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Abstract

One of the major challenges in cancer chemotherapy is the development of multidrug resistance 

phenomenon attributed to the overexpression of ATP-binding cassette (ABC) transporter ABCB1 

or ABCG2 in cancer cells. Therefore, re-sensitizing MDR cancer cells to chemotherapy by 

directly inhibiting the activity of ABC transporters has clinical relevance. Unfortunately, previous 

attempts of developing clinically applicable synthetic inhibitors have failed, mostly due to 

problems associated with toxicity and unforeseen drug-drug interactions. An alternative approach 

is by repositioning drugs with known pharmacological properties as modulators of ABCB1 and 

ABCG2. In this study, we discovered that the transport function of ABCB1 and ABCG2 is 

strongly inhibited by SIS3, a specific inhibitor of Smad3. More importantly, SIS3 enhances drug-

induced apoptosis and resensitizes ABCB1- and ABCG2-overexpressing cancer cells to 

chemotherapeutic drugs at non-toxic concentrations. These findings are further supported by 

ATPase assays and by a docking analysis of SIS3 in the drug-binding pockets of ABCB1 and 

ABCG2. In summary, we revealed an additional action of SIS3 that re-sensitizes MDR cancer 

cells and a combination therapy with this drug and other chemotherapeutic agents may be 

beneficial for patients with MDR tumors.
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1. Introduction

One of the major challenges in cancer chemotherapy is the development of multidrug 

resistance (MDR) attribute to the overexpression of one of the ATP-Binding Cassette (ABC) 

transporters such as ABCB1 (P-glycoprotein/ MDR1) and ABCG2 (BCRP; MXR) [15, 16, 

54]. These transporters can generate energy from ATP hydrolysis to actively transport 

anticancer drugs away from their targets within a cancer cell, resulting in MDR phenotype 

[15, 45, 68]. Together, ABCB1 and ABCG2 are capable of transporting a majority of 

conventional anticancer drugs that are functionally and structurally unrelated, including but 

not limited to Vinca alkaloids, anthracyclines, methotrexate, topotecan, etoposide, SN-38, as 

well as many protein kinase inhibitors [17, 19, 37, 63]. The overexpression of ABCB1 

and/or ABCG2 has been linked to the MDR phenotype in a variety of blood and solid 

tumors, including acute lymphocytic leukemia (ALL), acute myelogenous leukemia (AML) 

[44, 52, 60], chronic lymphocytic leukemia (CLL) [33], multiple myeloma (MM) [20, 35, 

39, 40, 46, 58, 59], advanced non-small cell lung cancer [71] and metastatic breast cancer 

[27]. Moreover, both ABCB1 and ABCG2 are highly expressed in cells forming the blood-

tissue barrier sites such as gastrointestinal tract, liver, kidney and the blood-brain barrier 

(BBB), affecting the oral bioavailability, distribution, metabolism and elimination of most 

drugs in patients [8, 17, 54].

One of the most effective approaches to overcome MDR mediated by ABCB1 or ABCG2 is 

to directly inhibit the drug efflux function of the transporter in cancer cells [64]. Although 

substantial efforts have been invested in recent years to develop novel compounds that can 

inhibit the function of ABCB1 and ABCG2, there is still no modulator available to treat 
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patients with MDR tumors. The problems with developing clinically applicable synthetic 

inhibitors are often associated with the lack of potency or selectivity, high intrinsic toxicity 

or adverse drug-drug interactions [50, 54]. As a result, we and others have applied the drug 

repositioning (or drug repurposing) approach to discover drugs with known pharmacological 

and toxicological properties in the treatment of MDR cancer [34, 38, 50, 64]. In recent 

years, many inhibitors of protein kinases and signaling molecules, especially inhibitors of 

the epidermal growth factor receptor (EGFR), have been shown to reverse MDR mediated 

by ABCB1 or ABCG2 in cancer cells [23, 26, 48, 49, 51, 65]. However, many of these 

inhibitors are both transport substrates and/or inhibitors of an ABC drug transporter [19]. 

For instance, gefitinib (Iressa) inhibits the function of ABCB1 [26], whereas ABCG2 

effluxes and reduces the efficacy of gefitinib in cancer cells [13].

In the present study, we investigated the interaction of SIS3 with ABCB1 and ABCG2 in 

cancer cell lines. SIS3 is a specific inhibitor of Smad3, known for its potent inhibitory 

activity against transforming growth factor (TGF)-β1-induced phosphorylation of Smad3 

[25]. Therefore, SIS3 has been used frequently as a benchmark inhibitor in studies 

evaluating TGF-β-regulated cellular mechanisms [9, 28, 30, 32, 41, 61, 62, 72]. Our data 

show that by inhibiting the drug transport function of ABCB1 and ABCG2, SIS3 enhances 

drug-induced apoptosis and reverses MDR in cancer cells overexpressing ABCB1 or 

ABCG2. In summary, our results suggest that combination therapy of SIS3 and anticancer 

agents may be beneficial for patients with MDR tumors, and should be further investigated.

2. Materials and methods

2.1. Chemicals

RPMI medium, Iscove’s modified Dulbecco’s medium (IMDM), Dulbecco’s Modified 

Eagle’s medium (DMEM), Phosphate-buffered saline (PBS), fetal calf serum (FCS), trypsin-

EDTA, penicillin, and streptomycin were purchased from Gibco, Invitrogen (CA, USA). 

