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BACKGROUND: Hydraulically fractured wells produce 2–14 million liters of wastewater, which may contain toxic and radioactive compounds. The
wastewater is predominantly disposed of using Class II injection wells.

OBJECTIVE: Our objective was to evaluate the relationship between sociodemographic characteristics and injection well locations in Ohio.
METHODS: Using state and federal data sources, we classified Ohio census block groups by presence of injection wells, number of hydraulically frac-
tured wells, sociodemographic factors (median household income, % white, population density, % ≥high school education, median age, voter turnout),
and geographic information (land area, water area, situated over shale). We modeled the odds of having at least one injection well within a block
group with respect to all covariates using three multivariable models incorporating different spatial components to account for similarities in neighbor-
ing block groups.
RESULTS: In bivariate analyses, block groups with injection wells (n=156) compared with those without (n=9,049) had lower population density
(71 vs. 2,210 people=mi2 or 27 vs. 854 people=km2), larger median area (43.5 vs. 1:35 km2), higher median age (42.8 vs. 40.2 y), and higher % white
(98.1% vs. 92.1%). After adjustment using a spatial logistic regression model, the odds of a block group containing an injection well were 16% lower
per $10,000 increase in median income [odds ratioðORÞ=0:837; 95% credible interval (CI): 0.719, 0.961] and 97% lower per 1,000 people=mi2 (or
per 386 people=km2) increase (OR=0:030; 95% CI=0:008, 0.072). Block groups on shale and those containing fewer hydraulically fractured wells
were more likely to include an injection well. Percentage white, median age, % ≥high school education, and % voter turnout were not significant pre-
dictors of injection well presence.
CONCLUSION: In Ohio, injection wells were inversely associated with block groups’ median incomes after adjusting for other sociodemographic and
geographic variables. Research is needed to determine whether residents in census blocks with injection wells face increased risk of chemical expo-
sures or adverse health outcomes. https://doi.org/10.1289/EHP2663

Introduction
The production of natural gas has been increasing in the United
States due to advances in drilling technologies, fluctuating oil pri-
ces, and a desire to replace coal with a cleaner-burning fuel (de
Gouw et al. 2014). In 2015, approximately 430 billion cubic meters
of natural gas were produced in the United States from shale rock
formations, and production volumes are projected to continue
increasing through 2050 (U.S. EIA 2016a, 2017). Natural gas is
extracted from low-permeable, organic-rich shale using hydraulic
fracturing, that is, the injection of large volumes of pressurized flu-
ids and proppants ∼ 2,500 m underground to create fissures in the
rock and release the gas stored within (Jackson et al. 2015). After
completion of the fracturing process, pressure is released and
wastewater, composed of residual fracturing fluids and water from
the geologic formations, flows up the well along with the gas.

Each hydraulically fractured unconventional natural gas (UNG)
well yields 1.7 to 14.3 million liters of wastewater over the first
5–10 y of production (Kondash et al. 2017). Within the first 2 wk,
the wastewater primarily consists of residual fracturing fluids,
which contain anti-corrosive agents, biocides, surfactants, and lubri-
cants (Stringfellow et al. 2017). These fluids ultimately account for

a relatively small percentage (4–8%) of the total volume of waste-
water produced, given that the composition of the wastewater
becomes dominated by the formation brine. This highly saline for-
mation water may contain radioactive materials, dissolved hydro-
carbons, shale minerals, and metal ions originating from the
surrounding rock (Kondash et al. 2017; Shih et al. 2015; Shrestha
et al. 2017; Thacker et al. 2015; Warner et al. 2013). Overall, UNG
fracturingfluids andwastewater can contain hazardous constituents,
including chemicals classified as endocrine disrupting compounds
(Kassotis et al. 2016), reproductive and developmental toxicants
(Elliott et al. 2017a;Webb et al. 2014), and carcinogens (Elliott et al.
2017b).

In many regions, the primary method of UNG wastewater dis-
posal is via Class II (CII) underground injection wells (NRC
2013). CII injection wells, designed for brine and energy extrac-
tion fluid disposal, have less stringent requirements in terms of
permitting, depth, and construction than do Class I injection wells,
which are designed for hazardous waste (U.S. EPA 2016b). In the
CII method, wastewater is injected through a well pipe drilled verti-
cally into underground rock formations. The inner injection tubing
carrying thewastewater is enclosed by varying degrees of protective
steel and cement casing, dependent on the pipe depth (NRC 2013).
Wastewater is released through openings in the casing at the final
“injection zone.” The wastewater flows out between layers of rock,
which act as natural containment barriers for thewaste.

