). See Supplementary

Table S1 for parameter values used in the mapping of all analyzed

networks and Supplementary Figure S1 for embedding quality tests.

2.5 Link density computation
We define link density as the observed number of links l between n

nodes, divided by the number of possible links that can occur, i.e.

nðn� 1Þ=2. Since l varies greatly depending on the nodes being con-

sidered, we min-max normalized the link density to more easily visu-

alize the difference between node groups. Link densities within and

between age groups were compared with distributions of densities

resulting from 100 random age assignments via a z-test.

2.6 Functional enrichment analyses
Gene Ontology (GO) (Ashburner et al., 2000) and KEGG pathway

(Kanehisa and Goto, 2000) enrichment analyses were carried out

with the Database for Annotation, Visualization and Integrated

Discovery (DAVID) (Huang et al., 2009). Only GO terms and

KEGG pathways enriched at the 0.05 significance level after

Benjamini-Hochberg correction were considered.

2.7 Clustering in the similarity dimension
We computed the difference between consecutive inferred angles to

identify big gaps separating groups of proteins in the similarity

dimension (see Supplementary Fig. S3a). We chose the gap size g,

such that the sectors flanked by two gaps contained at least
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10 proteins (g¼0.0132, Supplementary Fig. S3b). Neighbouring

clusters with similar biological functions and cellular localizations

were merged to avoid redundancy.

We checked if protein classes agglomerate non-randomly within

their corresponding similarity-based clusters by carrying out a

Fisher’s exact test. For this, we compared the proportion of proteins

in class c ¼ fTF; receptor; transporter;RBP; cytoskeleton; ubiquitina

tion=proteolysisg that fall within a related similarity cluster against

the proportion of proteins of the same class in the remaining clus-

ters. The protein classes and their related cluster identifiers are: TF,

8; receptor, 12; transporter, 4, 5, 9 and 13; RBP, 7 and 14; cytoske-

leton, 3; ubiquitination/proteolysis, 1, 2 and 15. The resulting P-val-

ues were adjusted with the Benjamini-Hochberg method.

2.8 Protein interaction prediction
Link prediction methods assign likelihood scores of interaction to all

the disconnected node pairs of a network. We ranked these candi-

date interactions by hyperbolic distance and compared the top-100

with the best candidates from different classes of prediction meth-

ods: the neighbourhood-based link predictors Common Neighbours

(CN) (Newman, 2001), Adamic & Adar (AA) (Adamic and Adar,

2003) and Preferential Attachment (PA) (Newman, 2001); the

Cannistraci-Alanis-Ravasi index (CAR) and the CAR-based AA

(CAA) and PA (CPA) (Cannistraci et al., 2013a); the embedding-

based link predictors ISOMAP (Kuchaiev et al., 2009; Tenenbaum,

2000; You et al., 2010) and non-centred Minimum Curvilinear

Embedding (ncMCE) (Cannistraci et al., 2013b); and the recently

proposed Structural Perturbation Method (SPM) (Lü et al., 2015).

See (Lü et al., 2015; Martı́nez et al., 2016) for more details and pre-

dictor formulations.

The discrimination between good and bad candidates was based

on the Guilt-by-association Principle, which states that if two pro-

teins are involved in similar biological processes or are located in the

same cellular compartment, they are more likely to interact (Oliver,

2000). Thus, good candidate interactions correspond to top-ranked

pairs of proteins that play a role in at least one common pathway

(functional homogeneity) or locate to the same subcellular structure

(localization coherence). This link prediction evaluation framework

is extensively used in network biology (Alanis-Lobato et al., 2013,

2016a; Chen et al., 2006; Saito, 2002; Saito et al., 2003). Pathway

memberships were determined via KEGG pathways (Kanehisa and

Goto, 2000) and cellular localizations via the Cellular Compartment

aspect of the GO (Ashburner et al., 2000) and the Cell Atlas (Thul

et al., 2017). The top-100 candidate interactions of each link predic-

tor are provided in Supplementary Material S6.