Annexin V : FITC Apoptosis Detection Kit was purchased from BD Pharmingen (San 

Diego, CA, USA). Tools Cell Counting (CCk-8) Kit was purchased from Biotools Co., Ltd 

(Taipei, Taiwan). SIS3, verapamil, Ko143 and all other chemicals were purchased from 

Sigma (St. Louis, MO, USA), unless stated otherwise.

2.2. Cell culture conditions

The human OVCAR-8 ovarian cancer cell line and the ABCB1-overexpressing variant NCI-

ADR-RES, human KB-3–1 epidermal cancer cell line and the ABCB1-overexpressing 

variant KB-V-1, human MCF-7 breast cancer cell line and the ABCG2-overexpressing 

variants MCF7-FLV1000 and MCF7-AdVp3000, human H460 non-small cell lung cancer 

cell line and the ABCG2-overexpressing variant H460-MX20, as well as pcDNA3.1-

HEK293, ABCB1-transfected MDR19-HEK293 and ABCG2-transfected R482-HEK293, 

were cultured in DMEM. The human S1 colon cancer cell line and the ABCG2-

overexpressing variant S1-M1–80 were cultured in RPMI-1640. HEK293 and HEK293 

transfected cells were maintained in media containing 2 mg/mL G418 [69], KB-V-1 cells 

were maintained in 1 mg/mL vinblastine [47], MCF7-FLV1000 cells were maintained in 

media containing 1 μg/mL flavopiridol [22, 42], MCF7-AdVp3000 cells were maintained in 
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media containing 3 μg/mL doxorubicin and 5 μg/mL verapamil [22], and S1-M1–80 cells 

were maintained in 80 μM of mitoxantrone [69]. All cell lines were cultured in medium 

supplemented with 10% FCS, 2 mM L-glutamine and 100 units of penicillin/

streptomycin/mL, maintained at 37 °C in 5% CO2 humidified air and placed in drug-free 

medium 7 days prior to assay.

2.3. Fluorescent drug accumulation assay

The intracellular accumulation of fluorescent substrates was recorded using a FACScan flow 

cytometer (BD Biosciences) and analyzed using CellQuest software (Becton-Dickinson) 

according to the method described by Gribar et al [18]. Briefly, after harvesting cells by 

trypsinization and centrifugation, 3 × 105 cells were resuspended in 4 mL of IMDM 

supplemented with 5% FCS before ABCB1 substrate calcein-AM (0.5 μM) or ABCG2 

substrate pheophorbide A (1 μM) was added to the cell suspension in the presence or 

absence of SIS3, verapamil (an inhibitor of ABCB1), or Ko143 (an inhibitor of ABCG2), as 

described previously [43]. Calcein fluorescence was detected with excitation and emission 

wavelengths of 485 and 535 nm, whereas pheophorbide A fluorescence was detected with 

excitation and emission wavelengths of 395 and 670 nm.

2.4. Immunoblotting

Primary antibodies C219 (1: 3000), BXP-21 (1:15000) and α-tubulin (1:100000) were used 

in Western blot immunoassay to detect ABCB1, ABCG2 and positive control tubulin, 

respectively. The horseradish peroxidase-conjugated goat anti-mouse IgG (1:100000) was 

used as the secondary antibody. Signals were detected as described previously [69].

2.5. Cytotoxicity assay

Cytotoxicity assays were carried out to determine the sensitivities of cells to tested drugs 

according to the method described by Ishiyama et al [24]. Briefly, cells were plated in each 

well of 96-well plates at a density of 5000 cells per well in 100 μL of culture medium and 

maintained at 37 °C. After 24 h, an additional 100 μL of tested drug at various 

concentrations was added to each well and incubated for an additional 72 h before 

developing with either Cell Counting Kit-8 (CCK) or MTT reagent. CCK assay was used to 

determine the cytotoxicity of drugs in HEK293 and HEK293 transfected cells, whereas 

MTT assay was used to determine the cytotoxicity of drugs in human cancer cell lines. For 

the MDR reversal assays, nontoxic concentrations of SIS3 or a known inhibitor of ABCB1 

or ABCG2, were added to the cytotoxicity assays. The extent of reversal was determined 

based on the calculated fold-reversal (FR) values, as described previously [12].

2.6. Apoptosis assay

The percentage of apoptotic cells in the total cell population induced by the indicated 

regimens was determined using the conventional Annexin V-FITC and propidium iodide (PI) 

staining method, as described previously [23]. Briefly, cells were first treated with 

colchicine, topotecan, SIS3 or in combinations as indicated for 48 h before harvested, 

centrifuged and resuspended in FACS buffer containing 1.25 μg/mL Annexin V-FITC 

(PharMingen) and 0.1 mg/mL PI and incubated for 15 min at room temperature. The labeled 
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cells (10000 per sample) were analyzed by FACScan using CellQuest software (BD 

Biosciences). Phosphatidylserine PS-positive and PI-negative cells were counted as early 

apoptotic cells with intact plasma membranes, whereas PS-positive and PI-positive cells are 

considered as either necrotic or late apoptotic with leaky membranes [4].

2.7. ATPase assay

The effect of SIS3 on vanadate (Vi)-sensitive ATPase activity of ABCB1 or ABCG2 was 

determined using membrane vesicles of High-Five cells expressing ABCB1 or ABCG2 

based on the endpoint Pi assay as described previously [1].

