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Abstract

Diffusion magnetic resonance imaging (DMRI) is a powerful imaging modality due to its unique 

ability to extract microstructural information by utilizing restricted diffusion to probe 

compartments that are much smaller than the voxel size. Quite commonly, a mixture of models is 

fitted to the data to infer microstructural properties based on the estimated parameters. The fitting 

process is often non-linear and computationally very intensive. Recent work by Daducci et al. has 

shown that speed improvement of several orders of magnitude can be achieved by linearizing and 

recasting the fitting problem as a linear system, involving the estimation of the volume fractions 

associated with a set of diffusion basis functions that span the signal space. However, to ensure 

coverage of the signal space, sufficiently dense sampling of the parameter space is needed. This 

can be problematic because the number of basis functions increases exponentially with the number 

of parameters, causing computational intractability. We propose in this paper a method called 

iterative subspace screening (ISS) for tackling this ultrahigh dimensional problem. ISS requires 

only solving the problem in a medium-size subspace with a dimension that is much smaller than 

the original space spanned by all diffusion basis functions but is larger than the expected 

cardinality of the support of the solution. The solution obtained for this subspace is used to screen 

the basis functions to identify a new subspace that is pertinent to the target problem. These steps 

are performed iteratively to seek both the solution subspace and the solution itself. We apply ISS 

to the estimation of the fiber orientation distribution function (ODF) and demonstrate that it 

improves estimation robustness and accuracy.

1 Introduction

Microstructural tissue properties can be inferred with the help of diffusion MRI (DMRI) 

thanks to its sensitivity to the restricted motion of water molecules owing to barriers such as 

cellular membranes. Microstructural information is typically obtained from diffusion 

parameters estimated via fitting to the acquired data some biophysical models. Fitting 

models such as the tensor model [1] is relatively simple and straightforward. But fitting 

models that are more sophisticated, such as the multi-compartmental models used in 

AxCaliber [2] and NODDI [3], is much more involved with significantly greater 

computational load. Computational complexity is further increased when certain structure is 

imposed on the solution, such as sparsity [4,5].
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In a recent work called AMICO [6], the authors show that it is possible to speed up 

AxCaliber and NODDI estimation several orders of magnitude by re-formulating the fitting 

problem as a linear system that can be efficiently solved using very fast algorithms. 

However, this work is limited to a sparse sampling of the parameter space (30 basis 

functions for AxCaliber and 145 basis functions for NODDI) and is also limited to voxels 

containing only a single principal diffusion direction. When extending AM-ICO for the 

more realistic case of multiple white matter (WM) directions per voxel [7], the number of 

the basis functions would need to be significantly increased, causing the optimization 

problem to be very high dimensional and computationally very expensive. A similar 

situation occurs in the estimation of the fiber orientation distribution function (ODF), as in 

[5], when one needs to increase the number of angular directions of the basis functions for 

improving accuracy.

In this paper, we propose a method called iterative subspace screening (ISS) to solve this 

kind of ultrahigh dimension problem more efficiently. ISS requires only solving the target 

problem in a medium-size subspace with a dimension that is much smaller than the original 

space spanned by all the basis functions, but is larger than the expected cardinality of the 

support of the solution. ISS is a subspace pursuit algorithm [8] involving the following 

iterative steps:

1. Subspace Selection: Select a potential solution subspace by screening out 

irrelevant basis functions. This is done by element-wise regression of the fitting 

residual similar to iterative sure independence screening (ISIS) [9] and subspace 

pursuit (SP) [8].

2. Subspace Solution: Solve for the solution, assumed sparse, in the selected 

subspace and compute the fitting residual. The fitting residual is then used in the 

subspace selection step above to refine the subspace so that irrelevant basis 

functions can be discarded and relevant ones can be included.

