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Summary

Recurrent events data are frequently encountered in biomedical follow-up studies. The generalized 

accelerated recurrence time (GART) model (Sun et al., 2016), which formulates covariate effects 

on the time scale of the mean function of recurrent events (i.e. time to expected frequency), has 

arisen as a useful secondary analysis tool to provide meaningful physical interpretations. In this 

paper, we investigate the GART model in a multivariate recurrent events setting, where subjects 

may experience multiple types of recurrent events and some event types may be missing. We 

propose methods for the GART model that utilize the inverse probability weighting technique or 

the estimating equation projection strategy to handle event types that are missing at random. The 

new methods do not require imposing any parametric model for the missing mechanism, and thus 

are robust; moreover they enjoy easy and stable implementation. We establish the uniform 

consistency and weak convergence of the resulting estimators and develop appropriate inferential 

procedures. Extensive simulation studies and an application to a dataset from Cystic Fibrosis 

Foundation Patient Registry (CFFPR) illustrate the validity and practical utility of the proposed 

methods.
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1. Introduction

Recurrent events data are frequently encountered in biomedical follow-up studies where 

subjects may experience events of interest repeatedly over time. A major analytic strategy 

for recurrent events data is to assess and model the mean or rate functions of recurrent events 

(Pepe and Cai, 1993; Lawless and Nadeau, 1995; Lin et al., 2000, among others) which are 

intuitive to interpret and implicate weak assumption on the within-subject dependency. 
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While existing mean or rate function based approaches mostly attend to the frequency scale 

of the mean function, there are increasing interests in characterizing the progression of 

recurrent events by the time scale of the mean function for meaningful physical 

interpretations. For example, the classic accelerated failure time model (AFT) for recurrent 

events (Lin et al., 1998) specifies covariate effects as constant time scale changes of the 

mean function. To explicitly quantify the changes in the time scale of the mean function, 

Huang and Peng (2009) introduced the concept of time to expected frequency, defined as the 

inverse function of the mean function, and proposed the accelerated recurrence time model 

(ART) model. The ART model extends the AFT model by allowing for evolving covariate 

effects on time to expected frequency. More recently, Sun et al. (2016) derived the 

generalized accelerated recurrence time (GART) model from a counting process modeling 

perspective. The GART model is a strict extension of the ART model, permitting a more 

flexible transformation from the frequency scale to the time scale of the mean function. The 

inferential methods developed by Sun et al. (2016) accommodate recurrent events data 

subject to observation windows that take the form of general time interval(s).

However, the aforementioned methods are all oriented to the settings where recurrent events 

are of the same type. In practice, subjects may experience multiple recurrent events of 

different types and moreover the identification of the event type can be missing due to a 

variety of reasons. For example, Pseudomonas aeruginosa (Pa) is a major respiratory 

pathogen acquired in the early life of patients with cystic fibrosis (CF) and usually leads to 

chronic infections. The organism can also transition from a motile, virulent, nonmucoid type 

to a nonmotile, comparatively avirulent, mucoid type. The mucoid type is more likely to be 

drug-resistent and associated with more severe CF disease progression. In the past, the two 

were not always differentiated in clinics. Recently, it has become a common practice to 

classify Pa positive cultures into mucoid and nonmucoid types to aid in treatment decisions. 

However unknown or missing Pa infection types still occur. As shown by our simulations 

studies (see Section 5), ignoring this data complication can seriously bias the estimation of 

the recurrence pattern of Pa infections of each type. This can potentially misguide the CF 

disease management.

In this paper, we consider the problem of fitting the GART models to the multivariate 

recurrent events data with missing event types. Several authors have addressed such 

recurrent events data in other model settings. For example, Chen and Cook (2009) specified 

a multiplicative conditional Poisson model for the multivariate recurrent events data and 

derived an EM-algorithm to perform the maximum likelihood analysis in the presence of 

missing event types. Schaubel and Cai (2006a) and Schaubel and Cai (2006b) studied the 

semiparametric proportional rate model, using the multiple imputation technique and 

weighted estimating equations respectively to account for missing event types. Schaubel and 

Cai (2006a)’s weighted estimating equations were further adapted to the additive rate model 

(Ye, Zhao, Sun, and Xu, 2015) and the additive-multiplicative rate models (Ye, Sun, Zhao, 

and Xu, 2015). More recently, Lin et al. (2013) proposed a fully nonparametric estimator of 

the mean function in the one-sample case. While these methods shed useful insight for 

dealing with missing event types, they are not readily extendable to the GART model. This 

is because the GART model does not imply a likelihood, unlike a parametric model. In 

addition, the semiparametric rate models mentioned above only involve real valued 
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coefficients, while the coefficients of the GART model, which accommodate varying 

covariate effects, take the form of functions.

To tackle the data complication caused by missing event types under the GART models, we 

consider two strategies. One is to apply the inverse probability weighting (IPW) technique to 

correct the bias only using the data with observed event types. The other one is to impute the 

missing event type by its estimated probability of being each specific event type in the 

estimating equation that assumes a complete observation of event types. The second strategy 

shares the same spirit as that of Schaubel and Cai (2006a), Schaubel and Cai (2006b), and 

Lin et al. (2013), and we shall refer it to as estimating equation projection (EEP) strategy 

hereafter. To carry out the IPW or EEP strategy, the key task is to estimate the conditional 

probability of event type being observed or the missing event type being a specific type 

given covariates and/or other observed data. To this end, we propose nonparametric 

Nadaraya-Watson type estimators to avoid additional parametric modeling. Like in Lin et al. 

(2013), the proposed conditional probability estimators can be justified from the local 

likelihood estimation perspective. Our estimators also have explicit closed forms despite the 

incorporation of covariates, which are not available in Lin et al. (2013)’s method. As another 

appealing feature, the two methods derived from the IPW and EEP strategies can be unified 

in an inferential framework that resembles Sun et al. (2016)’s method. This entails simple 

and stable implementations of the proposed methods. For example, we are able to obtain the 

proposed estimators via algorithms that only involve minimizations of a sequence of L1-type 

convex functions, which can readily be solved by existing functions in R and S-PLUS. By 

our asymptotic studies, the two proposed estimators are shown to be asymptotically 

equivalent.