2.8. Docking analysis of SIS3 with ABCG2 and modeled structure of ABCB1

The three dimensional structure of human ABCB1 was predicted using an automated protein 

homology-modeling server SWISS-MODEL. The amino acid sequence of the protein was 

submitted to SWISS-MODEL server and templates were searched with BLAST and HHBlits 

against SWISS-MODEL template library. For each identified template, its quality was 

predicted from features of the target-template alignment. The templates with the highest 

quality were then selected and built based on the target-template alignment using ProMod3 

[5–7]. The energy was minimized for ABCB1 homology modeled structure based on the 

structure of mouse Abcb1a and ABCG2 protein structure (PDB:5NJG) [57] using Acclerys 

Discovery Studio 4.0. Ligand preparation and docking was performed by the CDOCKER 

module of the same software.

2.9. Quantification and statistical analysis

Experimental values including IC50 are presented as mean ± standard deviation (SD) 

calculated from at least three independent experiments. In some cases where indicated, the 

values are given as mean ± standard error of the mean (SEM). Curve plotting and statistical 

analysis were performed with KaleidaGraph (Reading, PA, USA) and GraphPad Prism (La 

Jolla, CA, USA) software. The improvement in fit was analyzed by two-sided Student’s t-

test and labeled “statistically significant” if the probability, p, was less than 0.05.

3. Results

3.1. SIS3 inhibits ABCB1- and ABCG2-mediated drug transport

We first examined the effect of SIS3 on the drug transport function and the protein 

expression of ABCB1 or ABCG2. As shown in Fig. 1, the accumulation of calcein, a 

fluorescent product of calcein-AM, which is a substrate drug of ABCB1[21], was measured 

in human KB-3–1 epidermal cancer cells and the ABCB1-overexpressing variant KB-

V-1cells, as well as in HEK293 cells and HEK293 cells transfected with human ABCB1 

(MDR19-HEK293) treated with DMSO (solid lines), 10 μM of SIS3 (shaded, solid lines) or 

10 μM of ABCB1 reference inhibitor verapamil (dotted lines). On the other hand, the 

accumulation of pheophorbide A (PhA), a fluorescent substrate drug of ABCG2[43], was 

measured in human H460 non-small cell lung cancer cells and the ABCG2-overexpressing 

variant H460-MX20 cells, as well as in HEK293 cells and HEK293 cells transfected with 

human ABCG2 (R482-HEK293) treated with DMSO (solid lines), 10 μM of SIS3 (shaded, 
solid lines) or 10 μM of ABCG2 reference inhibitor Ko143 (dotted lines), and analyzed as 
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described in Materials and methods. SIS3 significantly inhibited ABCB1-medaited transport 

of calcein from KB-V-1 cells (Fig. 1A, right panel) and MDR19-HEK293 (Fig. 1B, right 

panel), as well as ABCG2-mediated transport of PhA fom H460-MX20 cells (Fig. 1C, right 

panel) and R482-HEK293 cells (Fig. 1D, right panel). Of note, SIS3 had no significant 

effect on the accumulation of fluorescent substrates in any of the drug-sensitive parental 

cells (Fig. 1B–1D, left panels).

3.2. SIS3 reverses multidrug resistance mediated by ABCB1 and ABCG2

Providing that SIS3 is able to block the drug efflux function of both ABCB1 and ABCG2, 

we next examined the chemosensitization effect of SISs in cells overexpressing ABCB1 or 

ABCG2. We found that at non-toxic concentrations and without affecting the proliferation of 

parental cells (Fig. 2, left panels), SIS3 re-sensitized KB-V-1 cells and MDR19-HEK293 

cells to paclitaxel (Fig. 2A, right panel and Table 1) and colchicine (Fig. 2B and 2C) in a 

concentration-dependent manner. Similarly, SIS3 reversed ABCG2-mediated drug resistance 

to mitoxantrone and SN-38 in S1-M1–80 cells (Fig. 2D and 2E, right panels) and R482-

HEK293 cells (Table 1 and Fig. 2C). The MDR reversal effect of SIS3 was further tested in 

ABCB1-overexpressing NCI-ADR-RES and ABCG2-overexpressing H460-MX20 cancer 

cell lines. The IC50 values and the extent of reversal of multidrug-resistant cells to a 

particular drug by SIS3, which was calculated as the fold-reversal (FR) values [12], are 

summarized in Table 1. Of note, verapamil and Ko143 were used as positive controls for the 

reversal of drug resistance mediated by ABCB1 and ABCG2 [66]. Our results revealed that 

SIS3 is capable of reversing multidrug resistance mediated by ABCB1 and ABCG2 in 

cancer cells at concentrations below 1 μM.

Knowing that transient down-regulation of ABCB1 or ABCG2 can also lead to the re-

sensitization of MDR cancer cells to conventional anticancer agents [11, 36], we examined 

effect of SIS3 on the protein expression of ABCB1 and ABCG2 in KB-V-1 and H460-MX20 

cancer cells, respectively. We found that treating cancer cells with increasing concentrations 

of SIS3 (0 – 1 μM) for 72 h has no significant effect on ABCB1 protein expression in KB-

V-1 cells (Fig. 3A) or ABCG2 protein expression in H460-MX20 cells (Fig. 3B).