The prevalence of CII injection wells and the implementation
and enforcement of their regulation varies by state. Ohio, the focus
of our analysis, sits partially above the Marcellus and Utica Shales
and receives wastewater from both its ownUNGwells and those in
Pennsylvania (Lutz et al. 2013; ODNR Division of Oil & Gas
Resources 2016b). The Ohio Department of Natural Resources
states that the wastewater injection zone must be located at least
(50 ft or 15 m) below the deepest potential underground source of
drinking water (water containing <10,000 mg=L of chlorides)
(State of Ohio 2009). However, potential pathways of contamina-
tion include spills at the surface during the transport or initial
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injection of the wastewater, subsurface leaks if the injection pipe
casing deteriorates over time, and permeation of wastewater
through the confining rock layers (U.S. EPA 2015; Shrestha et al.
2017; Vengosh et al. 2014).

There is a significant history of disproportionate placement of
hazardous facilities, particularly waste disposal facilities, in com-
munities with a lower average income and a higher proportion of
minority residents (Agyeman et al. 2016); however, little is
known with respect to the characteristics of populations living
near CII injection wells in particular. To our knowledge, only
one study in one state has evaluated sociodemographic profiles
specifically in regions of CII injection well siting (Johnston et al.
2016). In that Texas-based study, Johnston et al. (2016) found
that CII injection wells were disproportionately permitted in areas
with greater proportions of minority populations and residents
living in poverty. Racial disparities persisted after adjustment for
income.

The objective of our research was to evaluate the association
between the spatial locations of CII injection wells and sociode-
mographic characteristics at the block group level in Ohio. To
meet this objective, we applied different multivariable statistical
models to estimate associations between predictors defined at the
block group level, while also accounting for spatial correlation
among characteristics of neighboring block groups.

Methods

Data Sources
We conducted all analyses at Ohio’s census block group level,
the smallest geographic unit for which the required sociodemo-
graphic data could be obtained. Working at the block group level
allowed us to investigate associations of interest using data at a
localized spatial scale and allowed for spatial alignment with the
majority of our predictor and outcome variables. We linked the
block group geographic boundary information with data from
multiple sources to provide information on four critical areas: (a)
geographic coordinates and waste volume of CII injection wells,
(b) sociodemographic factors and voter turnout data as indicators
of population vulnerability, (c) geographic coordinates of UNG
wells as a possible predictor of where CII injection wells may be
placed, and (d) geospatial data related to block group land and
water areas and boundaries of the Marcellus and Utica Shales.

Class II Injection Wells
Geographic coordinates and quarterly volumes of wastewater
injected in all Ohio CII injection wells that were active at some
point between July 2010 and March 2016 (Figure 1) were pro-
vided by FracTracker Alliance (2016) and T. Auch (written com-
munication, September 2016). FracTracker Alliance is an
organization that compiles existing data on oil and gas facilities.
FracTracker obtained data on CII injection well locations and
quarterly waste volumes from the Ohio Department of Natural
Resources (ODNR) Underground Injection Control program and
the ODNR’s Risk-Based Data Management System Microsoft
Access Database. We linked these location and volume data with
geospatial data for Ohio’s block groups, based on the 2010 U.S.
Census, from the TIGER/Line Shapefiles database (U.S. Census
Bureau 2016b) and identified each block group by the presence
or absence of a CII injection well. We also calculated the cumula-
tive volume of waste received by each of the 257 CII injection
wells across the study period of 2010–2016 by summing the
quarterly volumes from July (Quarter 3) 2010 to March (Quarter
1) 2016. Each CII injection well was classified as high volume

or low volume, based on whether the cumulative waste volume
was > or ≤ the median across all wells analyzed.

Sociodemographic Characteristics
A critical aspect of environmental justice, as delineated by the U.S.
Environmental Protection Agency, is that no group of people,
including a racial, ethnic, or socioeconomic group, should bear a
disproportionate environmental health burden resulting from
industrial, municipal, or commercial operations (Brulle and Pellow
2006; Cushing et al. 2015; U.S. EPA 2017). To address this, we
examined variables describing social vulnerability, which we
define as sociodemographic characteristics that increase an indi-
vidual’s susceptibility to health detriments from exposure to poten-
tial environmental hazards (Molitor et al. 2011; Morello-Frosch
et al. 2011; Solomon et al. 2016). We included six sociodemo-
graphic variables from the 2010–2014 American Community
Survey 5-y estimates (U.S. Census Bureau 2016a) at the block
group level: median household income (U.S. dollars), median
household value (U.S. dollars), percentage of population identify-
ing as white only, population density (population per square mile),
percentage of population with a high school education/GED or
higher, andmedian age of the population.