We organize the rest of the paper as follows. In Section 2, we present the generalized 

accelerated recurrence time (GART) model and propose the estimating methods derived 

from the IPW and EEP strategies. We establish the asymptotic properties of the proposed 

estimators, including the uniform consistency and weak convergence, in Section 3, and 

discuss the inference procedures in Section 4. The simulation studies that investigate the 

finite sample performance of the proposed estimators are reported in Section 5. We illustrate 

the proposed methods via an application to a dataset from the Cystic Fibrosis Foundation 

Patient Registry (CFFPR) in Section 6. Finally, we provide some concluding remarks in 

Section 7.

2. The Proposed Methods

2.1 Data and Model

Suppose that a subject may experience K types of recurrent events, and recurrent events are 

subject to an observation window that is an time interval, (L,R]. Let T(j) denote the j-th 

recurrent event time, δ̄(t) ∈ {1, …, K} denote the type of the event that occurs at time t, and 

A(t) is a binary indicator which equals 1 if the event type is observed at time t and 0 

otherwise. Define δk(t) = I{δ̄(t) = k}, where I(·) is the indicator function, and write 

δk
( j) ≐ δk(T( j)) and A(j) = A(T(j)). Let X̃ be a (p − 1) × 1 covariate vector and X = (1, X̃).
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For type-k events, the underlying counting process is given by 

Nk
∗(t) = ∑ j = 1

∞ I(T( j) ≤ t, δk
( j) = 1), which represents the total number of type-k events that 

have occurred by time t. The observation of recurrent events is only available in the time 

interval, (L,R]. When all event types are known, Nk(t) ≐ ∑ j = 1
∞ I(L < T( j) ≤ t^R, δk

( j) = 1)

captures the total number of type-k events observed by time t. Accounting for the fact that 

some event types may be missing, we define 

Nk(t) = ∑ j = 1
∞ I(L < T( j) ≤ t^R, A( j) = 1, δk

( j) = 1  to represent the total number of type-k 

events that are observed by time t and are known to be type-k. Finally, we define 

N . (t) = ∑k = 1
K Nk(t), which captures the total number of recurrent events (regardless their 

types) observed by time t. We assume that Nk
∗( · ) is independent of L and R given X for each 

k, dNk
∗(s) ∈ {0, 1}, and dNk

∗(s)dNl
∗(s) = 0 for k ≠ l. This means, the observation window (L,R] 

is non-informative of the recurrent events, and only up to one type of event can occur at one 

time point.

For the multivariate recurrent events data considered in this paper, recurrent event times are 

always observed but the corresponding event types may be unkown/missing. That is, the 

observed data consist of n independent and identically distributed (i.i.d.) replicates of {N·(t), 
Ňk(t), L, R, dN· (t)A(t), dN· (t)A(t)δk(t), X; t > 0, k = 1, …, K}, denoted by 

{Ni ·(t), Nik(t), Li, Ri, dNi ·(t)Ai(t), dNi ·(t)Ai(t)δik(t), Xi; t > 0, k = 1, …, K}
i = 1
n .

For type-k events, time to expected frequency u (Huang and Peng, 2009) is defined as

τX, k(u) = inf {t ≥ 0: μX, k(t) ≥ u},

where μX, k(t) ≐ E{Nik
∗ (t) ∣ X} is the conditional mean function of the type-k event given X. 

For each event type k, we assume the generalized accelerated recurrence time (GART) 

model (Sun et al., 2016):

τX, k{G(u)} = exp{X⊤β0k(u)}, u ∈ (0, U], (1)

where G(u) = ∫ 0
ug(s)ds with g being a known positive continuous function, β0k(·) is a p×1 

vector of unknown coefficient functions, and U is a positive constant. The non-intercept 

components of β0k(u) represent covariate effects on the time to expected frequency G(u) of 

the type-k event. When they are all constant over u and g(·) = 1, model (1) becomes the AFT 

model for recurrent events. In the non-recurrent event setting (i.e. T i
( j) = ∞ for all j > 1), 

model (1) with g(·) = 1 reduces to a standard quantile regression model for the type-k event 

time.
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2.2 The Proposed Estimating Equations

By Sun et al. (2016), model (1) implies 

E Nik(e
Xi

⊤β0k(u)
) ∣ Xi = E ∫ 0

uY i(e
Xi

⊤β0k(s)
)g(s)ds ∣ Xi , where Yi(t) = I(Li < t ≤ Ri) denotes 

the at-risk process for recurrent events. When the event types are always observed, we have 

Nik(t) = Ňik(t). Thus we can apply Sun et al. (2016)’s method to estimate β0k(u). That is, we 

solve the following estimating equation for βk(·):

n−1/2 ∑
i = 1

n
Xi Nik(exp{Xi

⊤βk(u)}) − ∫
0

u
Y i(exp{Xi

⊤βk(s)})g(s)ds = 0. (2)

When some of event type information is missing, using equation (2) to estimate β0k(u) 

corresponds to the so called complete–case (CC) analysis, which ignores the events of 

unknown type. In this case, Ňik(·) deviates from Nik(·) if Ai
( j) = 0 for some j. Consequently, 

the expectation of the left-hand side of estimating equation (2) with βk(u) = β0k(u) is 

generally away from zero, even when the event type is missing completely at random 

(MCAR) (Little and Rubin, 2002). This suggests that the CC analysis based on estimating 

equation (2) is problematic and can yield a biased estimator of β0k(u).

To obtain an unbiased estimator of β0k(u), our basic idea is to find an appropriate proxy of 

Nik(t), denoted by N̂
ik(t), and then solve the following equation for βk(·):

n−1/2 ∑
i = 1

n
Xi Nik(exp{Xi

⊤βk(u)}) − ∫
0

u
Y i(exp{Xi

⊤βk(s)})g(s)ds = 0. (3)

To attain consistent estimation of β0(·), we shall properly design N̂
ik(t) so that the left-hand 

side of equation (3) (multiplied by n−1/2) approaches zero as n →∞ when βk(·) = β0k(·).

To proceed, we assume a missing-at-random (MAR) mechanism (Little and Rubin, 2002) for 

event types that implies the conditional independence between Ai(t) and δik(t) given dNi·(t) 
and Zi, where Zi encompasses covariate Xi and possibly other observed time-independent 

data, such as Li and Ri. Similar MAR assumptions for recurrent event type were adopted in 

previous work, such as Schaubel and Cai (2006a,b); Lin et al. (2013). With Zi formulated as 

independent of time, our MAR assumption imposes an implicit constraint that the event type 

missing probability is only influenced by the observed data that are fixed over time. As 

shown in Sections 2.2.1 and 2.2.2, this MAR assumption facilitates the derivation of an 

appropriate inverse probability weight and the construction of the proposed EEP equation.