3.3. SIS3 enhances drug-induced apoptosis in ABCB1- and ABCG2-overexpressing 
cancer cells

Next, we evaluated the effect of SIS3 on drug-induced apoptosis in drug-sensitive cancer 

cells and MDR cancer cells overexpressing ABCB1 or ABCG2. KB-3–1 and KB-V-1 cells 

were treated with colchicine in the presence or absence of SIS3 for 48 h, whereas S1 and S1-

M1–80 cells were treated with topotecan in the presence or absence of SIS3 for 48 h, 

processed and analyzed as described previously [23, 65]. As shown in Fig. 4A, treatment 

with colchicine substantially increased the level of apoptosis from approximately 6% to 33% 

in KB-3–1 cells. In contrast, treatment with colchicine, a known substrate of ABCB1, only 

increased the level of apoptosis from approximately 8% to 10% in KB-V-1 cells. 

Interestingly, we found that co-treatment of SIS3 and colchicine significantly enhanced the 

level of apoptosis from approximately 6% to 49% in KB-V-1 cells. Similarly, treatment with 

topotecan increases the level of apoptosis in S1 cells, but not in S1-M1–80 cells (from 

approximately 6% to 7% total apoptosis), which can be significantly enhanced by SIS3, 
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from approximately 6% to 28% total apoptosis (Fig. 4B). Of note, SIS3 alone had no 

significant effect on the level of apoptosis in all cell lines tested. Our results show that SIS3 

enhances the chemosensitivity of MDR cancer cells overexpressing ABCB1 or ABCG2.

3.4. SIS3 stimulates the ATPase activity of ABCB1 and ABCG2

In order to further understand the interaction of SIS3 with the substrate-binding sites of 

ABCB1 and ABCG2, we examined the effect of SIS3 on vanadate (Vi)-sensitive ATPase 

activity of ABCB1 and ABCG2, as well as docking analysis of SIS3 with molecular 

modeling of ABCB1 and ABCG2. SIS3 stimulated Vi-sensitive ABCB1 ATP hydrolysis in a 

concentration-dependent manner, producing approximately 250% maximum stimulation 

(basal, 34.6 ± 4.0 nmole Pi/min/mg protein) and the concentration required to produce 50% 

of the maximum stimulation (EC50) of approximately 160 nM (Fig. 5A). Similarly, SIS3 

also stimulated ABCG2 ATP hydrolysis in a concentration-dependent manner, producing 

approximately 230% maximum stimulation (basal, 73.3 ± 3.9 nmole Pi/min/mg protein) and 

the EC50 of approximately 60 nM (Fig. 5B). Knowing that substrate transport mediated by 

ABCB1 or ABCG2 is coupled to ATP hydrolysis [2, 3], our results indicate that SIS3 is a 

substrate of both ABCB1 and ABCG2.

3.5. Docking analysis of SIS3 with ABCG2 and modeled structure of ABCB1

To better understand the binding of SIS3 with the transporter proteins, docking study was 

performed using crystal structure of ABCG2 and a homology model generated from high 

resolution mouse (Mus musculus) ABCB1 protein crystal structure (pdb.4Q9L) as template. 

Docking of SIS3 with modeled ABCB1 protein structure showed three main interactions in 

the probable substrate binding site [14, 55]: the aromatic rings interacted with hydrophobic 

residues Ala302 and Ala987 whilst the amino group on Asn842 may form hydrogen bond with 

the oxygen from methoxy moiety (Fig. 6A). In the docking study with ABCG2 protein, SIS3 

was predicted to bind in the substrate binding cavity between two ABCG2 monomers. It is 

possibly stabilized by hydrophobic interactions between its aromatic rings and residues such 

as Phe439, Ser440 on transmembrane domain 2 (TM2) and Val546 on TM5a (Fig. 6B). Results 

of our ATPase activity experiments and docking analysis indicate strong interaction of SIS3 

with both ABCB1 and ABCG2.

3.6. Overexpression of ABCB1 or ABCG2 does not reduce the chemosensitivity of cancer 
cells to SIS3

Knowing that SIS3 behaves as a substrate for ABCB1 and ABCG2, we examined whether 

cancer cells overexpressing ABCB1 or ABCG2 are resistant to SIS3. As shown in Table 2, 

the resistance factor (RF) value represents the extent of acquired SIS3 resistance in cancer 

cells caused by the overexpression of ABCB1 or ABCG2, calculated by dividing the IC50 

value of SIS3 in MDR subline by the IC50 value of SIS3 in the respective parental line. The 

calculated RF values revealed no significant differences in the IC50 values of SIS3 in drug-

sensitive cancer cells and cancer cells overexpressing ABCB1 or ABCG2. Our results show 

that drug-sensitive cancer cells and MDR cancer cells are equally sensitive to SIS3 

treatment, suggesting that SIS3 is not actively effluxed by ABCB1 or ABCG2 in cancer cells 

and behaves as a high-affinity substrate for ABCB1 and ABCG2.

Wu et al. Page 7

Cancer Lett. Author manuscript; available in PMC 2019 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



4. Discussion

One of the significant challenges to the effective treatment of cancer is the development of 

multidrug resistance to chemotherapy, which is in part contributed by the overexpression of 

ABCB1 or ABCG2 in cancer cells [15, 37, 68]. In recent years, many attempts of developing 

novel inhibitors to re-sensitize MDR cancer cells to anticancer agents have failed, mostly 

due to problems associated with toxicity and adverse drug-drug interactions [50, 54]. This 

prompted us to search for drugs with known pharmacological and toxicological properties 

that could be re-positioned to treat MDR cancer cells that overexpress ABCB1 or ABCG2. 