2.9 Greedy routing and pathway reconstruction
In greedy routing, the inferred hyperbolic coordinates of nodes are

used as addresses to send signals between nodes. The process starts

with the source checking which one of its direct neighbours is hyper-

bolically closest to the target and sends the signal there. The recipi-

ent checks amongst its direct partners for the one closest to the

target, and so on, until the destination is reached (successful deliv-

ery). If, in the delivery process, a node sends the signal to the previ-

ously visited protein, i.e. it falls into a loop, the signal is dropped

and the delivery flagged as unsuccessful (Krioukov et al., 2010).

We performed 100 routing experiments, each with 1000 source-

target pairs. These pairs were selected at random or from a pool of

TFs, receptors or cancer-related proteins. Since the number of pro-

teins in each one of these classes differs, the pools were formed by

500 randomly-selected members of each one. Routing efficiencies

(percentage of the 1000 source-target pairs in which greedy routing

was successful) were averaged across the 100 experiments. Mann-

Whitney U tests were used to compare efficiency distributions.

For pathway reconstruction, we computed greedy and shortest

paths from sources to targets of the 24 signal transduction pathways

listed in KEGG (Kanehisa and Goto, 2000) and their equivalents in

Reactome (Fabregat et al., 2016) and WikiPathways (Kutmon et al.,

2016). These starting- and end-points were determined based on

KEGG itself and the literature (Berg et al., 2002; Cooper, 2000) and

represent canonical transduction initiators and transcriptional regu-

lators, respectively. We computed the fraction of reported pathway

members forming the greedy or shortest paths. For some pathways,

we compiled more than one source-target pair and computed the

average fraction instead. All these pairs and their corresponding

pathways are reported in Supplementary Material S7. Pathway

membership was determined by integrating data from KEGG,

Reactome and WikiPathways.

3 Results

3.1 The latent geometry of the human protein

interactome
We constructed a protein network with high-quality interactions

from the HIPPIE database (Alanis-Lobato et al., 2017; Schaefer

et al., 2012) (see Section 2 and Supplementary Material S1). The

resulting network was embedded to the two-dimensional hyperbolic

plane H
2 using LaBNEþHM (Alanis-Lobato et al., 2016a,b;

Papadopoulos et al., 2015), a method to uncover the hidden geome-

try of complex networks (see Section 2). Once the hyperbolic coordi-

nates of each protein in the network were inferred (see

Supplementary Material S2), we proceeded to analyze whether these

coordinates are meaningful or not from a biological point of view.

3.2 Radial coordinates and protein evolution
The popularity component of the PSM (radial coordinates of nodes

in H
2) is associated with the seniority status of network nodes. To

verify if our mapping reflects this property, we assigned proteins to

six different age groups according to the existence of evolutionarily-

related counterparts in other organisms (see Fig. 1a, Section 2 and

Supplementary Material S2).

While old nodes have high degrees and are involved in essential

functions, like metabolic processes or protein translation, younger

nodes have only a few direct partners and are in charge of more

specialized processes, like organ development and immune response

(see Fig. 1a, Supplementary Fig. S2a and Supplementary Material

S3). Moreover, there is a strong link density within and between old

age groups, which is reduced within and between the young ones

(see Fig. 1b and Section 2). This is in agreement with previous obser-

vations that there is a core of old highly interconnected proteins, sur-

rounded by younger proteins with no interactions between them but

dependent on the old core (Beltrao and Serrano, 2007; Zhang et al.,

2015b). All these results cannot be replicated if proteins are ran-

domly assigned to the six different age groups (see Supplementary

Fig. S2b, c).