We also obtained voter turnout percentages for 2012 from the
State of Ohio (2017) and 2012 voter turnout district boundaries
from the U.S. Census Bureau (2012). Because voting districts did
not align with census block group boundaries, we calculated the
average voting percentage for all voting districts intersecting a
block group, weighted by the area of the intersecting segment. If
data were completely unavailable for a block group (561 of the
9,205 block groups, or 6%), we assigned it the corresponding
county voter turnout percentage.

Collectively, these variables serve as proxies for susceptibility
to biases in healthcare treatment; limited financial resources to fund
better medical care, legal power, infrastructure, or relocation;
decreased knowledge about environmental exposures; and limited
access to resources to advocate on one’s behalf or mobilize political
change (Institute of Medicine 2003; Molitor et al. 2011; Morello-
Frosch et al. 2011; Solomon et al. 2016; Su et al. 2012). Prior envi-
ronmental justice studies evaluating spatial components of environ-
mental risk factors have included similar variables as metrics of
community disadvantage (Johnston et al. 2016; Lamichhane et al.
2013; Ogneva-Himmelberger andHuang 2015).

UNGWells and Other Spatial Variables
We calculated the number of UNGwells within a block group using
data from the Ohio Department of Natural Resources [in North
American Datum of 1983 (NAD 83) format] for all UNGwells per-
mitted through March 2016 (ODNR Division of Oil & Gas
Resources 2016a). Each block group was assigned an indicator
value representing whether or not it was at least partially situated on
a shale formation (Marcellus or Utica) using boundary shapefiles
for the Marcellus and Utica Shales obtained from the U.S. Energy
Information Administration (U.S. EIA 2016b). We included the
Marcellus and Utica Shales as separate predictors to allow for the
relationship with CII injection well presence to differ by formation.
We also created variables representing the land area and water sur-
face area (squared kilometers) covered by each block group.

We eliminated 7 of Ohio’s 9,238 census block groups (0.08%)
because they were completely covered by water or had no neigh-
boring block groups containing land area (a criterion for our spatial
models). A total of 26 additional block groups (0.30%) were also
removed due to missing information for median age and/or median
income, leaving n=9,205 (99.6%) block groups for statistical anal-
ysis. None of the removed block groups contained a CII injection
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well within their bounds; their removal should have a negligible
impact on results, because the number of block groups with CII
injectionwells is small relative to the total.

Statistical Analyses
We first conducted two-sample t-tests to evaluate individual differ-
ences in sociodemographic characteristics between block groups
with andwithout CII injectionwells.We then performedmultivari-
able regression analyses to jointly investigate associations between
the predictors and the presence of CII injection wells. For the mul-
tivariable models, we first evaluated the correlation among all in-
dependent variables using Spearman’s rank correlation (rSpearman).
Results showed relatively high correlation between two sets of var-
iables: median household value/median income (rSpearman =0:77)
and population density/land area (rSpearman = − 0:94). Based on
these findings, we excluded median household value and land
area from the final set of multivariable analyses. Given the small
number of independent variables and the large number of block
groups, we opted to retain all other covariates in the final models
regardless of effect magnitude or statistical significance.

To correctly estimate the relationships between CII injection
well presence and the sociodemographic predictors, we applied
three statistical models that used different approaches for jointly
(a) modeling associations with all block group–level predictors,
(b) accounting for spatial correlation among the block group data,
and (c) reducing the impact of spatial confounding that may arise
as a result of modeling the spatial correlation (Clayton et al. 1993;
Hodges and Reich 2010; Reich et al. 2006). Accounting for spatial
correlation is necessary to accurately quantify uncertainty in esti-
mated associations and, therefore, to determine whether associa-
tions are statistically significant (Hodges and Reich 2010). In
addition, spatial confounding may occur when spatially correlated
random effects are also correlated with model covariates; failure to
correct for spatial confounding can bias estimated associations and
inflate standard errors (Hodges and Reich 2010). We applied the
following threemodels: (a) NSGLM: nonspatial generalized linear
model, (b) SGLMM: spatial generalized linear mixed model, and
(c) Sparse SGLMM: sparse version of the SGLMM, as introduced
byHughes andHaran (2013).

In brief, NSGLM represents a standard multivariable logistic
regression model in which the log of the odds of a block group
containing a CII injection well is modeled as a function of the
available covariates. NSGLM does not directly account for any
spatial correlation that may be present in the data (i.e., beyond
the available spatially varying covariates). The model is given
as Yijpi ∼BernoulliðpiÞ, i=1, . . . n and logitðpiÞ=xT

i b, in which
Yi is equal to one if block group i contains at least one CII injec-
tion well and is equal to zero otherwise; n is the number of
block groups in the analysis; pi represents the probability that
block group i contains a CII injection well; logit(.) represents
the logit link function; xi is the vector of available covariates;
and b is the vector of unknown regression parameters describ-
ing the associations between the covariates and the probability
of interest.