The specific inhibitor of Smad3, SIS3, has been used on a regular basis in studies evaluating 

various TGF-β-regulated cellular mechanisms [9, 28, 30, 32, 41, 61, 62, 72]. More recently, 

SIS3 has emerged as a potential therapeutic agent in cancer treatment, capable of 

suppressing cancer progression and attenuating resistance to anticancer drugs in cancer cells. 

For instance, a recent study demonstrated that systemic treatment with SIS3 in the tumor 

microenvironment suppresses tumor growth, invasion and metastasis [56]. Similarly, SIS3 

was able to suppress TGF-β1-induced epithelial-mesenchymal transition (EMT) in lung 

carcinomas [31], whereas another study demonstrated that by interrupting the TGF-β-

SMAD3 pathway, SIS3 prevents the development of anti-HER2 drugs resistance and 

restores trastuzumab sensitivity in trastuzumab-resistant cells [10].

In the present study, we demonstrate that SIS3 inhibits the drug efflux function of ABCB1 

and ABCG2. More importantly, SIS3 enhances the drug-induced apoptosis and reverses 

MDR-mediated by ABCB1 and ABCG2 in MDR cancer cell lines at low, nontoxic 

concentrations that are considerably lower than the concentrations of SIS3 used in studies 

evaluating TGF-β-regulated cellular mechanisms [9, 28, 30, 32, 41, 61, 62, 72]. At the same 

concentrations, SIS3 did not alter the protein expression of ABCB1 or ABCG2 in MDR 

cancer cells over a period of 72 h. In addition, the ATPase activity of ABCB1 and ABCG2 

was stimulated by SIS3 in a concentration-dependent manner, which is in the same manner 

as other known substrate drugs for ABCB1 and ABCG2 [48, 49, 51]. The apparent EC50 

value for SIS3-stimulated ABCB1 ATPase activity is approximately 160 nM, and 

approximately 60 nM for SIS3-stimulated ABCG2 ATPase activity, indicating a high-

affinity interaction of SIS3 with ABCB1 and ABCG2. In addition, results of our docking 

analysis and the fact that ABCB1 and ABCG2 do not confer resistant to SIS3 in cancer cells 

further support the notion that SIS3 binds to the substrate-binding site of ABCB1 and 

ABCG2 with high enough affinity to compete with the binding of another drug substrate at 

the same site.

In summary, our results revealed that SIS3 is an effective modulator of ABCB1 and ABCG2, 

and that concomitant administration of SIS3 could potentially improve the therapeutic 

efficacy of other chemotherapeutic agents. Nevertheless, knowing that favorable 

experimental results do not necessarily translate into clinical outcomes [50], and that 

combination therapy may sometimes lead to unfavourable clinical responses [29, 53], SIS3 

should be further evaluated in preclinical animal model studies and in clinical studies.
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Abbreviations:

MDR multidrug resistance

ABC ATP-binding cassette

SMAD3 Mothers against decapentaplegic homolog 3

FCS fetal calf serum

CCK-8 Cell Counting Kit-8

MTT 3-(4,5-dimethylthiazol-yl)-2,5-diphenyllapatinibrazolium bromide

Vi sodium orthovanadate

IMDM Iscove’s Modified Dulbecco’s Medium

FR Fold reversal
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Highlights

• SIS3, a specific inhibitor of Smad3, inhibits the function of ABCB1 and 

ABCG2.

• SIS3 enhances drug-induced apoptosis in multidrug-resistant cancer cells.

• SIS3 resensitizes ABCB1 and ABCG2 overexpressing cancer cells to 

chemotherapeutics.

• ABCB1 and ABCG2 do not confer resistance to SIS3 in cancer cells.

• Inclusion of SIS3 in the drug treatment may benefit patients with multidrug-

resistant tumors in the future.
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Fig. 1. SIS3 inhibits drug efflux mediated by ABCB1 and ABCG2.
The accumulation of fluorescent calcein (0.5 μM calcein-AM) in human KB-3–1 epidermal 

cancer cells (A, left panel) and the ABCB1-overexpressing variant KB-V-1 cancer cells (A, 

right panel), as well as in human HEK293 cells (B, left panel) and MDR19-HEK293, 

HEK293 cells transfected with human ABCB1 (B, right panel), or 1 μM of fluorescent 

pheophorbide A (PhA) in human H460 lung cancer cells (C, left panel) and the ABCG2-

overexpressing variant H460-MX20 cancer cells (C, right panel), as well as in human 

HEK293 cells (D, left panel) and R482-HEK293, HEK293 cells transfected with human 

ABCG2 (D, right panel), was measured and analyzed immediately by flow cytometry as 

described previously [70]. Experiments were carried out either in the absence (solid lines) or 

presence of SIS3 at10 μM (shaded, solid lines) or verapamil, a reference inhibitor for 

ABCB1at 20 μM (A and B, dotted lines), or Ko143, a reference inhibitor for ABCG2 at 3 

μM (C and D, dotted lines). Representative histograms of at least three independent 

experiments are shown.
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Fig. 2. SIS3 reverses multidrug resistance mediated by ABCB1and ABCG2 in cancer cell lines.
Drug-sensitive KB-3–1 cells (A and B, left panel) and MDR variant KB-V-1 cancer cells (A 

and B, right panel), HEK293 cells (C, left panel) and MDR19-HEK293 cells (C, right 

panel), drug-sensitive S1 colon cancer cells (D and E, left panel) and MDR variant S1-M1–

