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Abstract

Alzheimer’s disease (AD) is a progressive neurodegenerative disease that impairs a patient’s 

memory and other important mental functions. In this paper, we leverage the mutually informative 

and complementary features from both structural magnetic resonance imaging (MRI) and single 

nucleotide polymorphism (SNP) for improving the diagnosis. Due to the feature redundancy and 

sample outliers, direct use of all training data may lead to suboptimal performance in 

classification. In addition, as redundant features are involved, the most discriminative feature 

subset may not be identified in a single step, as commonly done in most existing feature selection 

approaches. Therefore, we formulate a hierarchical multimodal feature and sample selection 

framework to gradually select informative features and discard ambiguous samples in multiple 

steps. To positively guide the data manifold preservation, we utilize both labeled and unlabeled 

data in the learning process, making our method semi-supervised. The finally selected features and 

samples are then used to train support vector machine (SVM) based classification models. Our 

method is evaluated on 702 subjects from the Alzheimer’s Disease Neuroimaging Initiative 

(ADNI) dataset, and the superior classification results in AD related diagnosis demonstrate the 

effectiveness of our approach as compared to other methods.

1 Introduction

As one of the most common neurodegenerative diseases, Alzheimer’s disease (AD) accounts 

for most dementia cases. AD is progressive and the symptoms worsen over time by 

gradually affecting patients’ memory and other mental functions. Unfortunately, there is no 

cure for AD yet. Nevertheless, once AD is diagnosed, treatment including medications and 

management strategies can help improve symptoms. Therefore, timely and accurate 

diagnosis of AD and its prodromal stage, i.e., mild cognitive impairment (MCI), which can 

be further categorized into progressive MCI (pMCI) and stable MCI (sMCI), is highly 

desired in practice. Among various diagnosis tools, brain imaging, such as structural 

magnetic resonance imaging (MRI), has been widely used, since it allows accurate 

measurements of the brain structures, especially in the hippocampus and other AD related 

regions [1].

Besides imaging data, genetic variants are also related to AD [2], and genome-wide 

association studies (GWAS) have been conducted to identify the association between single 
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nucleotide polymorphism (SNP) and the imaging data [3]. In [4], the associations between 

SNPs and MRI-derived measures with the presence of AD were explored and the 

informative SNPs were identified to guide the disease interpretation. To date, most of the 

previous works focused on analyzing the correlation between imaging and genetic data [5], 

while using both for AD/MCI diagnosis has received very little attention [6]. In this paper, 

we aim to jointly use structural MRI and SNPs for improving AD/MCI diagnosis, as the data 

from both modalities are mutually informative [3].

For MRI-based diagnosis, features can be extracted from regions-of-interest (ROIs) in the 

brain [6]. Since not all of the ROIs are relevant to the particular disease of AD/MCI, feature 

selection can be conducted to identify the most relevant features in order to learn the 

classification model more effectively [7]. Similarly, only a small number of SNPs from a 

large SNP pool are associated with AD/MCI [6]. Therefore, it is preferable to use only the 

most discriminative features from both MRI and SNPs to learn the most effective 

classification model. To achieve this, supervised feature selection methods such as Lasso-

based sparse feature learning have been widely used [8]. However, they do not consider 

discarding non-discriminative samples, which might be outliers or non-representative, and 

including them in the model learning process can be counterproductive.

In this paper, we propose a semi-supervised hierarchical multimodal feature and sample 

selection (ss-HMFSS) framework. We utilize both labeled and unlabeled data for manifold 

regularization, to preserve the neighborhood structures during the mapping from the original 

feature space to the label space. Furthermore, since the redundant features and outlier 

samples inevitably affect the learning process, instead of selecting features and samples in 

one step, we perform feature and sample selection in a hierarchical manner. The updated 

features and pruned sample set from each current hierarchy are supplied to the next one to 

further identify a subset with most discriminative features and samples. In this way, we 

gradually refine the feature and sample subsets step-by-step, undermining the effect of non-

discriminative or rather noisy data. The finally selected features and samples are used to 

train support vector machine (SVM) classifiers for AD and MCI related diagnosis. The 

proposed method is evaluated on 702 subjects from the Alzheimer’s Disease Neuroimaging 

Initiative (ADNI) cohort. In different classification tasks, i.e., AD vs. NC, MCI vs. NC, and 

pMCI vs. sMCI, superior results are achieved by our framework as compared to the other 

competing methods.

