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Abstract
Numerous studies have demonstrated physical activity is a strong factor in overall health and well-being, and a growing
body of literature, reviewed herein, suggests that several eye conditions, including glaucoma, age-related macular
degeneration, and diabetic retinopathy, are associated with lower activity levels. Likewise, physical activity levels are lower
in persons with worse vision. Research in this area has utilized both self-reported physical activity measures as well as
objective measures of activity (i.e., accelerometers), each of which have their own strengths and limitations. Putative
mechanisms explaining the association of various eye conditions with physical activity are discussed. It is possible that
activity restriction occurs as a downstream consequence of eye disease/visual impairment, that activity restriction causes eye
disease/visual impairment, or that causality is bidirectional; evidence supporting each of these theories is put forth. An
improved understanding of the relationship between physical activity and eye disease will highlight potential secondary
health risks resulting from eye disease, and can help determine whether activity might serve as a readily available
preventative measure to prevent specific eye conditions.

Introduction

Visual impairment (VI) and blindness are becoming
increasingly prevalent in the United States and around the
world as a result of aging populations [1]. A recent study
determined that in 2015, among individuals 40 years and
older in the United States, 3.22 million people were visually
impaired and 1.02 million were legally blind. This repre-
sents a >20% increase over the last decade, with
numbers projected to double by 2050 [2]. Of note, these
increases have occurred despite substantial advancement in
the treatment of several of the most common blinding
conditions.

The current review will focus on the potential bidirec-
tional association between physical activity (PA) and vision

loss, particularly as associated with various eye diseases.
We examine if PA, a critical component of health, may be
impeded by vision loss, and whether PA could possibly
protect against vision loss. If PA can be shown to be an
effective method to prevent vision loss, then it would offer a
low-cost, non-invasive treatment option with other positive
benefits. Alternatively, if reduction in PA is a downstream
consequence of VI, then it underscores the need for future
research aimed at identifying specific evidence-based stra-
tegies to promote PA within this sedentary population.

PA and health

Numerous studies have demonstrated that PA is a strong
determinant of overall health and well-being. For instance,
PA can beneficially alter several cardiovascular risk factors
[3, 4], as well as lower one’s future risk of type 2 diabetes
[5, 6]. PA also has proven benefits to the nervous system,
suggesting it may exert similar positive effects on the visual
system given that many parts of the eye share embryologic
origins with that of the rest of the central nervous system.
Improvements in brain function, cognition [7, 8], and even
brain structural volumes have been noticed with aerobic
activity interventions [9]. PA also protects against the
development of neurodegenerative diseases, including
Alzheimer’s disease [10], and has been shown to improve
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cognitive function in Alzheimer’s patients [11]. There is
also evidence of a relationship between PA and positive
effects on mood and anxiety, including decreases in the risk
of incident depression [12] and improved symptoms in
persons with pre-existing depression or anxiety [13–17].
Given that VI has been shown to be associated with
increased anxiety [18], PA may offer benefits with regard to
not only the underlying ocular disease processes but also to
the downstream psychological effects of disease.

The broad array of systems affected by PA suggests
substantial secondary consequences of vision loss if habi-
tual PA is reduced in individuals with VI. These con-
sequences go beyond the vascular and neurological
conditions listed above. For example, PA can decrease the
risk of osteoporotic fractures in older individuals and have
long-lasting effects on bone health [19]. It also affects body
composition, increasing lean body mass through increasing
skeletal muscle mass and reducing fat mass [20–22]. PA
has even been associated with lower rates of various
malignancies, including colon [23] and breast cancer [24],
suggesting that poor PA resulting from VI may produce
significant secondary comorbidity.

Measuring PA

Assessing the relationship between PA and visual problems
requires that PA be quantified accurately—a challenge
given that PA is a complex, multi-dimensional behavior that
can be further categorized in terms of frequency, mode,
duration, and intensity. This has practical significance
for evaluating the value of both previous and future
studies focusing on the relationship between PA and eye
disease. Categorization of PA has largely been accom-
plished through two methods—subjective assessments
(questionnaires); and objective methods (wearable devices).