80 cancer cells (D and E, right panel), as well as HEK293 cells (F, left panel) and R482-

HEK293 cells (F, right panel), were treated with increasing concentrations of paclitaxel (A), 

colchicine (B and C), mitoxantrone (D), SN-38 (E and F) in the presence of DMSO (empty 

circles), or SIS3 at 0.1 μM (filled circles), 0.2 μM (empty squares), 0.5 μM (filled squares) 
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or 0.7 μM (empty triangles). Points, mean values from at least three independent 

experiments; bars; SEM.
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Fig. 3. Effect of SIS on ABCB1 protein expression in human KB-V-1 epidermal cancer cells and 
ABCG2 in human H460-MX20 lung cancer cells.
Immunoblot detection and quantification of (A) human ABCB1 in drug-sensitive human 

KB-3–1 cells and ABCB1-overexpressing KB-V-1 cells, or (B) human ABCG2 in drug-

sensitive H460 cells and ABCG2-overexpressing H460-MX20 cells treated with DMSO 

(vehicle control) or increasing concentrations (0.1 – 1.0 μM) of SIS3 for 72 h according to 

the method described previously [65]. α-Tubulin was used as an internal loading control. 

Values are presented as mean ± S.D. calculated from three independent experiments.
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Fig. 4. SIS3 enhances drug-induced apoptosis in ABCB1- and ABCG2-overexpressing cancer 
cells.
(A) Human KB-3–1 epidermal cancer cells (top dot plots panels) and MDR variant KB-V-1 

cancer cells (lower dot plots panels) were treated with either DMSO (control), 1.0 μM SIS3 

(+ SIS3), 0.5 μM colchicine (+ colchicine) or a combination of 0.5 μM colchicine and 1.0 

μM SIS3 (+ colchicine + SIS3) for 48 h. (B) Human S1 colon cancer cells (top dot plots 

panel) and MDR variant S1-M1–80 cancer cells (lower dot plots panels) were treated with 

either DMSO (control), 1.0 μM SIS3 (+ SIS3), 5.0 μM topotecan (+ topotecan) or a 

combination of 5.0 μM topotecan and 1.0 μM SIS3 (+ topotecan + SIS3) for 48 h. Cells were 
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isolated and analyzed by flow cytometry according to the method described previously [66]. 

Representative dot plots and the mean values of three independent experiments are shown. 

Quantifications of drug-induced apoptosis in cancer cell lines are presented as mean ± S.D. 

calculated from three independent experiments. **P < 0.01; ***P < 0.001, versus the same 

treatment in the absence of SIS3.
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Fig. 5. SIS3 stimulates vanadate-sensitive ATPase activity of ABCB1 and ABCG2.
The effect of SIS3 (0 – 5 μM) on vanadate-sensitive (A) ABCB1 and (B) ABCG2 ATP 

hydrolysis was determined by endpoint Pi assay, as described previously [1, 67]. Values are 

presented as mean ± S.D. calculated from three independent experiments.
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Fig. 6. Docking of SIS3 in the drug-binding pocket of ABCB1 and ABCG2.
Binding modes of SIS3 with (A) homology modeled ABCB1 and (B) ABCG2 protein 

structure (PDB:5NJG) were predicted by Acclerys Discovery Studio 4.0 software as 

described in Materials and methods. SIS3 is shown as a molecular model with the atoms 

colored as carbon- gray, hydrogen-light gray, nitrogen-blue and oxygen-red. The same color 

scheme is used for interacting amino acid residues. Dotted lines indicate proposed 

interactions.
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Fig. 7. A schematic diagram illustrating how SIS3 reverses drug resistance mediated by ABCB1 
and ABCG2.
In the absence of SIS3 (left panel), ABCB1 substrate drugs (green circles) and ABCG2 

substrate drugs (gray circles) are actively pumped out by ABCB1 (orange) and ABCG2 

(blue), respectively, resulting in reduced intracellular drug accumulation and drug resistance. 

In contrast, in the presence of SIS3 (right panel), ABCB1 substrate drugs and ABCG2 

substrate drugs are no longer able to access the drug binding pockets of ABCB1 and 

ABCG2 since SIS3 (white squares) has already occupied the sites, consequently restoring 

intracellular drug concentration and chemosensitivity.
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Table 1

Reversal effect of SIS3 on drug resistance mediated by ABCB1 and ABCG2.

Treatment Concentration
(μM) Mean IC50

†
 ± SD and (FR

‡
)

KB-3–1 [nM] KB-V-1 [nM]

Colchicine - 5.09 ± 1.88 (1.0) 808.13 ± 41.30 (1.0)

+ SIS3 0.1 5.11 ± 1.85 (1.0) 523.77 ± 40.35** (1.5)

+ SIS3 0.2 5.16 ± 1.92 (1.0) 367.13 ± 43.11*** (2.2)

+ SIS3 0.5 5.31 ± 2.07 (1.0) 136.60 ± 15.69*** (5.9)

+ SIS3 0.7 5.10 ± 2.02 (1.0) 45.51 ± 6.19*** (17.8)

+ Verapamil 5.0 2.86 ± 1.17 (1.8) 71.44 ± 7.96*** (11.3)

Paclitaxel - 1.99 ± 0.53 (1.0) 2273.60 ± 218.05 (1.0)

+ SIS3 0.1 1.90 ± 0.46 (1.0) 635.44 ± 37.69*** (3.6)