2 Method

2.1 Data Preprocessing

In this study, we use 702 subjects in total from the ADNI cohort whose MRI and SNP 

features are available1. Among them, 165 are AD patients, 342 are MCI patients, and the 

rest 195 subjects are normal controls (NCs). Within the MCI patients, there are 149 pMCI 

cases and 193 sMCI cases. sMCI subjects are those who were diagnosed as MCI patients 

and remained stable all the time, while pMCI refers to the MCI case that converted to AD 

within 24 months.

1http://adni.loni.usc.edu/.
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For MRI data, the preprocessing steps included skull stripping, dura and cerebellum 

removal, intensity correction, tissue segmentation and registration. The preprocessed images 

were then divided into 93 pre-defined ROIs, and the gray matter volume in these ROIs are 

calculated as MRI features. The SNP data were genotyped using the Human 610-Quad 

BeadChip. According to the AlzGene database2, only SNPs that belong to the top AD gene 

candidates were selected. The selected SNPs were imputed to estimate the missing 

genotypes, and the Illumina annotation information was used to select a subset of SNPs [9]. 

The processed SNP data have 2098 features. Since the SNP feature dimension is much 

higher than that of MRI, we perform sparse feature learning [8] on the training data to 

reduce the SNP feature dimension to the similar level of the MRI feature dimension.

2.2 Semi-supervised Hierarchical Feature and Sample Selection

The framework of the proposed method is illustrated in Fig. 1. After features are extracted 

and preprocessed from the raw SNP and MRI data, we first calculate the graph Laplacian 

matrix to model the data structure using the concatenated features from both labeled and 

unlabeled data. This Laplacian matrix is then used in the manifold regularization to jointly 

learn the feature coefficients and sample weights. The features are selected and weighted 

based on the learned coefficients, and the samples are pruned by discarding those with 

smaller sample weights. The updated features and samples are forwarded to the next 

hierarchy for further selection in the same manner. In such a hierarchical manner, we 

gradually select the most discriminative features and samples in order to mitigate the effects 

of data redundancy in the learning process. Finally, the selected features and samples are 

used to train classification models (SVM in this work) for AD/MCI diagnosis tasks. In the 

following, we explain in detail how the joint feature and sample selection works in each 

hierarchy.

Suppose we have N1 labeled training subjects with their class labels and the corresponding 

features from both MRI and SNP, denoted by y ∈ ℝ
N1, XMRI ∈ ℝ

N1 × d1, and 

XSNP ∈ ℝ
N1 × d2, respectively. In addition, data from N2 unlabeled subjects are also 

available, denoted as X∼MRI ∈ ℝ
N2 × d1, and X∼SNP ∈ ℝ

N2 × d2. The goal is to utilize both 

labeled and unlabeled data in a semi-supervised framework to jointly select the most 

discriminative samples and features for the subsequent classification model training and 

prediction. Let X = XMRI, XSNP ∈ ℝ
N1 × d1 + d2  be the concatenated features of the labeled 

data, X∼ = X∼MRI, X∼SNP ∈ ℝ
N2 × d1 + d2  represent features of the unlabeled data, and 

w ∈ ℝ
d1 + d2 be the feature coefficient vector, the objective function for this joint sample and 

feature learning model can be written as

2www.alzgene.org.

An et al. Page 3

Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2018 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



ℱ = ℰ y, X + ℛm y, X, X∼, w + ℛ f w , (1)

where ℰ y, X  is the loss function defined for the labeled data, and ℛm y, X, X∼, w  is the 

manifold regularization term for both labeled and unlabeled data. This regularizer is based 

on the natural assumption that if two data samples xp and xq are close in their original 

feature space, after mapping into the new space (i.e., label space), they should also be close 

to each other. R f w = w 1 is the sparse regularizer for the purpose of feature selection. In 

the following, we explain in detail how the loss function and the manifold regularization 

term are defined by taking into account sample weights.

Loss function—The loss function ℰ y, X  considers the weighted loss for each sample, 

and it is defined as

ℰ y, X = A y − Xw 2
2, (2)

where A ∈ ℝ
N1 × N1 is a diagonal matrix with each diagonal element denoting the weight for 

a data sample. Intuitively, a sample that can be more accurately mapped into the label space 

with less error is more desirable, and thus it should contribute more to the classification 

model. The sample weights in A will be learned through optimization and the samples with 

larger weights will be selected to train the classifier.