Finally, we checked the inferred radial coordinates of the pro-

teins in each group and, consistent with the PSM, old proteins are

closer to the centre of the hyperbolic circle compared to younger

ones (see Fig. 1c). The observed trend is an indication that the radial

positions of proteins in H
2 encode information about their evolu-

tionary origin.
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3.3 Angular coordinates and protein function
The similarity component of the PSM (angular coordinates of nodes

in H
2) abstracts the characteristics that make a node similar to

others. To investigate the biological meaning of inferred angles, we

identified protein agglomerations in the angular dimension of H
2

(see Supplementary Fig. S3 and Section 2). As shown in Figure 2a,

angles capture the functional and spatial organization of the cell,

and this is supported by the three aspects of the GO and by KEGG

(see Supplementary Material S4 and Supplementary Fig. S4). For

example, the over-represented biological process of cluster 8 is tran-

scription. The cellular compartment where this process takes place,

the nucleus, is also enriched, as well as the molecular functions

DNA binding and transcription factor activity together with the

basal transcription factors pathway.

Figure 2b shows the distribution of inferred angles for different

protein classes and highlights how they agglomerate in the

similarity-based clusters enriched for their particular activity, in

numbers that are significantly higher than expected by chance (see

Section 2 and Supplementary Material S2). For example, RBPs accu-

mulate in cluster 7, which, as expected, is enriched for RNA process-

ing and protein translation. Also, nodes involved in marking

proteins with ubiquitin for their degradation via the proteasome,

though more dispersed across the full angular dimension, are more

common in the clusters enriched for ubiquitination and proteolysis

(1, 2 and 15).

To study whether the clusters suggested by the angular coordi-

nates of proteins could have been detected with a traditional com-

munity detection method, we applied the Louvain algorithm to the

hPIN (Blondel et al., 2008). This method identified communities

that do not correspond with the obtained similarity-based clusters

(see Supplementary Fig. S5a–d). The Louvain-based communities

are either enriched for very specific biological processes or not

enriched for any process in particular (see Supplementary Material

S5). This outcome suggests that they represent protein complexes or

groups of a few proteins that, together, play roles in very specific

functions (see Supplementary Fig. S5d). In contrast, the angular clus-

ters are formed by proteins with roles in more general pathways (see

Supplementary Material S4) that can be analyzed in more detail if

smaller gaps between angles are considered (see Supplementary Figs

S3, S5c and Section 2).

The results presented so far correspond to an hPIN formed by

interactions with HIPPIE confidence scores�0.72 (see Section 2),

which means that they are well-supported by experimental evidence.

However, this also means that the considered interactome is vastly

incomplete. To test if our findings are robust to network topology

changes (e.g. higher presence of false negatives if a more stringent

score is used or more false positives if the score is less conservative),

we constructed hPINs with varying quality levels (see

Supplementary Table S1). Supplementary Figure S6 shows that

regardless of the assessed confidence score, the inferred protein

coordinates lead to the same conclusions: old proteins tend to be

closer to the centre of H2 than young ones and proteins with specific

molecular functions cluster together in the angular dimension. We

expect these observations to hold true, or even improve, as hPIN

charting efforts enhance network coverage and reliability (Huttlin

et al., 2017; Luck et al., 2017).

3.4 Hyperbolic distances and protein interactions
Now that the two dimensions of the PSM have been interpreted in a

biological context, we can use them to compute hyperbolic distances

between proteins. Figure 3a shows connection probabilities (fraction

of connected node pairs, amongst all pairs separated by a certain dis-

tance) as a function of the hyperbolic separation between proteins.

In concordance with what the PSM predicts for a network with the

same structural characteristics as the hPIN, we can see that, accord-

ing to the coordinates inferred with LaBNEþHM, if two proteins

are very close to each other, they most certainly interact. On the

other hand, if proteins are far apart, their probability of interaction

is very low. Additionally, protein interactions with high HIPPIE
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Fig. 1. (a) Proteins in the constructed hPIN were clustered into six different age groups (the number of proteins in each one is indicated). Over-represented biolog-
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in each age group
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confidence scores are closer to each other than proteins with low

scores (see Supplementary Fig. S7).

We tried to replicate the above findings by embedding the hPIN

into the two-dimensional Euclidean space, using two different tech-

niques (Belkin and Niyogi, 2001; Tenenbaum, 2000) [we refer the

reader to (Cannistraci et al., 2013b; Kuchaiev et al., 2009; You

et al., 2010) for details on how these network embeddings are per-

formed]. The resulting connection probabilities are far from what

the mapping to H
2 achieves (see inset in Fig. 3a), further endorsing

the suitability of this space to describe complex networks like the

hPIN.