+ SIS3 0.2 1.89 ± 0.48 (1.1) 323.36 ± 42.78*** (7.0)

+ SIS3 0.5 2.15 ± 0.50 (1.0) 92.37 ± 12.79*** (24.6)

+ SIS3 0.7 2.08 ± 0.48 (1.0) 48.19 ± 9.47*** (47.2)

+ Verapamil 5.0 2.56 ± 0.73 (0.8) 89.06 ± 12.26*** (25.5)

OVCAR-8 [nM] NCI-ADR-RES [nM]

Colchicine - 18.62 ± 3.45 (1.0) 1730.54 ± 317.81 (1.0)

+ SIS3 0.1 19.29 ± 3.28 (1.0) 1019.80 ± 216.52* (1.7)

+ SIS3 0.2 19.74 ± 3.14 (1.0) 681.85 ± 148.18** (2.5)

+ SIS3 0.5 17.65 ± 3.09 (1.1) 277.86 ± 56.22** (6.2)

+ SIS3 0.7 16.56 ± 3.09 (1.1) 142.47 ± 16.16** (12.1)

+ Verapamil 5.0 11.92 ± 2.56 (1.6) 518.26 ± 96.19** (3.3)

Paclitaxel - 79.60 ± 23.93 (1.0) 6385.00 ± 959.34 (1.0)

+ SIS3 0.1 73.43 ± 25.60 (1.1) 3147.20 ± 267.22** (2.0)

+ SIS3 0.2 62.07 ± 20.33 (1.3) 2102.74 ± 267.40** (3.0)

+ SIS3 0.5 58.53 ± 16.68 (1.4) 466.38 ± 46.62*** (13.7)

+ SIS3 0.7 53.56 ± 12.95 (1.5) 328.34 ± 51.72*** (19.4)

+ Verapamil 5.0 46.90 ± 15.15 (1.7) 184.35 ± 22.73*** (34.6)

pcDNA-HEK293 [nM] MDR19-HEKS293 [nM]

Colchicine - 8.20 ± 2.42 (1.0) 183.66 ± 35.56 (1.0)

+ SIS3 0.1 8.14 ± 2.26 (1.0) 111.59 ± 23.66* (1.6)

+ SIS3 0.2 8.09 ± 2.33 (1.0) 66.03 ± 15.18** (2.8)

+ SIS3 0.5 7.18 ± 1.80 (1.1) 45.05 ± 8.65** (4.1)

+ SIS3 0.7 7.98 ± 2.38 (1.0) 26.76 ± 5.17** (6.9)
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Treatment Concentration
(μM) Mean IC50

†
 ± SD and (FR

‡
)

KB-3–1 [nM] KB-V-1 [nM]

+ Verapamil 5.0 8.14 ± 2.44 (1.0) 40.40 ± 9.30** (4.5)

Paclitaxel - 1.53 ± 0.26 (1.0) 835.30 ± 128.85 (1.0)

+ SIS3 0.1 1.24 ± 0.18 (1.2) 479.04 ± 36.49** (1.7)

+ SIS3 0.2 1.25 ± 0.19 (1.2) 297.83 ± 48.57** (2.8)

+ SIS3 0.5 1.27 ± 0.20 (1.2) 73.94 ± 9.18*** (11.3)

+ SIS3 0.7 1.20 ± 0.17 (1.3) 60.43 ± 5.05*** (13.8)

+ Verapamil 5.0 0.90 ± 0.16* (1.7) 6.14 ± 1.23*** (136.0)

H460 [nM] H460-MX20 [nM]

SN-38 - 4.49 ± 1.02 (1.0) 138.71 ± 32.27 (1.0)

+ SIS3 0.1 4.15 ± 1.07 (1.1) 36.67 ± 8.01** (3.8)

+ SIS3 0.2 5.14 ± 0.90 (0.9) 20.52 ± 5.35** (6.8)

+ SIS3 0.5 3.76 ± 0.67 (1.2) 11.65 ± 3.48** (11.9)

+ SIS3 0.7 3.34 ± 0.58 (1.3) 4.84 ± 1.28** (28.7)

+ Ko143 1 4.10 ± 0.75 (1.1) 4.45 ± 1.06** (31.2)

Mitoxantrone - 13.73 ± 1.19 (1.0) 488.15 ± 81.40 (1.0)

+ SIS3 0.1 20.54 ± 5.79 (0.7) 342.70 ± 85.71 (1.4)

+ SIS3 0.2 15.61 ± 4.68 (0.9) 227.99 ± 58.92* (2.1)

+ SIS3 0.5 16.70 ± 4.84 (0.8) 77.22 ± 18.04** (6.3)

+ SIS3 0.7 17.00 ± 5.41 (0.8) 55.71 ± 21.69** (8.8)

+ Ko143 1 15.93 ± 5.27 (0.9) 70.14 ± 19.37** (7.0)

S1 [nM] S1-M1–80 [μM]

SN-38 - 2.32 ± 0.28 (1.0) 3.83 ± 0.65 (1.0)

+ SIS3 0.1 2.58 ± 0.30 (0.9) 2.33 ± 0.30* (1.6)

+ SIS3 0.2 2.76 ± 0.32 (0.8) 1.05 ± 0.12** (3.6)

+ SIS3 0.5 2.36 ± 0.26 (1.0) 0.32 ± 0.03*** (12.0)

+ SIS3 0.7 2.31 ± 0.29 (1.0) 0.23 ± 0.02*** (16.7)