Manifold regularization—The manifold regularization preserves the neighborhood 

structures for both labeled and unlabeled data during mapping from the feature space to the 

label space. It is defined as

ℛm y, X, X∼, w = AXw ⊤L AXw , (3)

where X ∈ ℝ
N1 + N2 × d1 + d2  contains features of both labeled data X and unlabeled data 

X∼. The Laplacian matrix L ∈ ℝ
N1 + N2 × N1 + N2  is given by L = D − S, where D is a 

diagonal matrix such that D(p, p) = Σq S(p, q), and S is the affinity matrix with S(p, q) 

denoting the similarity between samples xp and xq. S(p, q) is defined as

S p, q = 1 − yp − yq , (4)

where yp and yq are the labels for xp and xq. For the case of unlabeled data, yp defines a soft 

label for an unlabeled data sample xp as yp = kp
pos/k, where kp

pos is the number of xp’s 

neighbors with positive class labels out of its k neighbors in total. Note that for an unlabeled 
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sample, the nearest neighbors are searched only in the labeled training data, and the soft 

label represents its closeness to a target class. Using such definition, the similarity matrix S 
encodes relationships among both labeled and unlabeled samples.

The diagonal matrix A ∈ ℝ
N1 + N2 × N1 + N2  applies weights on both labeled and 

unlabeled samples. The elements in Â are different for labeled and unlabeled data:

A p, p =

A p, p , p ∈ 1, N1 ,

1 − 2
kp

pos

k , p ∈ N1 + 1, N1 + N2 .
(5)

By this definition, if an unlabeled sample whose k nearest neighbors are relatively balanced 

from both positive and negative classes (i.e., kp
pos/k ≈ 0.5), it is assigned a smaller weight as 

this sample may not be representative enough in terms of class separation. The weights in A 
for the labeled data are to be learned in the optimization process.

Overall objective function—Taking into account the loss function, the manifold 

regularization, as well as the sparse regularization on features, the objective function is

minw, A A y − Xw 2
2 + λ1 AXw ⊤L AXw + λ2 w 1,

s . t . ∑diag A = 1, diag A ≥ 0.

(6)

Note that the elements in A are enforced to be non-negative to assign physically 

interpretable weights to different samples. Also, the diagonal of A should sum to one, which 

makes the sample weights to be interpreted as probabilities, and also ensures that sample 

weights will not be all zero. We employ an alternating optimization strategy to solve this 

problem, i.e., we fix A to find the solution of w, and vice versa. For solving w, the 

Accelerated Proximal Gradient (APG) algorithm is used. The optimization on A is a 

constrained quadratic programming problem and it can be solved using the interior-point 

algorithm. After this hierarchy, insignificant features and samples are discarded based on the 

values in w and A, and the remaining features are weighted by the coefficients in w. The 

remaining samples with their updated features are used in the next hierarchy to further refine 

the sample and feature set. The entire process of the proposed method is summarized in 

Algorithm 1.

Algorithm 1

Semi-supervised hierarchical multimodal feature and sample selection

Input:

Labeled and unlabeled data from MRI and SNP, and the number of hierarchies L.
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1: Initialize labeled sample weights in A and feature coefficients in w.

2: for i = 1 to L do

3:  Calculate the data similarity scores in S by Eq. (4).

4:  Calculate the sample weights in Â by Eq. (5).

5:  repeat

6:   Fix A and solve w in Eq. (6).

7:   Fix w and solve A in Eq. (6).

8:  until convergence

9:  Discard insignificant samples and features based on the values in A and w.

10:  Weight the remaining features by the coefficients in w.

11: end for

Output:

Subset of samples and features for classification model training.

3 Experiments

Experimental Settings

We consider three binary classification tasks in the experiments: AD vs. NC, MCI vs. NC, 

and pMCI vs. sMCI. A 10-fold cross-validation strategy is adopted to evaluate the 

classification performance. For the unlabeled data used in our method, we choose the 

irrelevant subjects with respect to the current classification task, i.e., when we classify AD 

and NC, the data from MCI subjects are used as unlabeled data. The dimension of the SNP 

features is reduced to 100 before the joint feature and sample learning. The neighborhood 

size k is chosen by cross-validation on the training data. After each hierarchy, 5 % samples 

are discarded, and the features whose coefficients are smaller than 10−3 are removed. To 

train the classifier, we use LIBSVM’s implementation of linear SVM3. The parameters in 

feature and sample selection for each classification task are determined by grid search on the 

training data.