These results encouraged us to check whether the 100

hyperbolically-closest disconnected protein pairs represent plausible

protein interactions. Figure 3b shows that LaBNEþHM’s predic-

tions are more biologically meaningful than those from representa-

tives of different link prediction classes (Lü et al., 2015; Martı́nez

et al., 2016) (see Supplementary Fig. S8 for the complete analysis, as

well as the Section 2 and Supplementary Material S6), especially if

we focus on the top-10 candidates: non-adjacent proteins that are

close in H
2 play roles in at least one common pathway (functional

homogeneity) and localize to the same cellular compartments (local-

ization coherence).

Our top prediction, for example, involves proteins SUMO2 and

p65 and is supported by recent studies in mouse and human. After

observing that over-expression of SUMO2 derives in the lack of

nuclear p65, a group working with mouse dendritic cells proposed

that SUMO2 traps p65 in the cytoplasm and avoids its translocation

to the nucleus (Kim et al., 2011). Further supporting this hypothesis,

Liu and colleagues observed that the transfection of human hepato-

carcinoma with increasing doses of SUMO2 gradually increases

cytoplasmic p65 levels, whereas knock-down of SUMO2 decreases

them (Liu et al., 2015).

Although the other link predictors improve as more candidates

are evaluated, we cannot discard that some of LaBNEþHM’s pre-

dictions are actually part of the same pathway or organelle, as path-

way membership and protein localization references are still

incomplete. A sign of this lack of annotations is that only �20% of

the top-100 potential interactions identified by each prediction

method are reported in HIPPIE v2.0 (see Supplementary Fig. S9a)

and a maximum of three were confirmed by two recent large-scale

network charting efforts (Huttlin et al., 2017; Luck et al., 2017) (see

Supplementary Fig. S9b, c). This means that there is no experimental

evidence for the interaction of most of these protein pairs, a problem

that proteome-scale and unbiased protein network mapping endeav-

ours are addressing (Luck et al., 2017).

3.5 Greedy routing and signal transduction
Hyperbolic distances can also be used to study signal transduction

pathways, the way in which cells communicate with each other and

respond to environmental changes (Berg et al., 2002). These path-

ways normally start with a signal stimulating a cell membrane recep-

tor, which leads to the activation of a series of proteins, until the

signal reaches the nucleus, where a TF binds DNA and regulates tar-

get genes (Cooper, 2000). Interestingly, signals travel from source to

target with the former not having knowledge of the global protein

network structure (Bogu~ná et al., 2009; Krioukov et al., 2010).

Proteins can only activate or repress their direct neighbours in the

hPIN, and these stimuli cascade through the network in the same

way, until the end of the pathway (Cooper, 2000). This prompted us

to investigate whether a signal can effectively reach its target, using

the shortest possible path, via greedy routing (see Section 2).

Figure 4a shows the average routing efficiencies. Note that if sig-

nals travel to the neighbour that is radially or angularly closest to
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Fig. 2. (a) Protein clusters identified by big gaps separating groups of proteins in the angular dimension of H2. The over-represented biological functions and

compartments in each cluster were determined via GO and KEGG pathway enrichment analyses (BP: Biological Process, CC: Cellular Compartment, MF:

Molecular Function). Each cluster was assigned a numeric identifier (1–15). (b) Distribution of inferred angular coordinates for proteins with specific molecular

functions (TFs: Transcription Factors, RBPs: RNA-binding proteins). P-values highlight that these protein classes agglomerate non-randomly within their corre-

sponding similarity-based cluster from a. The start and end of these clusters are indicated across the ½0; 2p� range, below the histograms
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the target, greedy routing is not as efficient as when the hyperbolic

distances are used, underlining the importance of both dimensions

for the proper navigation of the hPIN (Alanis-Lobato et al., 2016b;

Krioukov et al., 2010). Moreover, the hop stretch (greedy path

length divided by shortest path length) is close to 1 (see Fig. 4b),

which means that greedy paths, guided by the network’s latent

geometry, are very often shortest paths.