Common self-reported measures to capture PA include
diaries, PA logs, and recall surveys and questionnaires. For
example, the National Health and Nutrition Evaluation
Survey (NHANES) assessed mode, frequency, and duration
of recreation over a 30-day period. Other tools such as the
Compendium of Physical Activity were developed to cap-
ture intensity of activity by coding data from PA records,
logs, and surveys [25]. Intensity of a specific activity can be
expressed in metabolic equivalents—the ratio of working
metabolic rate to a standard resting metabolic rate—allow-
ing for estimation of energy expenditure [25, 26].

Objective measurements of PA have emerged as the gold
standard for quantifying PA, most commonly through
measurements of steps and minutes of greater (non-seden-
tary) activity using accelerometers. Studies suggest they
accelerometers are a more reliable method of capturing true
PA as compared to self-reported measures. Accelerometers

typically record activity in epochs of programmable length,
in which activity is quantified as steps and further cate-
gorized by intensity of motion over each study epoch based
on the amount of detected movement adjusted for body size
[27]. More recent methods involve analysis of triaxial
accelerometry data obtained at sub-second resolutions using
complex statistical methods to more accurately predict the
amount of energy being expended [28]. Participants typi-
cally wear accelerometers during waking hours, and data
from the accelerometers are summarized as the mean steps,
counts (a raw metric of detected acceleration), or daily
minutes spent in light, moderate, or vigorous PA [29].

Several studies have compared subjective measures of
PA to objective measures, and have suggested potential
limitations with the subjective assessment of PA [30–32].
Questionnaire accuracy may vary with the amount of time
spent at greater levels of activity [33]. Self-reported PA is
also poorly correlated with accelerometer-defined PA [34]
and has weaker associations with biomarkers—body mass
index, waist circumference, glycohemoglobin, insulin, and
homocysteine— than objectively measured PA, suggesting
that it is less reflective of actual activity and health [35].

While accelerometer-defined activity is the preferred
method of measuring PA, it still exhibits some issues with
accuracy depending on inconsistencies in device type, pla-
cement [29], age, and health of the wearer. Most studies
assessing the validity of accelerometer measurements have
included young, healthy volunteers, which were shown to
be problematic when translating results to older or obese
populations due to differences in speed of movement, gait
mechanism, and body composition [36, 37]. Data suggest
that accelerometers can underestimate steps in persons with
short shuffling gaits [38–40], indicating that data may not
be accurate in the visually impaired for which specific dif-
ferences in gait patterns between those with and without VI
have been noted [41]. Studies have shown PA patterns
measured by accelerometers differ by age, in which further
validation is needed in older populations, and the type of
walking task [42]. Individuals with functional limitations,
including those with physical disability, also introduce
complications when comparing the accelerometer-defined
PA and energy expenditure. For instance, the accelerometer
algorithm extrapolating accelerometer counts per day for
a stroke patient likely yields inaccurate estimates of PA-
related energy expenditure for that individual [43].

Objective PA monitoring through wearable devices is
rapidly evolving, and new devices including new features
(i.e., heart rate and sleep monitoring) are becoming
increasingly available. While commercial-level devices for
measuring activity are comparatively less expensive and give
general data about steps and PA intensity, research-grade
devices more accurately quantify intensity and can sample at
higher frequencies. In a recent study assessing the validity of
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consumer-level activity monitors in healthy adults, these
monitors demonstrated highly accurate measurements of
steps and sleep duration, but were much less accurate for
measurements of total daily energy expenditure and mod-
erate to vigorous PA (MVPA) [44]. Moreover, the validity
of each type of consumer-level device varied markedly.
Additionally, while the feedback provided by consumer-
level devices contributes to their great potential as inter-
vention tools, it may lead to changes in participant behavior,
making such devices undesirable for measuring habitual PA.