In the following subsections, we give two specific forms of N̂
ik(t) based on the inverse 

probability weighting (IPW) technique and the estimating equation projection (EEP) 

strategy respectively.
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2.2.1 Inverse Probability Weighting (IPW) Method—Let πk(t,z) = E{Ai(t)|dNik(t)} = 

1,Zi = z}, Ai
( j) = Ai(T i

( j)), and πik
( j) = πk(T i

( j), Zi). Using the standard IPW arguments, we can 

show that E{dNik(t) ∣ Zi} = E{ 1
πk(t, Zi)

dNik(t) ∣ Zi}, and thus 

E{Nik(t) ∣ Zi} = E{∫ 0
t 1

πk(s, Zi)
dNik(s)}. Therefore, a special form of N̂

ik(t) is suggested as

Nik
IPW(t) = ∫0

t 1
πk(s, Zi)

dNik(s) ≐ ∑
j = 1

∞ 1
πik

( j) I(Li < Ti
( j) ≤ t ∧ Ri, Ai

( j) = 1, δik
( j) = 1),

where π̂
k(t, z) (or πik

( j)) is a reasonable estimate for πk(t, z) (or πik
( j)).

To derive π̂
k(t, z) (or πik

( j)), we first note that under the assumed MAR mechanism,

πk(t, z) = E{Ai(t) ∣ δik(t) = 1, dNi ·(t) = 1, Zi = z} = E{Ai(t) ∣ dNi ·(t) = 1, Zi = z} . (4)

This implies that πk(t, z)’s are the same for all k ∈ {1, …, K}. Thus, we can drop the 

subscript k in πk(t, z), πik
( j), and πik

( j), and use the notation π(t, z), πi
( j), and πi

( j) instead.

Intuitively, one may adopt a parametric regression model, such as a logistic regression 

model, for Ai(t) to obtain an estimate for π(t, z). However, such an estimator may be biased 

when the parametric model is misspecified. To avoid this issue, we propose a fully 

nonparametric method to estimate π(t, z). Specifically, we propose a Nadaraya-Watson type 

nonparametric estimator of π(t, z) that takes the form

π(t, z) =
∑i = 1

n Kh(Z1i − z1)I(Z2i = z2)∫ Kh(s − t)Ai(s)dNi ·(s)
∑i = 1

n Kh(Z1i − z1)I(Z2i = z2)∫ Kh(s − t)dNi ·(s)
, (5)

where Kh(u) = h−1K(u/h), h is a bandwidth depending on n, Kh(u) = Πi = 1
d Kh(ui) for u = (u1, 

u2, …, ud) ∈ ℛd, z = (z1, z2), d is the number of the continuous elements in Zi, and Z1i and 

Z2i are the continuous and discrete elements of Zi respectively. Here K(u) is a rth order (r > 
d + 1) kernel function with compact support satisfying ∫K(u)du = 1, ∫umK(u)du = 0 for m = 

1, 2, …, r − 1, ∫urK(u)du ≠ 0, and ∫K(u)2du < ∞. In the Supplementary Materials, we show 

that π̂(t, z) is the (kernel-based) local likelihood estimator of π(t, z) via a locally constant 

likelihood approximation. Similar types of estimators have been used in other methods that 

deal with missing data, for example, Zhou et al. (2008), Chen et al. (2015), and Qiu et al. 

(2017).
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Plugging Nik
IPW(t) with πik

( j) = π(T i
( j), Zi) into (3), we obtain an IPW type estimating equation 

for β0k(·):

Snk
IPW(βk) ≐ n−1/2 ∑

i = 1

n
Xi Nik

IPW(exp{Xi
⊤βk(u)}) − ∫

0

u
Y i(exp{Xi

⊤βk(s)})g(s)ds = 0. (6)

The procedure to solve this estimating equation is elaborated in Section 2.3.

2.2.2 Estimating Equation Projection (EEP) Method—Following the EEP strategy 

exploited in literature (Schaubel and Cai, 2006a,b; Lin et al., 2013, among others), we write

Nik(t) = ∫0
t
[Ai(s)δik(s) + {1 − Ai(s)}δik(s)]dNi ·(s) ≐ ∑

j = 1

∞
{Ai

( j)δik
( j) + (1 − Ai

( j))δik
( j)}I(Li < Ti

( j) ≤ Ri ∧ t),

and propose to recover the missing component of Nik(t) (i.e. {1− Ai(s)}δik(s)) by imputing 

the δik(s) with Ai(s) = 0 by its estimated expectation.

Specifically, define pk(t, z) = E{δik(t)|Ai(t) = 0, dNi·(t) = 1,Zi = z}. Under the assumed MAR 

mechanism, we have pk(t, z) = Pr{δik(t) = 1|Ai(t) = 1, dNi·(t) = 1,Zi = z}. We propose a 

Nadaraya–Watson type nonparametric estimator of pk(t, z), given by

pk(t, z) =
∑i = 1

n Kh(Z1i − z1)I(Z2i = z2)∫ Kh(s − t)Ai(s)δik(s)dNi ·(s)

∑i = 1
n Kh(Z1i − z1)I(Z2i = z2)∫ Kh(s − t)Ai(s)dNi ·(s)

.

Similar to the derivation of π̂(t, z), p̂k(t, z) is a maximum local likelihood estimator when 

pk(t, z) is approximated by a constant within a kernel band in t and z; more details can be 

found in the Supplementary Materials. Note that Lin et al. (2013) also adopted a similar 

local likelihood method to estimate the counterpart of pk(t, z) in the one-sample case. They 

used a local polynomial with order q to approximate the imputed probability, and it is hard 

to generalize their estimator to account for covariates. Our idea of using a locally constant 

approximation circumvents such a difficulty. Moreover it enables a closed form for p̂k(t, z), 

which facilitates the computation while not sacrificing the estimation efficiency.