SGLMMextends NSGLM to directly account for spatial corre-
lation through the introduction of spatially correlated random
effects. The logistic regression model is given as logitðpiÞ=
xT
i b+ hi, in which hi is the random effect specific to block group i.

We modeled these random effects using the intrinsic conditional
autoregressive (CAR) model (Besag et al. 1991). The CAR model
accounts for similarities among the neighboring block groups (i.e.,
those sharing a border) by assuming that the conditional mean of
one of the normally distributed random effects is equal to the aver-
age of its neighbors’ random effect values.

Sparse SGLMM further extends NSGLM by both accounting
for spatial correlation and controlling for potential spatial con-
founding between the introduced random effects and the fixed
effects of interest (Hughes and Haran 2013). Sparse SGLMM is
given as logitðpiÞ=xT

i b+mT
i ds, in which mT

i ds represents the
block group–specific random effect. This model is denoted as
“sparse” because the specification of the random effect results in
a model with fewer parameters than SGLMM given that mi is
the ith row of an n× q matrix M (q≪ n) in which M contains the
first q eigenvectors of the Moran operator. The ds vector (length
q) is modeled using a modified intrinsic CAR model, in which
the original CAR precision matrix is multiplied by the matrix
M T (on the left side) and M (on the right side). We set q=250
based on exploratory analyses of our data set and results from
Hughes and Haran (2013).

All models were fit in the Bayesian framework to facilitate
model comparisons. Posterior means of odds ratios (OR) and
quantile-based 95% credible intervals (CIs) were obtained from
each model. We considered estimates with 95% CIs that did not
include 1.00 to be significant associations.We preferentially speci-
fied weakly informative prior distributions to enable the data,
rather than our prior beliefs, to drive the inference. Specifically,
across each model, the bj parameters that describe the association
between covariate j and the response were given independent and
identically normally distributed prior distributions centered at zero
with a variance of 1,000. In SGLMM, the intrinsic CAR random
effect variance parameter was given an inverse-gamma (3, 1) prior
distribution. In Sparse SGLMM, the comparable variance parame-
ter was given an inverse-gamma (0.50, 0.0005) prior distribution.

We fit the three models using packages within R statistical soft-
ware (version 3.4.1; R Development Core Team). NSGLM was fit
using “rjags” (Plummer 2016), SGLMMwas fit using “CARBayes”
(Lee 2013), and Sparse SGLMMwas fit using “ngspatial” (Hughes
and Cui 2017). For each model, we obtained 1,000 approximately
independent posterior samples from all model parameters after a
lengthy burn-in period (i.e., before convergence of the model),
which were used to make inferences on the associations of interest.
Approximate independence of the posterior samples was achieved
by thinning the complete set of correlated posterior samples. The
length of burn-in and amount of thinning were model specific. We
assessed convergence through visual inspection of trace plots as well
as the calculation of theGeweke convergence diagnostic for each pa-
rameter individually (Geweke 1991). There were no obvious signs
of nonconvergence for any of themodels.

Model Evaluation
We compared the three models using four criteria. We assessed
(a) the deviance information criterion (DIC) to evaluate fit to the
data [smaller values preferred (Spiegelhalter et al. 2002)], (b) over-
all complexity of the model by effective number of parameters
(Spiegelhalter et al. 2002), (c) changes in estimated ORs and 95%
CIs between the different models, and (d) maps of the estimated spa-
tially correlated randomeffects to evaluate spatial confounding.

Sensitivity Analyses
We carried out several sensitivity analyses to test our modeling
assumptions and examine the robustness of our findings to the
different modeling choices. We repeated our statistical modeling
while defining the outcome as having at least one CII injection
well within 5 km of a block group’s centroid to examine whether
associations changed using a buffer-zone definition versus using
an administratively defined unit. We only included CII injection
wells within Ohio in this analysis. We also examined the associa-
tions of interest while restricting the outcome to block groups
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that contained at least one high-volume (≥141,367 barrels, the
median volume) waste wells, which could represent greater
potential for water contamination or seismic activity. In addition,
we conducted our analyses within the subset of block groups
classified as rural (<1,000 people=mi2 or <386 people=km2)
(U.S. Census Bureau 2000) to determine if the associations with
the sociodemographic predictors remained when urbanized areas
of the state were excluded. Finally, we evaluated the consistency
of the Sparse SGLMM by varying the value of q (50, 150, and
250), a term that controls the complexity of the model.