There is a lack of clarity regarding which measures of PA
are most relevant to health, making it uncertain whether the
additional information captured by medical-grade accel-
erometers is valuable. A study examining the health benefits
of high- versus low-intensity exercise programs yielded
unclear conclusions as to which confers greater health
benefits [45]. Current literature also provides conflicting
evidence as to whether there are equal benefits of con-
tinuous versus fragmented activity, a distinction that is
better evaluated through medical-grade accelerometers
[46–48]. Light-intensity PA has also been shown to have
beneficial effects on serum brain-derived neurotrophic fac-
tor (BDNF) levels and levels of other growth factors, sug-
gesting that light activity, which are significantly more
common in older individuals than moderate/vigorous
activity, may be sufficient to accrue the positive benefits of
movement [49]. More studies are required to better under-
stand the specific patterns of activity restriction that result
from VI, and the types of activity, which are of greatest
benefit with regards to protecting against eye disease.

PA and VI

Several studies have examined the association between PA
and VI without devoting significant attention to the disease
(s) producing VI. A study examining self-reported partici-
pation in leisure activities among elderly patients with low
vision demonstrated significant declines in five of the six
activity categories over time. Significant changes were seen
in participation in active crafts and participatory sports [50].
In NHANES, a large population-based study of US adults,
persons with bilateral visual field (VF) loss demonstrated
30% less time spent in MVPA as compared to those without
VF loss [51]. Separate NHANES work demonstrated that
VI (corrected VA worse than 20/40) was associated with a
nearly 50% reduction in the time spend in MVPA [52]. Of
note, no restriction of PA was noted in participants with
poor presenting acuity due to uncorrected refractive error
(URE). The drastic difference regarding the impact of VI
and URE on PA is surprising, and suggests that PA may
be a contributing factor to eye diseases that produce VI,
as opposed to a downstream consequence [53]. These

observations motivate further investigation into the role of
PA within specific eye diseases in order to better understand
the importance of PA in preventing the development or
progression of such diseases.

Intraocular pressure, glaucoma, and PA

Glaucoma affects 2–4% of adults over the age of 40, and
will increase in prevalence as the population ages [54].
Many studies suggest that glaucoma affects mobility [55],
balance [56], and increases the risk of falling [57] due to VF
loss. There have been several studies examining the effect
of VF loss seen in glaucoma on PA levels. A recent study
assessing the PA of glaucoma patients using accelerometers
showed that severity of VF loss was associated with fewer
daily steps (12% less per each 5 dB decrement in the better-
eye VF) and less time spent in MVPA (21% less) [34].

Other studies have specifically suggested that more
vigorous activity is a means of helping prevent or
delay glaucoma. A study examining runners showed that
participants with faster 10 km race performance and longer
running distances had lower risk for incident participant-
reported, physician-diagnosed glaucoma [58].

Mediation studies have yielded insights into the possible
direction of causality between VF damage and PA in glau-
coma. One study found that severity of VF damage in persons
with glaucoma remained associated with PA even after
inclusion of fear of falling in the model, suggesting that
activity restriction may not be the result of fear of falling [27].
Of note, this finding was disease-specific, as fear of falling
was noted to mediate the association of poor vision and
activity restriction in age-related macular degeneration
(AMD) patients. These data suggest that VF damage leads to
activity restriction through other unknown pathways not
involving fear of falling, or that VF damage may actually be a
product of activity restriction. Thus, while an effort to replace
inactivity with low-risk PA in glaucoma patients may be an
important intervention, further studies need to be done to
examine what elements are involved in mediating VF loss and
PA restriction in glaucoma patients, and to conduct long-
itudinal studies that can help clarify the direction of causality.

Neuroprotective effects of PA in models of
glaucoma

There is significant evidence demonstrating neuroprotective
effects of PA [8], a relationship that has been shown to
extend to protection of retinal ganglion cells and their
axons against irreversible damage. Intraocular pressure
(IOP) elevation is one of many risk factors for glaucoma,
though evidence suggests lowering IOP does not prevent
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disease progression in all patients [59]. Thus, therapies
combining conventional IOP-lowering approaches with
neuroprotective treatments could better preserve vision by
protecting neurons, which are reversibly damaged, or likely
to be damaged in the future, as part of glaucomatous optic
neuropathy [60].