A special form of N̂
ik(t) derived by the EEP strategy is given by

Nik
EEP(t) = ∫0

t
[Ai(s)δi(s) + {1 − Ai(s)}pk(s, Zi)]dNi ·(s)

≐ ∑
j = 1

∞
Ai

( j)δik
( j) + (1 − Ai

( j))pik
( j) I(Li < Ti

( j) ≤ Ri ∧ t)
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where pik
( j) = pk(T i

( j), Zi). The resulting EEP type estimating equation takes the form,

Snk
EEP(βk) ≐ n−1/2 ∑

i = 1

n
Xi Nik

EEP(exp{Xi
⊤βk(u)}) − ∫

0

u
Y i(exp{Xi

⊤βk(s)})g(s)ds = 0. (7)

2.3 Computation algorithm

We generally denote the proposed estimating equations by

Snk
L (βk) = n−1/2 ∑

i = 1

n
Xi Nik

L (exp{Xi
⊤βk(u)}) − ∫

0

u
Y i(exp{Xi

⊤βk(s)})g(s)ds = 0, (8)

with L = IPW or EEP. The resulting estimators are denoted as βk
L · . Following Peng and 

Huang (2008) and Sun et al. (2016), we adopt a grid-based algorithm to get βk
L ·  based on 

equations (8). Specifically, define a grid SL(n) = {0 = u0 < u1 < ··· < uL(n) = U}, and denote 

its size by ||SL(n)|| = maxj=1,…,L(n) |uj − uj−1|. We define βk
L ·  as a right continuous 

piecewise-constant function that jumps only at the grid points of SL(n). We set 

exp{Xi
⊤βk

L(0)} = 0 for every i since τX,k(0) = exp{X⊤β0k(0)} = 0. We obtain βk
L(ul), l = 1, 2, 

…, L(n) by sequentially solving the estimating equation,

n−1/2 ∑
i = 1

n
Xi Nik

L (exp{Xi
⊤βk(ul)}) − ∑

m = 0

l − 1
Y i(exp{Xi

⊤βk
L(um)})∫

um

um + 1
g(s)ds = 0, (9)

with L = IPW or EEP.

An exact solution that makes the equation (9) strictly hold may not exist owning to the fact 

that (9) is not continuous. Since equation (9) is monotone, βk
L(ul) is defined as a generalized 

solution to equation (9) and the set of generalized solutions is convex of diameter O(n−1) An 

equivalent alternative approach to find a generalized solution to (9) is to locate the 

minimizer of the L1-type convex function,

Wl, k
L (h) = ∑

i = 1

n
∑

j = 1

∞
ωi, j, k

L log Ti
( j) − Xi

⊤h + R∗ − ∑
i = 1

n
∑

j = 1

∞
ωi, j, k

L ( − Xi
⊤h)

+ R∗ − ∑
i = 1

n
2Xi

⊤h ∑
m = 0

l − 1
Yi(exp{Xi

⊤βk
L(um)})∫um

um + 1
g(s)ds ,
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where L = IPW or EEP, 

ωijk
IPW =

Ai
( j)

πi
( j) δik

( j)I(Li < T i
( j) ≤ Ri), ωijk

EEP = Ai
( j)δik

( j) + (1 − Ai
( j))pik

( j) I(Li < T i
( j) ≤ Ri), and R* is a 

large constant that bounds ∑i = 1
n ∑ j = 1

∞ ωi, j, k
L ( − Xi

⊤h)  and 

∑i = 1
n 2Xi

⊤h∑m = 0
l − 1 Y i(exp{Xi

⊤βk
L(um)})∫ um

um + 1g(s)ds  from the above.

We can show that ∂W l, k
L (β(ul))/ ∂ β(ul) equals −2 times the estimating equation in (9) by 

following arguments similar to those in the Appendix of Peng and Fine (2009). This justifies 

the use of the minimizer of W l, k
L (h) as a generalized solution to equation (9). We can solve 

the minimization of W l, k
L (h) by using standard statistical software, for example the l1fit() 

function in S-PLUS or the rq() function in R package quantreg. More specifically, let mi = 

Ni·(Ri), 1mi denote a mi × 1 vector with all components equal to 1, and ⊗ denote the 

Kronecker product. One may directly apply the l1fit() or rq() to solve a median regression 

problem with an augmented dataset, where the response vector is

( log (T1
(1)), …, log (T1

(m1)
), …, log (Tn

(1)), …, log (Tn
(mn)

), R∗, R∗)
⊤

,

the covariate matrix is

((1m1
⊗ X1

⊤)⊤, …, (1mn
⊗ Xn

⊤)⊤, − ∑
i = 1

n
∑

j = 1

∞
ωi, j, k

L Xi, ∑
i = 1

n
2Xi ∑

m = 0

l − 1
Yi(exp{Xi

⊤βk
L(um)}) · ∫um

um + 1
g(s)ds

),

and the weight vector is (ω1, 1, k
L , …, ω1, m1, k

L , …, ωn, 1, k
L , …, ωn, mn, k

L , 1, 1)⊤.

3. Asymptotic Properties

In this Section, we establish the uniform consistency and weak convergence of the proposed 

estimator βk
L · . Denote the density of Z by f(z). Define

Nik
AIPW(t) = ∑

j = 1

∞ Ai
( j)

πi
( j) δik

( j) + 1 −
Ai

( j)

πi
( j) pik

( j) I(Li < Ti
( j) ≤ Ri ∧ t),
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μ̃Z,k(t) = E{Nik(t)|Zi}, gZ,k(t) = dμ̃Z,k(t)/dt, gZ(t) = ∑k = 1
K gZ, k(t), μ̃X,k(x) = E{Nik(x)|Xi}, 

gX,k(x) = dμ̃X,k(x)/dx, vk(b) = E[XiNik{exp(Xi
⊤b)}], and Bk(b) = dυk(b)/db⊤. It follows from 

simple algebra that Bk(b) = E{X⊗2eX⊤bgX,k(eX⊤b)}, where v⊗2 = vv⊤ for any vector v. Let 

f X
L (x) and f X

R(x) be the conditional density functions of L and R given X respectively, 

v∼(b) = E[XiY i{exp(Xi
⊤b)}], and J(b) = dυ̃(b)/db⊤, we have 

J(b) = E[X ⊗ 2eX⊤b{ f X
L (eX⊤b) − f X

R(eX⊤b)}]. Denote ℬk(d) = {b ∈ Rp : infu∈(0,U]||υk(b) − 

υk{β0k(τ)}|| ≤ d} as a neighborhood containing {β0k(u), u ∈ (0, U]}, where ||·|| is the 

Euclidean norm.

We assume the following regularity conditions:

C1 Xi and Nik(Ri) are bounded, E(X⊗2) is positive definite.

C2 Each component of υk{β0k(u)} is Lipschitz continuous for u ∈ (0, U], k = 1, …, 
K.

C3 For some d0 > 0, gX,k(exp(X⊤b)) > 0 for any b ∈ ℬk(d0) and X ∈ .