Results

Bivariate Analyses
During our study period, 257 CII injection wells were identified
in Ohio (Figure 1). Of the 9,205 block groups, only 2% (n=156

contained a CII injection well (Table 1). Compared with block
groups without CII injection wells, block groups with CII injec-
tion wells had a slightly older median age [median 42.8 y; inter-
quartile range (IQR): 39.5, 47.5 vs. 40.2 y; IQR: 33.9, 46.2,
respectively] and were substantially less densely populated (me-
dian population density of 71:2 people=mi2; IQR: 40.1, 157 vs.
2,210 people=mi2; IQR: 433, 4,750) (Table 1). Further illustrat-
ing the marked differences in population density, block groups
containing CII injection wells had densities ranging from
11:93 people=mi2 to 1,703:01 people=mi2, whereas over half of
block groups without CII injection wells had population densities
greater than 1,703:01 people=mi2.

Median land areawas greater in block groupswith CII injection
wells (43:5 km2; IQR: 25.4, 74.3) than in those without (1:35 km2;
IQR: 0.51, 7.43) (Table 1). The median percentage of the popula-
tion identifying as white was higher in census block groups with a
CII injection well (98%) compared with without a CII injection
well (92%). Median income, median household value, percentage
of the population with a high school education and above, and per-
centage voter turnout were not significantly different between the
two block group types based on these bivariate analyses (Table 1).
Both median income and median household value were higher in
block groups with CII injection wells ($49,097 vs. $46,250 and
$118,750 vs. $109,800, respectively), although these differences
were not statistically significant.

Multivariable Analyses
In multivariable regression analyses, the odds of a block group
containing a CII injection well decreased 13–17% for each $10,000
increase in median income across the models (e.g., OR=0:837,
95% CI: 0.719, 0.961 for Sparse SGLMM), although this associa-
tion did not reach statistical significance in SGLMM (Table 2).
The estimated OR for a CII injection well in relation to population
density was far below 1, indicating a strong inverse relationship
(Sparse SGLMM OR=0:030, 95% CI: 0.008, 0.072), consistent
with the pronounced difference in population density between
block groups with and without CII injection wells. The percentage
of block group residents with a high school degree or greater, per-
centage who were white only, voter turnout, and median age were
not statistically significant predictors of CII injection well status in
any model. The odds of a block group having a CII injection well
decreased ∼ 3%with the addition of oneUNGwell across all mod-
els (e.g., OR=0:967; 95% CI: 0.939, 0.989 for Sparse SGLMM).
Block groups with greater water surface area were also less likely
to have a CII injection well. Associations between CII injection
well presence and whether a block group was located on the
Marcellus or Utica Shale varied across the models, with significant
positive associations for both shales based on NSGLM and Sparse

Table 1. Characteristics of Ohio census block groups by the presence of Class II (CII) injection wells (n=9,205), from 2010 to 2016. Data are medians
(25th–75th percentiles) or n (%).

Characteristic CII Well within Block Group (n=156) No CII Well within Block Group (n=9,049) p-Valuea

Median age (y) 42.8 (39.5–47.5) 40.2 (33.9–46.2) 2:1× 10−6

Population density (people=mi2)b 71.2 (40.1–157) 2,210 (433–4,750) <2:2× 10−16

Median income ($) 49,097 (41,333–57,050) 46,250 (33,100–61,944) 0.36
Education ≥high school (%) 88.6 (84.3–92.6) 89.9 (82.6–94.9) 0.58
White only (%) 98.1 (95.3–100.0) 92.1 (74.7–97.7) 2:2× 10−16

Voter turnout (%) 71.6 (68.1–75.2) 71.8 (64.1–76.4) 0.0017
Median household value ($) 118,750 (91,625–147,700) 109,800 (78,600–153,800) 0.36
Land area (km2) 43.5 (25.4–74.3) 1.35 (0.51–7.43) <2:2× 10−16

Water area (km2) 0.16 (0.02–0.58) 0.00 (0.00–0.04) 0.041
Utica Shale 124 (79.5%) 3,979 (44.0%) <2:2× 10−16

Marcellus Shale 42 (26.9%) 456 (5.0%) 6:9× 10−9

Any UNG well 23 (14.7%) 161 (1.8%) 1:1× 10−5

aDifference between block groups with and without CII injection wells, two-sample t-tests.
bEach unit of people=mi2 is equivalent to 0:386 people=km2.