Such subspace selection approach allows us to remove from consideration many basis 

functions that might never be active and contribute to the solution. This is motivated by the 

fact that, in our case, the solution is sparse and hence resides in a small subspace. Since the 

dimension of the ISS subspace is typically much smaller, the solution can be obtained much 

faster with potentially lesser local minima that may result from the high dimensionality. We 

demonstrate the effectiveness of ISS on the problem of fiber ODF estimation and show that 

significant speed up can be achieved. Extension of ISS for AxCaliber and NODDI, similar to 

AMICO, should be straightforward.

2 Approach

2.1 Problem Description

The problem we are interested in solving has the following form:

min
f ≥ 0

ϕ f = l f + r f , (1)
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where in our case l f   = Af − s 2
2 is a smooth and convex data fidelity term with respect to 

observation vector s ∈ ℝN and .(f) is a sparsity-inducing regularization term that is not 

necessarily smooth or convex. In diffusion MRI, one would typically fill the columns of 

basis matrix A ∈ ℝN × P with the set of basis functions derived from diffusion models with 

varying parameters, such as orientation and diffusivity. The vector f ∈ ℝP consists of the 

corresponding volume fractions associated with the basis functions. For example, for 

estimating the fiber ODF as in [5], one would fill the columns of A with the signal vectors 

sampled from tensor models oriented uniformly in all directions. For fast AxCaliber [2] and 

NODDI [3] estimation using a linear system as described in AMICO [6], one would fill the 

columns of A with signal vectors from compartment models orientated in a direction 

estimated via fitting a diffusion tensor. If the parameter space is sampled densely, the above 

estimation would be computationally very expensive and can be susceptible to local minima 

due to the high dimensionality and high correlation between the basis functions.

Algorithm 1

Iterative Subspace Screening

Input : A, s, .

Initialization:

1. 𝒥 0  = {. indices of the entries with the largest magnitudes in vector ATs}

2. r(0) = residual s, A
𝒥 0

3. f(0) = 0

Iteration : At iterations . = 1, 2, …, go through the following steps:

1. 𝒥 k  = {. indices of the non-zeros entries of f(.−1) and the entries with the largest magnitudes in vector ATr(.−1)}

2. Set f(.) = solve s, A
𝒥 k

3. r(.) = residual s, A
𝒥 k

4. If ‖r(.)‖>‖r(.−1)‖, quit the iteration.

Output : The solution f = f(.−1).

2.2 Iterative Subspace Screening (ISS)

We propose a method called iterative subspace screening (ISS) to tackle this kind of 

ultrahigh dimension problem more efficiently. ISS requires only solving the target problem 

(1) in a medium-size subspace with a dimension that is much smaller than the original space 

spanned by all the basis functions, but is larger than the expected cardinality of the support 

of the solution. This is based on the observation that the problem (1) can be rewritten as

min
f 𝒥 ≥ 0, f𝒥 = 0, 𝒥 = D

ϕ f = l𝒥 f + r𝒥 f , (2)
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subject to . ≤ . is larger than the expected cardinality of the support of the solution. Here, 

l𝒥 f = A𝒥f𝒥 − s 2
2 with f𝒥 being the subvector formed by the elements of f indexed by set 

𝒥 ⊆ 1, 2, …, P , 𝒥 = 1, 2, …, P \𝒥 and A𝒥 being the sub-matrix formed the columns of A 

indexed by 𝒥. The regularization term r𝒥 f  now penalizes only the elements in f that are 

indexed by 𝒥. We can think of problem (2) as concurrently solving for the solution subspace 

and the solution itself. This problem is clearly non-convex, non-smooth, and discontinuous; 

but decoupling subspace identification from the problem allows us to devise an algorithm 

that focuses on determining the solution in a subspace that actually contains the solution and 

not in the original subspace, especially when the original problem (1) is very high 

dimensional (i.e., . is large). As we shall see later, this subspace can be progressively refined 

by including basis functions that will contribute to the solution and by discarding those that 

will not. Since the solution is sparse, most basis functions are irrelevant to the solution and 

can be removed from consideration, reducing significantly the computation cost. Note that if 

the solution to (1) resides in the identified subspace, solving for (2) will give the same 

solution as (1).