C4 Each component of J(b)Bk(b)−1 is uniformly bounded in b ∈ ℬk(d0).

C5 For any v ∈ (0, U], infu∈[v,U] eigmin Bk{β0k(u)} > 0, where eigmin(·) denotes 

the minimum eigenvalue of a matrix.

C6 The bandwidth sequence h satisfies nh2r → 0, nh2(d+1) → ∞, and nhd+1/ log n 
→ ∞.

C7 The functions, f(z), gZ(t), π(t, z), and pk(t, z) are uniformly bounded away from 

zero, and have r continuous and bounded partial derivatives with respect to t and 

the continuous components of z almost surely.

Note that conditions C1–C5 are the same as those adopted by Sun et al. (2016) for justifying 

the use of equation (2) for estimating the GART model with fully observed event types. It is 

worth mentioning that condition C3 implies that the support of L must include 0 and the 

support of R must cover exp{X⊤β0k(U)} for all X ∈ . This constraint is necessary to 

ensure the identifiability of {β0k(u) : u ∈ (0, U]. Conditions C6 and C7 are common 

assumptions in literature (Chen et al., 2015; Qiu et al., 2017, for example) that ensure the 

desirable large sample properties of nonparametric kernel estimators π̂(t, z) and p̂k(t, z). We 

have the following theorems:

Theorem 1: Suppose model (1) holds for u ∈ (0, U]. Under the regularity conditions C1–

C7, if limn→∞ || L(n)|| = 0, then supu ∈ [v, U] ‖βk
L(u) − β0k(u)‖ p 0 for k = 1, …, K and 

L=IPW or EEP, where 0 < v < U.

Theorem 2: Suppose model (1) holds for u ∈ (0, U]. Under the regularity conditions C1–

C7, if limn→∞ n1/2|| L(n)|| = 0, then n1/2{βk
L(u) − β0k(u)} converges weakly to a Gaussian 
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process for u ∈ [v,U] with covariance Σ(s, t) ≐ E[ηik(s)ηik(t)⊤], where 0 < v < U, ηik(u) = 

Bk{β0k(u)}−1ϕ(ξik),

ξik(τ) = Xi Nik
AIPW{Xi

⊤β0k(τ)} − ∫0
τ
Yi(exp{Xi

⊤β0k(u)})g(u)du ,

ϕ(w)(u) = ∫ 0
uℐ(s, u)dw(s) is a linear operator, and

ℐ(s, t) = ∏
u ∈ (s, t]

[Ip + J{β0k(u)}Bk{β0k(u)}−1g(u)du] .

Note that, Theorem 2 not only establishes the weak convergence result for the proposed 

estimators but also indicates that the proposed IPW and EEP estimators have the same limit 

distributions. Detailed proofs of Theorems 1–2 are provided in the Supplementary Materials.

4. Inferences

4.1 Resampling approach

For inference on β0k(u), we propose a simple resampling procedure by adapting the work of 

Jin et al. (2001). Suppose {ζi, i = 1, …, n} are independent and identically distributed 

variables from a nonnegative known distribution with mean 1 and variance 1, such as the 

exponential distribution with rate 1.

We first need to obtain the resampled versions of π(t, z) and pk(t, z), which are respectively

π∗(t, z) =
∑i = 1

n ζi Kh(Z1i − z1)I(Z2i − z2)∫ Kh(s − t)Ai(s)dNi ·(s)

∑i = 1
n ζi Kh(Z1i − z1)I(Z2i = z2)∫ Kh(s − t)dNi ·(s)

and

pk
∗(t, z) =

∑i = 1
n ζi Kh(Z1i − z1)I(Z2i = z2)∫ Kh(s − t)Ai(s)δik(s)dNi ·(s)

∑i = 1
n ζi Kh(Z1i − z1)I(Z2i = z2)∫ Kh(s − t)Ai(s)dNi ·(s)

.

Then we define βk
L ∗( · ) as the generalized solution to the perturbed estimating equation,

n−1/2 ∑
i = 1

n
ζi Xi Nik

L ∗(exp{Xi
⊤βk(u)}) − ∫

0

u
Y i(exp{Xi

⊤βk(s)})g(s)ds = 0, (10)
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where Nik
L ∗( · ) is Nik

L , with π̂ or p̂k replaced by π*̂ or pk
∗ respectively. We can obtain βk

L ∗( · )

using a similar procedure to that described in subsection 2.3. It can be shown that the 

conditional distribution of n1/2{βk
L ∗(u) − βk

L(u)} based on the observed data and the 

unconditional distribution of n1/2{βk
L(u) − βk0(u)} have the same limiting distribution. By 

fixing the data at the observed values and repeatedly generating {ζi, i = 1, …, n}, we can 

obtain a large number of realizations of βk
L ∗(u). The empirical distribution of βk

L ∗(u) can be 

used to estimate the covariance of βk
L(u) or to construct the confidence interval of βk0(u).

4.2 Sample-based variance and covariance estimation

We develop a sample-based approach to estimate the variance and covariance of βk
L( · ), 

following the lines of Sun et al. (2016). Specifically, define 

Lnk
L (b) = n−1/2∑i = 1

n XiNik
L (exp{Xi

⊤b}), ιik
L (u) = XiNik

L (exp{Xi
⊤βk

L(u)}), Ωnk
L (u)

= n−1∑i = 1
n {ιik

L (u)} ⊗ 2
, and 

L∼n(b) = n−1/2∑i = 1
n XiY i(exp{Xi

⊤b}). The following are steps to obtain consistent estimates 

for Bk{β0k(τ )} and J{β0k(τ)}, the key unknown components of the asymptotic covariance 

from Theorem 2:

1. Find a nonsingular and symmetric p × p matrix Enk
L (u) ≡ {enk, 1

L (u), …, enk, p
L (u)}

such that Ωnk
L (u) = {Enk

L (u)}2
.

2. Find the solution bnk, j
L (u) by solving the equation

Lnk
L (b) = Lnk

L (βk
L(u)) + enk, j

L (u) (11)

for b, j = 1, …, p. The working estimating equation (11) is monotone and can be 

solved by minimizing the following L1 function:

∑
i = 1

n
∑

j = 1

∞
ωi, j, k

L ∣ log (Ti
( j)) − Xi

⊤b ∣ + R∗

− − ∑
i = 1

n
∑

j = 1

∞
Xi

⊤ωi, j, k + 2 ∑
i = 1

n
XiNik

L (exp{Xi
⊤βk

L(u)}) + 2n1/2enk, j
L (u)

⊤
b .

with the same strategy presented for minimizing W l, k
L ∗(h).