Exercise has previously been shown to be associated
with neuroprotection in age-related neurodegenerative
conditions such as Alzheimer’s disease and vascular
dementia [61, 62]. More recent evidence indicates a similar
protective effect of exercise in the progression of eye dis-
ease. Forced regular exercise in aged mice was shown to
protect the aged optic nerve against IOP-induced injury
[63]. Furthermore, we observed a case of possible bilateral
VF damage reversal in a 30-year-old female glaucoma
patient who started a vigorous exercise program. Symmetric
bilateral improvements were observed, suggesting partially
reversible improvement in visual function as a result of PA.
Bilateral improvements were lost when she temporarily
stopped exercising, and improved again upon resumption of
her exercise program (Fig. 1). Certainly, this individual case
is subject to placebo effects as well as artifacts of visual
testing, and further research is required to determine if there
is a direct protective role of PA on preventing or even
partially restoring visual function in glaucoma.

Possible mechanistic explanations of PA and
neuroprotection in glaucoma

Low ocular perfusion pressure (OPP) is a consistent risk
factor for higher prevalence, incidence, and progression of

open-angle glaucoma (OAG) [64]. Patients who reported
active lifestyles in the past have been shown to have lower
risk of having a low OPP, suggesting one possible
mechanism through which PA might reduce the risk of
developing OAG [65].

BDNF is important in maintenance, growth, and survival
of neurons, with numerous studies in both rats and humans
demonstrating enhancements in cognition mediated by
PA-induced increases in BDNF [66]. Both human and
mouse studies demonstrate an increase in BDNF release
during exercise, while BDNF mRNA expression peaks
during the recovery from exercise. BDNF gene upregulation
during exercise recovery is thought to promote BDNF
accumulation after repeated exercise sessions, eventually
leading to a detectable increase in BDNF in specific brain
areas [67]. Overexpression of the BDNF gene contributed to
retinal ganglion cell protection in an animal model of
glaucoma, which was shown to have downregulated BDNF
gene expression [68]. Similarly, lower serum BDNF levels,
an indication of a sedentary lifestyle, have been observed in
glaucoma patients with more advanced VF damage [69],
though PA levels were not determined for these patients.
Furthermore, studies suggest impaired retrograde transport
of BDNF in glaucoma is a possible mechanistic cause of
optic nerve atrophy and ganglion cell death [70]. Finally, it
has been shown that BDNF is essential for exercise-
mediated improvements seen in functional recovery of the
retina post exercise [71], further supporting the protective
role of BDNF and PA in ocular disease.

Lastly, IOP has been shown to be elevated during
exercise, possibly due to respiratory and/or body position-
related and/or muscle exertion-related mechanisms. This
elevation in IOP has been postulated to pose a detrimental
risk for glaucoma onsent and worsening. Most studies have
investigated reductions in IOP after aerobic exercise, but
IOP elevations during static strength training exercises [72]
indicate that such activities could have a pathogenic role in
the development and progression of glaucoma in rare cases
[73]. Past studies showing a reduction in IOP immediately
or shortly after exercise, as well as a lower baseline IOP in
glaucoma patients, suggesting PA might actually have a
beneficial effect on IOP [74]. Most studies have focused on
the impact of very intense activity on IOP, and there is a
need to explore the relationship of light activity on IOP
given emerging evidence that even light activity, which
reduces sedentary time, can have positive benefits [75].

AMD and PA

AMD is the leading cause of blindness among people
age 50 and older, and there are limited options to prevent
progression of this chronic disease, especially in patients

Fig. 1 Case study of visual field improvement with physical activity in
a patient with glaucoma. This case demonstrated visual field index
(VFI) changes with exercise patterns (defined by a program of run-
ning) in a 32-year-old female with actively treated uveitic glaucoma.
VFI improved with onset of physical activity, but declined with
interruption of exercise
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suffering from geographic atrophy/dry AMD [76]. The
pathogenesis of AMD is not fully known, but several
mechanisms have been proposed as important in develop-
ment of the disease, including dysregulation of the com-
plement cascade [77] and oxidative stress [78]. Physical
inactivity has been associated with the development
of precursors for AMD in the form of macular drusen [79]
and may facilitate the progression of vision loss and
AMD severity through inflammation and endothelial dys-
function [80].