Given the biological importance of signal transduction, we

hypothesized that it should be more efficient to send signals from

receptors (Recs) to TFs, and that is indeed the case

(P ¼ 1:898� 10�34, see Fig. 4a). The Rec-TF efficiency is also sig-

nificantly larger than the one achieved through the use of proteins

that are neither Recs nor TFs, but that have degrees similar to their

counterparts (P ¼ 1:233� 10�34, see Fig. 4a and Supplementary

Fig. S10a, b). Here, we refer to them as control Recs and control

TFs, respectively.

We also explored the effects of defective proteins in greedy rout-

ing efficiency. If a greedy path passes through a faulty protein, signal

transduction is interrupted, making routing unsuccessful. From a

biological perspective, this experiment could be modelling the effects

caused by mutations or insufficient protein levels. In some situa-

tions, these defects manifest as disease phenotypes.

As depicted in Figure 4c, the increasing introduction of defective

receptors or TFs impacts greedy routing efficiency more than the

introduction of faulty proteins at random or from the pool of con-

trol receptors or control TFs. We tested these using pools with the

same amount of receptors and TFs to make sure that the observed

effects were not due to different abundances of these protein types in

the hPIN. Interestingly, faulty nodes from a pool of cancer-related

proteins (see Section 2) severely affect network navigability com-

pared to TFs, receptors and even control cancer proteins (see Fig. 4c

and Supplementary Fig. S10c). This result cannot be attributed to

cancer proteins having more connections, as their degree distribu-

tion is similar to that of TFs and receptors (see Supplementary Fig.

S10). Rather, it could be explained by how often cancer-related pro-

teins are part of greedy paths (see Fig. 4d) and motivates a deeper

investigation of the relationship between network navigation, func-

tion and disease, which is outside the scope of this work.

One of the major challenges in systems biology is the determina-

tion of the chain of reactions that guides signals from receptors in

the cell membrane to TFs in the nucleus (Ritz et al., 2016). Although

current experimental technologies enable the identification of the

proteins in charge of sensing the cell’s environment and the deduc-

tion of the downstream effects of these sensory inputs, building the

complete set of interactions that are part of signalling pathways still

requires extensive and time-consuming manual curation efforts

(Gitter et al., 2011; Ritz et al., 2016). As a result, the development

of automatic pathway reconstruction methods is a field of active

research (Gitter et al., 2011; Ritz et al., 2016; Supper et al., 2009;

Yosef et al., 2009). Such methods aim at establishing pathway mem-

bers and their interactions, given only two anchoring points: the

receptor or source of the pathway and the target transcriptional reg-

ulator (Ritz et al., 2016).

We explored the extent to which well-established signal trans-

duction pathways can be recapitulated by navigating the latent

geometry of the hPIN with greedy routing. Note that our goal was

not the full reconstruction of pathways, with all their diversions,

loops and buffering controls. Rather, our objective was to study

whether the inferred network geometry can guide signals through

the core pathway members.

Using greedy routing and traditional shortest paths, we sent sig-

nals from canonical sources to canonical transcriptional regulators

of the 24 signal transduction pathways listed in KEGG (Kanehisa

and Goto, 2000) (see Supplementary Material S7). Then, we com-

puted the fraction of proteins that are part of the resulting greedy/

shortest paths and that are reported pathway members (see Section

2). Figure 5a and Supplementary Figure S11 show that, in 70% of

the cases, greedy paths are as good as or better than shortest paths

because they contain more proteins that are in fact part of the

analyzed pathway. Along with this, hop stretches fluctuate around

1, indicating that the navigated greedy paths, found using local

information only, are often shortest paths.