Figure 1. Locations of Class II injection wells in Ohio (2010–2016),
delineated by census block group. Data obtained from the U.S. Census
Bureau (2016b) and FracTracker Alliance (2016).
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SGLMM, but near-null ORs for both shale formations based on
SGLMM.

Model Evaluation
SGLMM had the smallest DIC, followed by Sparse SGLMM,
indicating that the spatially adjusted models fit the data better
than the nonspatial model (NSGLM), consistent with the pres-
ence of spatial correlation (Table 2). Of the two spatial models,
Sparse SLGMM had a smaller effective number of parameters
(pD: 47.50 vs. 114.13), indicating less complexity than SGLMM.
Large differences in the estimated ORs and statistical significance
for the Utica and Marcellus Shale predictors were observed
between NSGLM and SGLMM, potentially indicating the pres-
ence of spatial confounding (Table 2). Additionally, the map of
posterior means of the spatial random effects from SGLMM
(Figure 2B) shows larger estimated random effects overlaying the
Utica and Marcellus Shale locations, even after including the
shale predictors in the model. The ORs and 95% CIs for the Utica
Shale location variable for Sparse SGLMM were consistent with
NSGLM, and the map of estimated spatial random effects (Figure
2C) does not suggest any obvious spatial patterning. Therefore,
we concluded that Sparse SGLMM had the best overall perform-
ance because it provided a better fit than NSGLM, was less com-
plex than SGLMM, and, in contrast with SGLMM, could reduce
spatial confounding caused by the introduction of spatially corre-
lated random effects.

Sensitivity Analyses
Using the presence of a CII injection well within a 5-km buffer
from the block group centroid for classification, 718 block groups
were classified as containing a CII injection well, compared with
156 block groups with a CII injection well located within their
boundaries (see Table S1). Using the buffer-based outcome met-
ric, statistically significant associations for median income, num-
ber of UNG wells, and block group overlying the Marcellus
Shale were similar to, but farther from, the null than ORs esti-
mated using the CII injection within block group boundary out-
come metric, based on the Sparse SGLMM model (see Table
S1). For example, the OR for a block group overlying the Utica
Shale increased to 33.7 (95% CI: 18.3, 56.2) compared with the
OR of 5.06 (95% CI: 2.76, 8.36) for the buffer versus block group
boundary metrics. The odds of a Class II injection well within
5 km of a block group centroid were significantly lower with a
1% increase in voter turnout (OR=0:974; 95% CI: 0.954, 0.993)
as compared with the null association estimated for a Class II

injection well within a block group’s bounds (OR=0:994; 95%
CI: 0.959, 1.03) (see Table S1). Significant associations with
population density were not observed when using this buffer-
based outcome metric.

A total of 90 block groups had at least one high-volume CII
injection well within their bounds. Population density was the
only socioeconomic variable statistically significantly associated
with siting of the higher waste volume CII injection wells, and
the OR was similar to that estimated in our primary model
(OR=0:037; 95% CI: 0.007, 0.096 vs. OR=0:030; 95% CI:
0.008, 0.072). Results restricted to the rural block groups
(n=3,237; n=152 containing a CII injection well) were consist-
ent with those for all block groups except for the relationship
with the Marcellus Shale, which became null. Finally, estimated
associations based on Sparse SGLMM with q=50 and 150 were
similar to those from the primary model (q=250) (see Table S2).

Discussion
Our Ohio-based study addresses one of the many public health
concerns raised about hydraulic fracturing: the placement of
waste disposal sites. Results from our primary model, including
multiple sociodemographic and geographic predictors and con-
trolling for spatial correlation and confounding, indicated an
inverse association between CII injection well presence and me-
dian income within census block groups. This association was ro-
bust to the different sensitivity analyses conducted. In addition,
block groups with at least one CII injection well had fewer UNG
wells, were more likely to be located on a shale formation, and
had substantially lower population densities than Ohio block
groups without a CII injection well. Although estimated associa-
tions with sociodemographic characteristics were generally con-
sistent among the three models, we found evidence of both
spatial correlation and spatial confounding, which may be impor-
tant to address in other settings.

The inverse association between block group median income
and the presence of waste disposal sites in Ohio suggests a pat-
tern of environmental inequity and is consistent with findings
from a study in Texas that reported a greater proportion of dis-
posal wells in high poverty block groups (those with a mean per-
centage of residents living in poverty above the regional mean of
18.6%) (Johnston et al. 2016). Populations with lower income
may be at increased vulnerability to potential exposures and risks
posed by CII waste sites due to limited financial resources to sup-
port medical care, legal questions, exposure mitigation strategies,
and relocation expenses.