Proposed Solution—We propose to solve (2) by alternating between solving for 𝒥 and 

solving for f. At each iteration, one only needs to solve for f in a medium-size subspace with 

dimension . ≤ .. To select the subspace, we perform an element-wise regression of the fitting 

residual with the basis functions. That is, at the .-th iteration, we first compute the fitting 

residual r(.−1) = residual s, A𝒥  
  k − 1     = s − A𝒥  

  k − 1 f𝒥  
  k − 1  and then use it to 

determine a subspace of dimension .. This subspace is spanned by the basis functions 

corresponding to the non-zero elements of f(.−1) and, in addition, the basis functions 

corresponding to the largest entries of ATrk−1. Based on this new subspace, with the 

constituent basis functions indexed by 𝒥 k , we solve for f(.), i.e., f(.) = solve s, A𝒥 k , via 

(2) with 𝒥 k  fixed. This solution can then be used to recompute the residual and refine the 

subspace. Since at each iteration, the residual vector will be used to screen out a significant 

number of basis functions, thus removing a big portion of the original subspace, we call our 

method iterative subspace screening (ISS). See Algorithm 1 for a step-by-step summary of 

ISS. In addition to reducing significantly the computation time by not having to solve the 

problem in the original high-dimensional space, ISS can also deal with collinearity between 

basis functions. By performing subspace screening using the residual vector, some 

unimportant basis functions that are highly correlated with the important basis functions can 

be discarded, as observed in [9].

Grouped Variant—We can take advantage of the relationships between basis functions by 

grouping them [9]. We can divide the pool of . basis functions into disjoint groups, each with 

a number of basis functions. ISS can then be applied to the selection of basis function groups 

instead of the individual basis functions. This will reduce the chance of missing important 

basis functions by taking advantage of the joint information among them, making the 

estimation more reliable. This can be achieved by modifying Step 1 in the .-loop of 

Algorithm 1 to select the top . groups of basis functions with the greatest ℓ2-norm of inner 

Yap et al. Page 4

Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2018 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



products with the residual vector. We shall show how grouping can be used in ISS to help 

solve sparse-group approximation problem similar to the one described in [10].

A Specific Case—To demonstrate the utility of ISS, we select to use the general sparse-

group regularization r f = γ α f 0 + 1 − α   ∑g ∈ Gℐ fg 2 , where ℐ z  is an indicator 

function returning 1 if z ≠ 0 or 0 if otherwise. The ℓ0-“norm” gives the cardinality of the 

support, i.e., f 0 = supp f = k: f k ≠ 0 . Parameters α ∈ [0,1] and γ> 0 are for penalty 

tuning, analogous to those used in the sparse-group LASSO [10]. Note that α = 1 gives the ℓ0 

fit, whereas α = 0 gives the group ℓ0 fit. Note that in contrast to the more commonly used ℓ1-

norm penalization, we have chosen here to use ℓ0-“norm” cardinality-based penalization. As 

reported in [11], ℓ1-norm penalization [5] conflicts with the unit sum requirement of the 

volume fractions and hence results in suboptimal solutions.

3 Experiments

3.1 Data

Synthetic Data—For quantitative evaluation, we generated a synthetic dataset for 

evaluation of ISS. The dataset was generated using a mixture of four tensor models. Two of 

which are anisotropic and represent two white matter (WM) compartments that are at an 

angle of 60° with each other. The other two are isotropic and represent the gray matter (GM) 

and cerebrospinal fluid (CSF) compartments. The generated diffusion-attenuated signals 

therefore simulate the partial volume effects resulting from these compartments. The volume 

fractions and the diffusivities of the compartments were allowed to vary in ranges that mimic 

closely the real data discussed in the next section. Various levels of noise (SNR=10, 20, 30, 

with respect to the signal value at . = 0 s/mm2) was added.