For example, Wnt signalling, a well-characterized pathway with

an important role in embryonic development (Atsushi et al., 2004),
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We compared the top-100 disconnected proteins that are closest to each

other in H
2 (LaBNEþHM) with candidate protein interactions from represen-

tative link predictors of different classes (see Supplementary Fig. S8 for the

complete analysis). The plot shows how the fraction of potential interactions

with functional homogeneity and localization coherence changes as more

protein pairs are assessed. Insets focus on the top-10 candidate pairs. CN:
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can be recapitulated with greedy routing (see Fig. 5b). In its canoni-

cal form, this pathway is activated when a Wnt signal stimulates the

LRP membrane receptors (LRP5 and LRP6), leading to their associ-

ation with a multiprotein complex containing AXIN1. This event

stabilizes the b-catenin protein (CTNNB1), which translocates to

the nucleus, and binds TCF7 (Atsushi et al., 2004; Niehrs, 2006).

Longer greedy paths with just a small fraction of reported path-

way members are also interesting, as they may contain new pieces of

the signal transduction machinery. In Figure 5a we can see that only

60% of the greedy path members for the SHH pathway is reported

in our integrated dataset. It is known that the cellular response to an

SHH signal is controlled by the transmembrane proteins PTCH1

and Smoothened (SMO), but the way in which SMO connects to the

target TFs GLI1, GLI2 or GLI3 is still under discussion (Dennler

et al., 2007; Luo et al., 2012). The geometric-based reconstruction

of this pathway suggests that the proteins in charge of GLI2 activa-

tion are NEDD4 and SMAD3 (see Fig. 5c) and we found experimen-

tal evidence for this scenario. First, Luo and colleagues measured the

interaction between SMO and NEDD4 and, by means of over-

expression and knock-down experiments, identified the positive reg-

ulation of the SHH pathway by the latter (Luo et al., 2012).

Secondly, Dennler et al. showed that the activation of GLI2 by

SMAD3 is possible in vitro and in vivo (Dennler et al., 2007). Third,

there is accumulating evidence placing the NEDD4 family of E3

ubiquitin ligases as key regulators of GLI (Chen et al., 2014; Di

Marcotullio et al., 2011; Yue et al., 2014). This information sup-

ports what the geometry of the hPIN put forward and encourages

further exploration of the involvement of NEDD4 and SMAD3 in

SHH signal transduction.

4 Conclusion

We used manifold learning and maximum likelihood estimation to

embed the human protein interactome into the two-dimensional

hyperbolic plane (Alanis-Lobato et al., 2016b). Our results highlight

that the latent geometry of the hPIN accurately reflects its structure

and dynamics and represents a powerful tool to gain insights into

the intricacies underlying this complex molecular machine.

On the one hand, the radial positioning of nodes (i.e. the geomet-

ric abstraction of their popularity or seniority status in the network)

encapsulates information about the conservation and evolution of

proteins. On the other, their angular positioning (abstracting the

similarity between system components) captures the functional and

spatial organization of the cell. Together, the inferred radial and

angular coordinates of nodes can be used to compute hyperbolic dis-

tances and assess whether two proteins are likely to interact. In addi-

tion, hyperbolic coordinates and distances can be used to simulate

cell signalling events, reconstruct signal transduction pathways and

study the effects of perturbations in such protein communication

channels.

It is important to stress that the hPIN used throughout this

article is an aggregate of protein interactions that take place under

different time scales, conditions and tissues. Consequently, the

results obtained by means of the latent geometry of the hPIN must

be interpreted in the right biological context in order to reach sound

conclusions. Notwithstanding this caveat, the use of this mapping

not only reduces the universe of possibilities to test in the laboratory

but can also lead to a better understanding of the mechanisms

underlying the onset and development of complex human disorders.

To support this endeavour, we have developed a web tool for the

geometric analysis of the hPIN (http://cbdm-01.zdv.uni-mainz.de/~

galanisl/gapi). With it, users can easily relate the position of proteins

of interest with that of age or functional clusters and can simulate

signalling events utilising greedy routing.
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Bogu~ná,M. et al. (2009) Navigability of complex networks. Nat. Phys., 5,

74–80.
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