3. Compute Dnk
L (u) ≐ {bnk, 1

L (u) − βk
L(u), …, bnk, p

L (u) − βk
L(u)}, and 

E∼nk
L (u) ≐ {L∼n(bnk, 1

L (u)) − L∼n(βk
L(u)), …, L∼n(bnk, p

L (u)) − L∼n(βk
L(u))}.

Ma et al. Page 12

Biometrics. Author manuscript; available in PMC 2018 September 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



4. Calculate n−1/2 Enk
L (u)Dnk

L (u)−1 and n−1/2 E∼nk
L (u)Dnk

L (u)−1, which are consistent 

estimates for Bk{β0k(u)} and J{β0k(u)} respectively.

Denote B̂
k(u) and Ĵk(u) as the estimators of Bk{β0k(u)} and J{β0k(u)} respectively, and 

denote ηik
L (t) = Bk(t)−1ϕ(ξ ik

L ), where ϕ̂(·) is the plug-in estimate for the operator ϕ(·) (defined 

in Theorem 2). Let Nik
AIPW(t) = ∑ j = 1

∞ Ai
( j)

πi
( j) δik

( j) + 1 −
Ai

( j)

πi
( j) pik

( j) I(Li < T i
( j) ≤ Ri ∧ t), and 

ξ ik
L (u) = Xi Ni

AIPW exp{Xi
⊤βk

L(u)} − ∫ 0
uY i exp{Xi

⊤βk
L(s)} g(s)ds , for i = 1, …, n and k = 1, 

…, K and L = IPW or EEP. A consistent sample-based estimate for Σ(s, t) is given by 

n−1∑i = 1
n ηik

L (s)ηik
L (t)⊤.

4.3 Second-stage exploration of varying effects

Given βk
L(τ)’s on a range of τ’s, we can employ second-stage inference to summarize and 

explore the underlying varying pattern of β0k(u). The second-stage inference procedures can 

be carried out by adapting the lines of Sun et al. (2016).

Below we illustrate the second-stage inference procedures via a case where the interest is to 

assess the constancy of a covariate effect. This problem corresponds to testing the null 

hypothesis, Hk0, j: βk0
( j)(u) = ρ0, u ∈ [uL, uU], where ρ0 is an unspecified constant. Here and in 

the rest of this subsection, the superscript (j) indicates the jth component of a vector (j = 2, 
…, p), and we omit the superscript L that indicates IPW or EEP.

For H0, we can use the test statistic 𝒯 = n1/2∫ uL

uUΞ(u){βk
( j)(u) − ρk

( j)}du, where Ξ(u) is a non-

constant weight function satisfying ∫ uL

uUΞ(u)du = 1, and ρk = (uU − uL)−1∫ uL

uU βk(u)du. Let 

𝒯∗ = n1/2∫ uL

uUΞ(u)[{βk
∗ ( j)(u) − βk

( j)(u)} − (ρk
∗ ( j) − ρk

( j))]du, where ρk
∗ = (uU − uL)−1∫ uL

uU βk
∗(u)du. 

We may reject Hk0,j if  > d1−α/2 or  < dα/2, where dα/2 and d1−α/2 are the (α/2)th and the 

(1 − α/2)th empirical quantiles of *. Accepting Hk0,j for all j = 2, …, p may indicate the 

adequacy of a AFT model when g(·) = 1. Following the arguments of Li and Peng (2014), 

we can show that the presented constancy test procedure has a type-I error approaching α as 

n → ∞. The power of the test may be influenced by the choice of the weight function Ξ(u). 

In practice, one may choose Ξ(u) according to the observed pattern of β̂k(u) such that it 

emphasizes the differences from the null to avoid poor power. Note that, we can also show 

that ρ̂k is a consistent estimate for the average covariate effect, defined as 

(uU − uL)−1∫ uL

uU βk0(u)du. The standard error of ρ̂k can be obtained as the empirical standard 

deviation of ρk
∗. When βk0(u) is indeed constant over u, such a constant effect equals the 

average covariate effect, and hence can be estimated by ρ̂k.
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5. Simulation Studies

We conduct Monte Carlo simulations to examine the finite sample performance of the 

proposed method. We consider the situation where there exist two event types (i.e. K = 2). 

Let { Tk
∗ ( j), j = 1, 2, …} be a sequence of ordered random numbers following a standard 

homogeneous Poisson process; in another word, { Tk
∗ ( j) − Tk

∗ ( j − 1): j = 1, 2, …} are 

independent and identically exponetial(1) random variables with Tk
∗ (0) = 0. The type-k 

recurrent event times are generated as

Tk
( j) = exp min 1,

ρ1k · Tk
∗ ( j)

1.5γk
· X1 + ρ2k · X2

ρ0k · Tk
∗ ( j)

γk
, k = 1, 2; j = 1, 2, …,

where the two covariates X1 and X2 follow the Bernoulli distribution, Bernoulli(0.5), and the 

uniform distribution Uniform(−0.5, 0.5), respectively. The frailty γk, which determines the 

level of intra-individual correlation, is drawn from the following two cases:

Case 1: γk = 1;

Case 2: γk ~ Gamma(2, 1/2) with E(γk) = 1 and Var(γk) = 1/2.

Under these simulation setups,

τX, k(u) = exp{ log (ρ0k · u) + min (1, ρ1k · u/1.5) · X1 + ρ2k · X2}

for k = 1, 2. It is seen that X1’s effect on time to expected frequency increases with u, while 

X2’s effect is constant. In addition, we generate Li from ω · Uniform(0, 1) and Ri from 

Uniform(L, 12), where ω is a Bernoulli(0.8) random variable. We set ρ01 = ρ11 = ρ21 = 1.5 

to yield the average number of observed type-1 recurrent events per subject about 2.7, and 

ρ02 = ρ12 = ρ22 = 2 to let that of type-2 events approximately 2.

We simulate missing event types by drawing Ai
( j) at each recurrent event time T i

( j) from a 

Bernoulli(πi
( j)), where π(t, z) = 1 − 1

1 + exp{z(t)⊤α}
, and z(t) = (X1, t)⊤. In our simulations, we 

set α = (1, 0.15)⊤, leading to about 30% missing event types. For each data scenario, we 

generate 500 datasets of sample size n = 200.