Results

To examine the effectiveness of the proposed hierarchical structure, Fig. 2 shows 

classification accuracy (ACC) and area under receiver operating characteristic curve (AUC) 

with different number of hierarchies. It is observed that the use of more hierarchies benefits 

the classification performance in all tasks, although the improvement becomes marginal 

after the third hierarchy. Especially for cases such as pMCI vs. sMCI, where the training 

data are not abundant, keeping discarding samples and features in many hierarchies may 

result in insufficient classification model training. Therefore, we set the number of 

hierarchies to three in our experiments. It is also worth mentioning that compared to AD vs. 

NC classification, MCI vs. NC and pMCI vs. sMCI classifications are more difficult, yet 

they are important problems for early diagnosis and possible therapeutic interventions.

3https://www.csie.ntu.edu.tw/~cjlin/libsvm/.
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For benchmark comparison, the proposed method (ss-HMFSS) is compared with the 

following baseline methods: (1) classification using MRI features only without feature 

selection (noFS (MRI only)), (2) classification using SNP features only without feature 

selection (noFS (SNP only)), (3) classification using concatenated MRI and SNP features 

without feature selection (noFS), (4) classification using concatenated MRI and SNP 

features with Laplacian score for feature selection (Laplacian), and (5) classification using 

concatenated MRI and SNP features with Lasso-based sparse feature learning (SFL). In 

addition, we evaluate the performance of our method using labeled data only (HMFSS). 

Besides, we also report sensitivity (SEN) and specificity (SPE).

The mean classification results are reported in Table 1. Regarding each feature modality, 

MRI is more discriminative than SNP to distinguish AD from NC, while for MCI vs. NC 

and pMCI vs. NC classifications, SNP is more useful. Directly combining features from two 

different modalities may not necessarily improve the results. For example, in AD vs. NC 

classification, simply concatenating SNP and MRI features decreases the accuracy due to the 

less discriminative nature of the SNP features, which negatively contribute in the 

classification model learning. This limitation is alleviated by SFL. In our method, we further 

improve the selection scheme in a hierarchical manner and only the most discriminative 

features and samples are kept to train the classification models. Even without using 

unlabeled data, our method (i.e., HMFSS) outperforms the other baseline methods. By 

incorporating unlabeled data to facilitate the learning process, the performance of our 

method (i.e., ss-HMFSS) is further improved. It is also worthwhile to mention that when 

only feature example is enabled in our method, the accuracies for the three classification 

tasks are 91.1 %, 77.2 %, and 77.9 %, respectively, which are all inferior to the results using 

both feature and sample selection. Compared with a state-of-the-art method for AD 

diagnosis [10], which considers the relationships among samples and different feature 

modalities when performing feature selection, at least a 1–2% improvement in accuracy is 

achieved by our method on the same data. Regarding the computational cost, our method in 

Matlab implementation on a computer with 2.4 GHz CPU and 8 GB memory takes about 15 

s for feature and sample selection, and the SVM classifier training takes less than 0.5 s.

4 Conclusions

In this paper, we have proposed a semi-supervised hierarchical multimodal feature and 

sample selection (ss-HMFSS) framework for AD/MCI diagnosis using both imaging and 

genetic data. In addition, both labeled and available unlabeled data were utilized to preserve 

the data manifold in the label space. Experimental results on the data from ADNI cohort 

showed that the hierarchical scheme was able to gradually refine the feature and sample set 

in multiple steps. Superior performance in different classification tasks was achieved as 

compared to the other baseline methods. Currently, data from two modalities including MRI 

and SNP were used. We would like to extend our method to utilize data from more 

modalities, such as positron emission tomography (PET) and cerebrospinal fluid (CSF), to 

further improve the diagnosis performance.
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Fig. 1. 
Framework of the proposed semi-supervised hierarchical multimodal feature and sample 

selection (ss-HMFSS) for AD/MCI diagnosis.
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Fig. 2. 
Effects of using different numbers of hierarchies.
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