Table 2. Odds ratios (posterior means) and 95% credible intervals for associations between block group–level sociodemographic and geographic characteristics
and the presence of Class II injection wells in Ohio (2010–2016), based on three models (n=156 block groups with CII injection well; n=9,049 without CII
injection well).

Characteristic
NSGLM

(DIC: 1095.89, pD: 10.13)
SGLMM

(DIC: 985.72, pD: 114.13)
Sparse SGLMM (q=250)
(DIC: 1049.71, pD: 47.50)

UNG well (per 1 count) 0.968 (0.943, 0.988)a 0.974 (0.947, 0.994)a 0.967 (0.939, 0.989)a

Median age (per 1 y) 0.987 (0.964, 1.01) 0.980 (0.952, 1.01) 0.984 (0.959, 1.01)
Education ≥high school (per 1%) 1.01 (0.991, 1.04) 1.01 (0.986, 1.04) 1.01 (0.988, 1.04)
Median income (per $10,000) 0.834 (0.727, 0.939)a 0.867 (0.733, 1.01) 0.837 (0.719, 0.961)a

White only (per 1%) 1.01 (0.986, 1.04) 1.01 (0.982, 1.04) 1.02 (0.990, 1.05)
Voter turnout (per 1%) 0.993 (0.961, 1.02) 1.01 (0.965, 1.05) 0.994 (0.959, 1.03)
Population density (per 1,000 people=mi2)b 0.023 (0.006, 0.050)a 0.017 (0.004, 0.045)a 0.030 (0.008, 0.072)a

Water area (per 1 km2) 0.933 (0.815, 1.00) 0.903 (0.751, 1.00) 0.904 (0.761, 1.00)
Utica Shale (yes vs. no) 6.13 (4.08, 9.07)a 1.18 (0.350, 2.93) 5.06 (2.76, 8.36)a

Marcellus Shale (yes vs. no) 1.76 (1.14, 2.63)a 1.49 (0.577, 3.12) 2.58 (1.29, 4.45)a

Note: All posterior summaries were generated using models that included all characteristics shown in Table 2. DIC, deviance information criterion; NSGLM, non-spatial generalized
linear model; pD, effective number of parameters; q, model complexity; SGLMM, spatial generalized linear mixed model; Sparse SGLMM, sparse version of the SGLM; UNG,
hydraulically fractured unconventional natural gas well.
aIndicates statistical significance; 95% credible interval does not include 1.00.
bEach unit of people=mi2 is equivalent to 0:386 people=km2.
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The association between low population density and the like-
lihood of the presence of a CII injection well was expected given
the impracticality of establishing a wastewater disposal facility in
a densely populated urban center. Although this suggests that
fewer people could be potentially exposed to suspected hazards
posed by CII injection wells, some of the disadvantages of rural-
ity, such as distance from high-staffed healthcare facilities, could
serve to exacerbate the exposure and health risks potentially
faced by residents of block groups with a waste disposal facility.

Race was not associated with the presence of CII injection
wells. However, race was a difficult determinant to examine, due
to the overwhelming majority of white-only populations across
Ohio’s block groups (IQR: 75.1%, 97.8%); any deviations were
clustered in urban centers of the state, which are not generally suit-
able for construction of CII injection wells. These results con-
trasted with those reported by Johnston et al. (2016); however, the
study by Johnston et al. (2016) was conducted in Texas, which has
extensive drilling in densely populated areas with substantial racial
and ethnic diversity (Whitworth et al. 2017). Interestingly, our
study found that the number of UNG wells within a block group’s
bounds was negatively associated with the presence of a CII injec-
tion well. This inverse relationship between UNG well count and
CII injection well presence could exist because oil and gas compa-
niesmay prioritize a region of shale that is accessible and productive
enough to merit multiple UNG wells for shale gas extraction rather
than for injecting wastewater, which would consume valuable sur-
face area. However, CII injection wells are sited overwhelmingly
over the eastern half of Ohio overlying the Utica and Marcellus
Shale formations, indicating that wastewater is still disposed of rela-
tively close to the location of drilling into the shale.

Our analyses using three different models demonstrated the
presence of spatial correlation and confounding in our data set.
Spatial confounding biased SGLMM estimates of associations
with location over the Utica and Marcellus Shales toward the null,
whereas strong positive associations with shale locations were esti-
mated when Sparse SGLMM was used. Our spatial analysis
enabled visualization of the estimated spatially correlated random
effects (Figure 2). Block groups with large positive random effect
estimates (Figure 2C) had a greater risk of having CII injection
wells than can be explained by the covariates alone. This informa-
tion could be used to focus attention on these block groups to
determine what common features they have that may be leading to
this increased probability of CII injection well presence.