Real Data—Diffusion weighted (DW) data from the Human Connectome Project (HCP) 

[12] were used. The 1.25 × 1.25 1.25 mm3 data were acquired with diffusion weightings . = 

1000, 2000, and 3000 s/mm2 each applied in 90 directions. 18 baseline images with low 

diffusion weighting . = 5 s/mm2 were also acquired. All images were acquired with reversed 

phase encoding for correction of EPI distortion.

3.2 Methods of Evaluation

For the synthetic data, our aim is to estimate the fiber ODFs [13] and evaluate their accuracy 

by comparing their peaks (local maxima) with respect to the ground truth. The orientational 

discrepancy (OD) measure defined in [14] was used as a metric for evaluating the accuracy 

of peak estimation. For the real data, we want to evaluate whether consistent results are 

given by ISS compared with the original problem (1).

The fiber ODF was estimated by fitting to the data the compartment models for WM, GM, 

and CSF. Similar to [15], the WM is represented by a large number of anisotropic single-

tensor models with orientations distributed evenly on a unit sphere. Dissimilar to [15], 

however, we allow the axial and radial diffusivities to vary. The GM and CSF are 

represented using isotropic tensor models with GM having a lower range of diffusivities 

compared with CSF. Mathematically, this is realized by filling the columns of A with the 
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above models with different parameters, i.e., orientations and diffusivities, and then solving 

problem (1) (or (2)) for the corresponding volume fractions f. Structure is imposed on the 

problem by grouping the WM models for each direction as well as the GM models and the 

CSF models. The tuning parameters were set as follows: γ = 1 × 10−4 and α = 0.05. . was 

set to about 15% of ..

3.3 Results

Synthetic Data—To show that ISS improves the speed of estimation, we evaluated the 

computation time of ISS in comparison with solving the original problem (1). We perform 

this for different numbers of subdivisions of the icosahedron, giving different numbers of 

directions for the WM models and hence different numbers of columns. for A. 3, 4, 5, and 6 

subdivisions of the icosahedron give respectively 321, 1281, 5121, and 20481 directions on a 

hemisphere. Figure 1 shows that ISS improves the speed of convergence remarkably.

Next, we proceeded to evaluate whether such increase in speed implies a decrease in ODF 

estimation accuracy. Figure 2, perhaps surprisingly, indicate that ISS actually improves ODF 

estimation accuracy. This can be explained from the fact that solving the problem in a lower-

dimensional subspace can help alleviate the problem of local minima, especially when the 

problem is non-convex as in our case.

Real Data—Figure 3 shows the WM ODF glyphs at a portion of the centrum semiovale. 

The images show that the centrum semiovale contains elements of the corticospinal tract 

(blue), corpus callosum (red), and superior longitudinal fasciculus (green), including voxels 

with two- and three-way intersections of these elements. The images indicate that ISS gives 

consistent results comparable to the original problem. However, we could observe that ISS 

in fact improves ODF estimation in some voxels (marked by white boxes) and gives ODF 

estimates that are more coherent and match better with the underlying anatomy.

4 Conclusion

We have proposed a method for improving the speed and robustness of solving least-squares 

problems that are regularized by sparse inducing norms. We applied our method called 

iterative subspace screening (ISS) to ODF estimation and showed that better and faster 

estimates of the fiber orientations can be obtained. In the future, ISS will be applied to 

improve the speed and accuracy of estimation techniques for microstructure, such as 

AxCaliber and NODDI.
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Fig. 1. 
Computation times.
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Fig. 2. 
ODF estimation error measured via orientational discrepancy (OD). The error bars indicate 

the standard deviations.
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Fig. 3. 
WM ODF glyphs at the centrum semiovale. White boxes mark examples of improvements 

given by ISS.
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