We fit the GART model (1) to each simulated dataset setting g(u) = 1. We apply the 

proposed IPW and EEP methods, adopting an equally spaced grid on u ∈ (0, 3] with step 

size 0.02, and choosing the kernel function as the Normal kernel, K(x) = (2π)−1/2 

exp(−x2/2). We compare our methods with the naive complete-case (CC) analysis which 

only uses the events with known event types and the hypothetical Full analysis which applies 

Sun et al. (2016)’s method to the underlying full data which contain the complete event type 

information. In Figure 1, we present the simulation results for the type-1 event coefficient 
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estimates in Case 2. In the first row of Figure 1, we plot the empirical bias of the IPW 

estimator (dotted lines), the EEP estimator (dash dotted lines), the CC estimator (dashed 

lines), and the Full estimator (solid lines). The results show that the proposed IPW and EEP 

estimators exhibit very small bias except for those corresponding to small u’s. In contrast, 

the CC method produces very biased coefficient estimation. The second row of Figure 1 

depicts the empirical standard derivation (SD) and the average standard errors (ASE) (based 

on the resampling method) versus expected frequency u for the proposed IPW and EEP 

estimators. We observe that the empirical SD and ASE agree with each other very well. The 

standard errors of IPW estimator are slightly larger than those of EEP estimator.

In our simulations, we evaluate both resampling-based and sample-based inference 

procedures. For the resampling method, the resampling size of 100 is chosen. The coverage 

probabilities of 95% confidence intervals obtained from both inference approaches are 

depicted in the third row and fourth row of Figure 1 respectively. It shows that the 

resampling procedure and the sample-based strategy have quite comparable performance. 

The resulting coverage probabilities (CP) of the two proposed estimators are fairly close to 

the nominal value; the resampling procedure may perform slightly better than the sample-

based method. This is consistent with the observed large bias of the CC estimator. The 

computation of the sample-based approach is about 2 to 3 times faster than that of the 

resampling procedure.

We have very similar observations on the results from fitting the GART model for type-2 

events in Case 2 and results obtained in Case 1; these results are relegated to the 

Supplementary Materials (see Figures S1-S3). In some unreported simulations, we find that 

using a different kernel function, such as the Epanechnikov kernel K(x) = 0.75(1 − x2)I(|x| < 
1), yields little change to the empirical performance of the proposed estimators.

We also investigate the sensitivity of the proposed procedures to bandwidth selection. We 

consider Case 2 with 500 replications of sample size n = 200. Figure 2 presents the proposed 

coefficient estimates for type-1 event with different choices of h: h = 0.6 (solid lines), h = 

0.8 (dashed lines), h = 1.0 (dotted lines) and h = 1.2 (dot dashed lines). The results for 

type-2 event are presented in Figure S4 of the Supplementary Materials. As seen from 

Figure 2, the empirical bias and empirical standard derivations corresponding to different 

values of h are almost the same. This indicates that the performance of the proposed IPW 

and EEP methods are insensitive with respect to the choice of bandwidth h.

6. A Real Data Example

Cystic fibrosis (CF) is a life-limiting genetic disorder with an incidence rate in Caucasian 

approximately 1:3400 (Boat and Acton, 2007). Cystic Fibrosis Foundation (CFF) patient 

registry (CFFPR) that has documented the diagnosis, treatments and health of all known 

cystic fibrosis patients at more than 120 CFF-accredited care centers across the United 

States since 1970s (Knapp et al., 2016). Pseudomonas aeruginosa (Pa) is one of major 

pathogens in CF lungs that leads to chronic infections and lung function decay. Pa types, 

mucoid, nonmucoid, or mucoid status unknown, have been reported in CFFPR. It is of 
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scientific interest to assess how the recurrence times of nonmucoid Pa infections and mucoid 

Pa infections are influenced respectively by potential risk factors in young CF children.

We consider a dataset from the 2007 CFFPR registry data, which includes 4,144 subjects 

who were born after 1997 and had known diagnosis factor mode before the end of year 

2007. During the follow-up of these subjects, 9,615 nonmucoid Pa infections and 3,393 

mucoid Pa infections were recorded, along with 1,585 Pa infections with unknown types. 

The percentage of nonmucoid, mucoid, and missing Pa infection types are 65.9%, 23.2%, 

and 10.9% respectively. The number of positive Pa infections (nonmucoid and mucoid) 

observed for each subject ranges from 1 to 40, with mean 3.5 and median 2.

In our data analysis, with time origin set as the birth of each subject, the recurrent event time 

T(j) stands for the age of a CF child at his/her jth Pa infection, L corresponds to the age at 

registry entry, and R corresponds to the age at death or the last follow-up. In our dataset, 

13.8% of subjects entered the study right after birth, and L = 0 in these cases. We consider 

risk factors including sex and diagnosis factor (meconuim ileus status; newborn screening; 

family history and signs/symptoms). The summary statistics of these risk factors are 

provided in Table 1. The covariates included in our models are coded as Sex, 1 if the subject 

was female and 0 otherwise; MI, 1 if the subject is diagnosed by meconuim ileus and 0 

otherwise; NewScreen, 1 if the subject is done newborn screening and 0 otherwise; 

FamilyHis, 1 if the subject’s family has the history of CF and 0 otherwise.

We apply the proposed methods to this CFFPR dataset with the covariates described above, 

setting g(u) = 1. We choose the Normal kernel function and the bandwidth h = 4n−1/3sd(T) 

as suggested in Qiu et al. (2017). We use the proposed resampling procedure for inference 

such as confidence intervals. In our analysis, we adopt the MAR assumption (4) with Zi 

including covariates, Sex, MI, NewScreen, and FamilyHis, which means, these observed 

covariates can fully account for the missingness of the PA infection type. This is a 

reasonable assumption for the CFFPR dataset because, according to the investigation of 

Gouskova et al. (2017), the two major causes of missing PA infection types are (a) lack of 

technology to classify the type of PA infection as mucoid or nonmucoid; (b) data recording 

negligence. Since the MAR assumption is not statistically verifiable (Little and Rubin, 

2002), we perform a sensitivity analysis by considering different specifications of Zi. As 

shown in the Supplementary Materials (see Section S4), when Zi only includes NewScreen 
and FamilyHis, the analysis results are very similar to those in Figure 4. This suggests the 

robustness of the proposed method to the variations of the adopted MAR model.