We used the defined geographic boundary of the census block
group as our primary unit of analysis to ensure spatial alignment
of the majority of our data sources. We found some differences
when defining our outcome as presence of a CII injection well
within 5 km of the block group centroid, which had the advant-
age of capturing CII injection wells located across block group
borders. For instance, there was a statistically significant inverse
relationship between voter turnout and presence of CII injection
well only when using this buffer-based metric. This finding could
indicate a link between reduced civic engagement capacity and
siting of CII disposal wells, which warrants follow-up. Population
density was not associated with the buffer-based outcome, poten-
tially due to spatial misalignment between the outcome metric and
census data, leading to greater land area, and therefore a potentially
more heterogeneous population distribution. Another limitation of
the buffer-based metric is that we did not have data on injection
well locations in bordering states. However, injection wells are
less prevalent in Ohio’s neighboring states of Pennsylvania and
West Virginia (U.S. EPA 2016a).

Data on CII injection well locations and other data attributes are
available from other data sources, such as the commercially avail-
able DrillingInfo (https://info.drillinginfo.com/). Future analyses

Figure 2. Utica Shale, Marcellus Shale, and their (A) overlapping areas in Ohio;
(B) posterior mean spatial random effects (magnitude and direction indicated
by color gradation) from SGLMM; and (C) posterior mean spatial random
effects (magnitude and direction indicated by color gradation) from Sparse
SGLMM. Large positive random effect values represent elevated risk of CII
injection well after adjustment for the considered predictors, whereas large
negative values indicate the opposite. Images represent random effects from
models of presence/absence of a CII injection well within a block group (de-
pendent variable) against the following independent predictor variables:
UNG wells, median age, % ≥high school educated, % white only, % voter
turnout, population density, and water area.
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could evaluate the agreement in CII injection well coordinate data
among different published databases.

It is important to note that, although we estimated significant
associations between sociodemographic and other factors and CII
injection well presence in this ecologic analysis, we cannot claim
causation or a temporal relationship from our results. One must
consider whether income values decreased following placement of
CII injection wells or whether the CII injection wells were placed
disproportionately in regions with already lower income values.
Irrespective of the temporality or intentionality of the placement of
CII injection wells, our findings suggest a pattern of environmental
injustice, in which block groups of lower median income could
have a greater likelihood of facing deleterious impacts from con-
taining a wastewater disposal facility. Data regarding those poten-
tial health impacts are still sparse, but recent studies comparing
surface water samples collected upstream and downstream of a
West Virginia CII injection well facility suspected of a contamina-
tion event observed in the downstream samples elevated concen-
trations of a range of inorganic and organic pollutants (Akob et al.
2016; Orem et al. 2017) and increased antagonist hormonal activ-
ities for estrogen, progesterone, glucocorticoid, and thyroid hor-
mone receptors assessed with mammalian and yeast reporter gene
assays (Kassotis et al. 2016). Furthermore, there is increasing evi-
dence of the seismic activity induced from CII injection wells
(Ellsworth 2013; Frohlich et al. 2011, 2014; Horton 2012; Kim
2013; McGarr et al. 2015; Zoback 2012). These microearthquakes
could cause physical harm, structural property damage, anxiety,
and fear in the affected communities (Bommer et al. 2015). They
may occur up to several kilometers from the injection point
(Horton 2012; Justinic et al. 2013; Keranen et al. 2014), and there-
fore the impact may not be confined to block groups containing the
disposal facility. More water sampling, human exposure, and
health studies in communities with CII injection wells would pro-
vide further insights into the potential environmental health
impacts of living in proximity to these disposal wells.

Conclusions
Our analysis presents evidence of an inverse association between
median income, population density, and number of UNG wells
and CII injection well presence in Ohio census block groups after
adjusting for other sociodemographic and geographic variables
and spatial correlation and confounding. Although we observed
positive, significant associations between median age and % pop-
ulation white and CII injection well presence in bivariate analy-
ses, these associations did not remain after adjustment for other
factors in the multivariable regression analyses. Our findings
advance understanding of the sociodemographic characteristics
of Ohio populations living in census areas with higher likelihoods
of containing CII injection wells, and they demonstrate the im-
portance of examining hydraulic fracturing activities in terms of
waste disposal and the surrounding communities. More studies
must still be conducted to determine specific exposures, health
risks, and economic impacts that may be associated with CII
injection well presence. These types of findings can inform future
public health regulations and wastewater management and siting
policies, both in Ohio and in all regions in which hydraulic frac-
turing occurs.
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