+ Ko143 1 2.22 ± 0.28 (1.0) 0.05 ± 0.01*** (76.6)

Mitoxantrone - 11.48 ± 2.70 (1.0) 24.09 ± 5.80 (1.0)

+ SIS3 0.1 9.60 ± 2.21 (1.2) 15.17 ± 2.82 (1.6)

+ SIS3 0.2 9.61 ± 2.49 (1.2) 6.95 ± 1.22** (3.5)

+ SIS3 0.5 8.20 ± 2.01 (1.4) 2.79 ± 0.48** (8.6)

+ SIS3 0.7 8.03 ± 2.09 (1.4) 1.88 ± 0.33** (12.8)

+ Ko143 1 10.42 ± 2.56 (1.1) 0.87 ± 0.13** (27.7)
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Treatment Concentration
(μM) Mean IC50

†
 ± SD and (FR

‡
)

KB-3–1 [nM] KB-V-1 [nM]

pcDNA-HEK293 [nM] R482-HEKS293 [nM]

SN-38 - 6.53 ± 0.98 (1.0) 535.00 ± 63.14 (1.0)

+ SIS3 0.1 5.88 ± 0.95 (1.1) 114.69 ± 21.08*** (4.7)

+ SIS3 0.2 5.51 ± 0.84 (1.2) 50.09 ± 11.35*** (10.7)

+ SIS3 0.5 5.38 ± 0.83 (1.2) 17.61 ± 3.69*** (30.4)

+ SIS3 0.7 5.17 ± 0.83 (1.3) 10.96 ± 2.16*** (48.8)

+ Ko143 1 5.50 ± 0.87 (1.2) 7.18 ± 1.73*** (74.5)

Mitoxantrone - 0.74 ± 0.11 (1.0) 122.15 ± 16.21 (1.0)

+ SIS3 0.1 1.00 ± 0.13 (0.7) 29.48 ± 2.72*** (4.1)

+ SIS3 0.2 0.90 ± 0.13 (0.8) 15.94 ± 2.14*** (7.7)

+ SIS3 0.5 0.62 ± 0.09 (1.2) 10.95 ± 1.65*** (11.2)

+ SIS3 0.7 0.65 ± 0.07 (1.1) 8.74 ± 1.42*** (14.0)

+ Ko143 1 0.81 ± 0.12 (0.9) 7.14 ± 1.10*** (17.1)

Abbreviation: FR, fold-reversal.

† IC50 values are mean ± SD calculated from dose-response curves obtained from three independent experiments using cytotoxicity assay as 

described in Materials and methods.

‡ FR values were calculated by dividing IC50 values of cells treated with a particular anticancer drug in the absence of SIS3 or a reference 

inhibitor by IC50 values of cells treated with the same anticancer drug in the presence of SIS3 or a reference inhibitor.

*
P < 0.05;

**
P < 0.01;

***
P < 0.001
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Table 2

Cytotoxicity of SIS3 in human cancer cell lines overexpressing ABCB1 or ABCG2.

Cell line Type Transporter
expressed IC50 (nM)

†
R.F

‡

KB-3–1 epidermal - 10.73 ± 4.14 1.0

KB-V-1 epidermal ABCB1 9.56 ± 3.70 0.9

OVCAR-8 ovarian - 7.58 ± 1.07 1.0

NCI-ADR-RES ovarian ABCB1 8.79 ± 1.77 1.2

H460 lung - 9.97 ± 3.53 1.0

H460-MX20 lung ABCG2 8.30 ± 2.12 0.8

S1 colon - 4.06 ± 0.93 1.0

S1-M1–80 colon ABCG2 3.54 ± 0.48 0.9

MCF7 breast - 8.90 ± 2.22 1.0

MCF7-FLV1000 breast ABCG2 11.21 ± 1.72 1.3

MCF7-AdVp3000 breast ABCG2 10.11 ± 2.79 1.1

Abbreviation: RF, resistance factor.

† IC50 values are mean ± SD calculated from dose-response curves obtained from three independent experiments using cytotoxicity assay as 
described in Materials and methods.

‡ RF values were obtained by dividing IC50 values of ABCB1- or ABCG2- overexpressing cells by IC50 values of respective parental cells.

*
P < 0.05;

**
P < 0.01;

***
P < 0.001

Cancer Lett. Author manuscript; available in PMC 2019 October 01.


	Abstract
	Introduction
	Materials and methods
	Chemicals
	Cell culture conditions
	Fluorescent drug accumulation assay
	Immunoblotting
	Cytotoxicity assay
	Apoptosis assay
	ATPase assay
	Docking analysis of SIS3 with ABCG2 and modeled structure of ABCB1
	Quantification and statistical analysis

	Results
	SIS3 inhibits ABCB1- and ABCG2-mediated drug transport
	SIS3 reverses multidrug resistance mediated by ABCB1 and ABCG2
	SIS3 enhances drug-induced apoptosis in ABCB1- and ABCG2-overexpressing cancer cells
	SIS3 stimulates the ATPase activity of ABCB1 and ABCG2
	Docking analysis of SIS3 with ABCG2 and modeled structure of ABCB1
	Overexpression of ABCB1 or ABCG2 does not reduce the chemosensitivity of cancer cells to SIS3

	Discussion
	References
	Fig. 1.
	Fig. 2.
	Fig. 3.
	Fig. 4.
	Fig. 5.
	Fig. 6.
	Fig. 7.
	Table 1
	Table 2