A nationally representative sample of US adults showed
individuals with late AMD spent significantly less time in
MVPA than those with early AMD or without AMD over 1-
week accelerometer trials [52]. In contrast, a recent study in
elderly Danish patients with late AMD suggested that
patients with late AMD may still be physically active based
on self-reported PA, though the type of activities performed
may change into less vision-demanding ones as AMD
progresses and vision is lost [81]. The lifestyle of different
populations and/or the methods used to evaluate PA may
account for these observed differences. A report assessing
the association between AMD and self-reported PA in the
Melbourne Collaborative Cohort Study suggests that past
frequent vigorous exercise may be inversely related to the
presence of intermediate AMD in women [82], and an
investigation of subjectively measured PA and risk of
developing AMD over a 15-year period demonstrated
engagement in an active lifestyle reduced the risk of
developing AMD over 15 years by 70%, as measured
through fundus photographs [77]. Another longitudinal
study examining self-reported PA in individuals with early
or intermediate stages of AMD demonstrated that greater
PA levels decreased the risk of progression to advanced
AMD [83]. Thus, not only does AMD appear to limit
PA but also PA may be protective against the progression
of AMD as judged by the few longitudinal studies on the
topic. PA may also modify the impact of vision loss
on quality of life, as demonstrated by a study of patients
with bilateral AMD, where loss of valued activity
mediated the relationship between visual acuity and level of
distress [84].

Diabetic retinopathy and PA

With the increasing global prevalence of diabetes, diabetic
retinopathy (DR) is set to be the principle cause of vision
impairment in many countries [85]. The association
between physical inactivity and diabetes is well established
[86]. Furthermore, lifestyle intervention and PA have been
shown to reduce the incidence of type 2 diabetes mellitus
(T2DM) in high-risk individuals with impaired glucose
tolerance by 58% [5], and were more effective than

metformin in preventing T2DM [6]. While physical inac-
tivity has been identified as a modifiable risk factor of type
2 diabetes, relatively little is known about the relationship
between PA and vision loss seen in DR.

Retina imaging to take measurements of central retinal
arteriolar equivalent and central retinal venular equivalent
(CRVE) have been used to determine their relevance as a
risk factor for vascular disease, including DR [87]. A study
assessing the relationship between PA and retinal vascular
caliber demonstrated a significant association between low
levels of PA and wider CRVE in men, but not in women
[88]. Similarly, the Atherosclerosis Risk in Communities
study found individuals with self-reported higher levels of
PA were significantly more likely to have narrower venular
caliber and a lower prevalence of arteriovenous nicking and
retinopathy [89]. Together, these studies suggest both low
levels of PA and higher levels of sedentary behavior are
associated with wider CRVE and could possibly contribute
to an increased risk in developing DR.

PA has been associated with improvements in vascular
endothelial function [90], and is thus suggested to play
a protective role for development of advanced DR
through this mechanism. One study examined the associa-
tion between objectively measured PA and nonproliferative
DR, and even modest amounts of PA decreased the like-
lihood of developing severe nonproliferative DR [91].
Increasing evidence from both animal models and human
studies show that chronic inflammatory processes and
glucose-induced endothelial dysfunction are related to
development, severity, and progression of DR [92].
Thus, the beneficial effects of PA on endothelial function
and inflammation may contribute to not only preventing
the development of DR but also treatment of patients with
DR [93, 94] (Table 1).

Conclusion

PA has been established as an essential factor of overall
health. The relevance of PA to VI may be twofold; the level
of PA in an individual may be affected by vision loss, while
increased levels of PA may protect against vision loss. In
examining relationships between PA and three common eye
diseases that lead to VI—glaucoma, AMD, and DR—much
evidence supports a possible protective role of PA against
vision loss, though longitudinal studies using objective
measures of PA and clinical trials designed to increase PA
are needed to more firmly establish the truth of these
hypotheses. These diseases, particularly at more advanced
stages, also largely identify persons as being at higher risk
of poor activity. This suggests that an emphasis on main-
taining healthy PA levels is especially important in indivi-
duals with vision loss.
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