In Figures 3 and 4, we plot the estimated coefficients along with the 95% pointwise 

confidence intervals for the coefficients for the nonmucoid and mucoid Pa infections 

respectively. The inverse probability weighting (IPW) estimates are shown in the first row in 

solid lines, while the estimating equation projection (EEP) estimators are plotted in solid 

lines in the second row. It can be seen that the two proposed estimators demonstrate little 

difference.

In Figures 3 and 4, the intercept coefficient estimates represent the estimated log time to 

expected frequency of nonmucoid or mucoid Pa infection for the reference group, which 
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consists of CF boys diagnosed by signs/symptoms. For example, for this reference group, 

the time from birth to expected nonmucoid and mucoid Pa infection frequency of 1.0 are 

approximately 0.36 and 2.04 years respectively. This indicates a much later development of 

mucoid Pa infection compared to nonmucoid Pa infection in CF children, which is consistent 

with the common clinical manifestations of Pa infections.

The nonintercept coefficient estimates depict the estimated effects of covariates, where 

negative ones indicate more rapid progression to recurrence of nonmucoid or mucoid Pa 

infections. We see from Figure 3 that there is no significant difference in recurrence times of 

nonmucoid Pa infections between CF boys and CF girls. Newborn screening (NewScreen) 

shows a positive effect on the time to expected frequency of nonmucoid Pa infections with u 
< 0.1; however, its effect seems to diminish at larger u’s. The estimated coefficients for MI 
and FamilyHis are mostly significantly above zero. These results may reflect the benefits of 

early CF diagnosis, as CF children typically are diagnosed earlier through MI, new born 

screening, and family history than through signs/symptoms.

Considering mucoid Pa infections, we have some different findings regarding the covariate 

effects. That is, in Figure 4, the estimated coefficients for Sex are significantly negative for 

most u’s, suggesting that CF girls tend to develop mucoid Pa infections sooner than CF 

boys. The estimated coefficients for MI, NewScreen and FamilyHis are significantly positive 

except for those with large u’s, indicating s that CF children diagnosed by symptoms 

developed mucoid PA earlier than those diagnosed by the other methods. Importantly, the 

beneficial effect of newborn screening on mucoid Pa is stronger than that on the nonmucoid 

Pa. This finding is encouraging in that early diagnosis of newborn screening significantly 

delays the onset of mucoid Pa, as well as repeated mucoid Pa.

In Figures 3 and 4, we also plot the coefficient estimates of the complete-case (CC) analysis 

(dotted lines). Some major discrepancy exists between the CC analysis, which naively 

exclude Pa infections with unknown Pa types, and our estimates for nonmucoid Pa 

infections. Specifically, the intercept coefficients for nonmucoid Pa estimated by the CC 

method are significantly larger than those from the proposed IPW and EEP methods. This 

indicates that the CC analysis would significantly overestimate the time to expected 

frequency of nonmucoid Pa infection. One possible explanation is that the majority of 

missing Pa types may in fact be nonmucoid Pa but are ignored by the CC analysis, leading to 

over-optimistic estimates for time to expected frequency of nonmucoid Pa infections. 

Moreover, the proposed estimates and the naive CC estimates generally diverge as u 
increases. This may relate to the fact that the total number of events with missing event type 

cumulates over time.

We also conduct constancy tests for each covariate effect. The weight function is chosen as 

Ξ(u) = 2I{u ≤ (uL + uU)/2}/(uU − uL) with uL = 0.02 and uU = 3. Our constancy tests 

confirm the diminishing pattern of the estimated coefficients for NewScreen observed in 

Figure 3, with p < 0.01. Our tests also suggest that constant effects may be adequate for all 

the other covariates considered in the fitted GART models. The average covariate effect 

estimates provided in Table 2 may serve as the estimates for these constant effects.
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7. Concluding Remarks

In this paper, we investigate the generalized accelerated recurrence time model for 

multivariate recurrent event data with missing event types. We employ two strategies, the 

inverse probability weighting and the estimating equation projection, to handle the missing 

event types. The two proposed estimators have desirable asymptotic properties and are 

shown to be asymptotically equivalent.

As discussed in Section 2, we adopt a missing at random (MAR) mechanism for the missing 

event types, which is weaker than the assumption of missing completely at random. Our 

MAR mechanism implies πk(t, z) is the same for each event type k. This may not be realistic 

in practice when some types of events are more likely to be missing. In that case, the event 

types are not missing at random (NMAR). Some additional unverifiable modeling of the 

event type missing mechanism would be warranted to tackle the non-identifiability issue. 

When the event types are missing at random but under a mechanism changing over time, we 

expect the kernel estimator of π(t, z) or pk(t, z) would take a much more complicated form 

and likely lack sufficient efficiency with moderate sample sizes. Developing methods for 

handling these situations merits future research.

Regarding the bandwidth h for the nonparametric kernel estimators of π(t, z) and pk(t, z), 

the optimal bandwidths may be chosen by minimizing the mean square errors of the kernel 

estimators, but may be difficult to estimate. Several authors (Wang and Wang, 2001; Chen et 

al., 2015; Qiu et al., 2017) have studied data-driven methods for selecting bandwidths in the 

classical survival setting with only non-recurrent events. It is worth investigating their 

extensions the settings with multivariate recurrent events data.
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Figure 1. 
The simulation results for event type 1 coefficients with Case 2. IPW, the inverse probability 

weighting estimator; EEP, the estimating equation projection estimator; CC, the complete-

case estimator; Full, the full data estimator. SD, the empirical standard derivation. ASE, the 

average standard error. CP, the coverage probability.
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Figure 2. 
The comparison of event type 1 coefficient estimates for Case 2 under different values of h. 

IPW, the inverse probability weighting estimator; EEP, the estimating equation projection 

estimator. SD, the empirical standard derivation.
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Figure 3. 
CFFPR data example: the proposed IPW coefficient estimates (solid lines in the top row) 

and their corresponding 95% pointwise confidence intervals (shaded); the proposed EEP 

coefficient estimates (solid lines in the bottom row) and their corresponding 95% pointwise 

confidence intervals (shaded), along with the complete-case (CC) coefficient estimates 

(dotted lines) for nonmucoid PA infection
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Figure 4. 
CFFPR data example: the proposed IPW coefficient estimates (solid lines in the top row) 

and their corresponding 95% pointwise confidence intervals, the proposed EEP coefficient 

estimates (solid lines in the bottom row) and their corresponding 95% pointwise confidence 

intervals, along with the complete-case (CC) coefficient estimates (dotted lines) for mucoid 

PA infection
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