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Systematic identification of non-coding
pharmacogenomic landscape in cancer
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Emerging evidence has shown long non-coding RNAs (lncRNAs) play important roles in

cancer drug response. Here we report a lncRNA pharmacogenomic landscape by integrating

multi-dimensional genomic data of 1005 cancer cell lines and drug response data of 265 anti-

cancer compounds. Using Elastic Net (EN) regression, our analysis identifies 27,341 lncRNA-

drug predictive pairs. We validate the robustness of the lncRNA EN-models using two

independent cancer pharmacogenomic datasets. By applying lncRNA EN-models of 49 FDA

approved drugs to the 5605 tumor samples from 21 cancer types, we show that cancer cell

line based lncRNA EN-models can predict therapeutic outcome in cancer patients. Further

lncRNA-pathway co-expression analysis suggests lncRNAs may regulate drug response

through drug-metabolism or drug-target pathways. Finally, we experimentally validate that

EPIC1, the top predictive lncRNA for the Bromodomain and Extra-Terminal motif (BET)

inhibitors, strongly promotes iBET762 and JQ-1 resistance through activating MYC tran-

scriptional activity.
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Heterogeneous response of individuals to cancer therapies
has been largely attributed to genetic difference of tumor
cells1. Using cell-line-based panels, annotated with both

genetic and pharmacological data, to gain insights into the
mechanism of anti-cancer drug response has been considered as
the cornerstone of precision cancer medicine2. Those large-scale
high-throughput cancer pharmacogenomics efforts, mainly
focusing on protein coding components of the genome, have led
to many insightful discoveries3–6 but also raised new questions:
few new biomarkers and drivers were identified to fully explain
the regulation of drug resistance in cancer7.

Emerging evidence from large-scale studies, such as the
Encyclopedia of DNA Elements (ENCODE), suggest that up to
80% of the human genome is capable of being transcribed into
primary RNA transcripts, including numerous long non-coding
RNA (lncRNA)8,9. These studies have identified 16,033 lncRNAs
genes, which are ncRNAs larger than 200 nt and do not have
protein-coding potential10. Further genome-wide characterization
of the human cancer transcriptome revealed that lncRNAs are
among the most prevalent transcriptional changes in cancer11–13.
Similar to the protein-coding genes, lncRNAs can play critical
roles in tumor initiation and progression9,14–18, as well as cancer
therapy response19–21. Large-scale cancer genome and pharma-
cogenomics projects, such as The Cancer Genome Atlas (TCGA)
4, Cancer Cell Lines Encyclopedia (CCLE)2, Genomics of Drug
Sensitivity in Cancer (GDSC)22, and Cancer Therapeutics
Response Portal (CTRP)23 have provided an unprecedented
opportunity to systematically determine the regulatory roles of
lncRNA in cancer drug response by generating RNA-seq data in
conjunction with clinical and drug response data from thousands
of tumor samples and cancer cell lines.

Here we integrated multiple dimensional pharmacogenomics
data of 2614 cancer-related lncRNAs in 5605 primary tumor
samples and 505 cancer cell lines from 27 cancer types to build
lncRNA-based drug response models for 265 anti-cancer agents.
We have demonstrated that cancer cell lines could recapitulate
the lncRNAs alterations, i.e. expression, copy number and
methylation aberrations, in primary tumors. Further Elastic Net
(EN) regression analysis identified 27,341 lncRNA-drug pre-
dictive pairs in cancer cell lines. Notably, lncRNA-based EN
models can predict chemotherapy response not only in inde-
pendent cell line pharmacogenomic databases, but also in cancer
patients. Mechanistically, our computational analysis and
experimental validation reveal that lncRNAs may regulate cancer
drug response through drug metabolism and drug-target path-
ways. To our best knowledge, this is the first study to system-
atically link noncoding genotypes with drug response phenotypes
in both cancer cell lines and patient tumors.

Results
Recap of lncRNA alterations in primary tumors by cell lines.
To assess whether cancer cell lines resemble the primary tumors
in the perspective of lncRNA alterations, we obtained RNA-seq,
copy number and DNA methylation data in 5605 TCGA tumor
samples and 505 cancer cell lines across 27 cancer types from
GDSC and CCLE database. The 2614 cancer-related lncRNAs
were first identified based on differential expression between
patient tumors and normal tissues in the TCGA database
(Methods section). Among the 2614 cancer-related lncRNAs
derived from patient tumor samples, all of them are expressed in
at least one cancer cell line; and 2511 (96.06%) are expressed in at
least three cell lines (Fig. 1a, b). We further repurposed the
Affymetrix SNP 6.0 microarray and IIlumina 450K Human
Methylation microarray to obtain the copy number and epige-
netic alterations of cancer-related lncRNAs in each tumor sample

and cell line as previously described24,25 (Fig. 1a, Methods sec-
tion). The lncRNA alterations were significantly correlated
between cell lines and patient tumors for 14 out of 18 (77.78%)
cancer types based on expression, 15 out of 19 (78.94%) cancer
types based on DNA methylation, and 13 out of 18 (72.22%)
cancer types based on copy number alterations (Fig. 1c–e).

We next used a previously described nearest-neighbor match-
ing algorithm22 to determine whether lncRNA alteration profiles
in cancer cell lines are representative of patient tumors based on
the lncRNA alterations (Methods section). Within the top 5
nearest neighbors, the algorithm could 100% match the tissue of
origin of cell lines to primary tumors using lncRNA expression
with a random expectation of matching rate at 33.3%. This
percentage is around 89.5% when using methylation and is 88.9%
when using copy number with random expectation at 15.8% and
27.8%, respectively. After integrating three features, the success
rate of matching is around 94.4% (random expectation at 22.2%)
within the top 5 nearest neighbors (Fig. 1f, Supplementary
Data 1). The concordance of lncRNA alterations between primary
tumors and cancer cell lines was most prominent in the
expression level, followed by DNA methylation and copy number
alterations.

A landscape of LncRNA-drug interaction in cancer cell lines.
LncRNAs expression profile and drug response data across 505
cancer cell lines were integrated to identify predictive lncRNA-
drug pairs (Supplementary Fig. 1a, Methods section). For each
cell line, the drug response data include the values of IC50 and
area under the curve (AUC)22 of 265 anti-cancer agents from the
GDSC database (Fig. 2a, Supplementary Fig. 2a, Supplementary
Data 2). By conjugating Elastic Net (EN) Regression and boot-
strap aggregating, we built lncRNA-drug response prediction
models for each agent across all the cell lines (pan-cancer model)
or cell lines from a specific cancer type (cancer-specific model)
(Methods section). The model performance was assessed by the
correlation between the predicted response and the observed
response for each agent. Overall, pan-cancer models for 265 drugs
achieved median performance at r= 0.31 (p= 6.76 × 10−5,
Pearson’s correlation) in bootstrapping. Cancer-specific models
built by smaller numbers of samples, on the other hand, achieved
a decreased median performance at r= 0.13 (Pearson’s correla-
tion) (Fig. 2b).

To determine each lncRNA’s contribution to drug response, a
predictive score (PS) was assigned to each lncRNA based on the
frequency it was selected by EN regression throughout the
bootstrapping (Supplementary Fig. 1 b, Methods section). The
lncRNA with higher PS would have better association with the
corresponding agent response, which was defined as a lncRNA-
drug predictive pair. Using IC50 as an indicator of drug response,
this feature selection process identified 27,341 lncRNA-drug
predictive pairs through pan-cancer modeling (on median 100
predictive lncRNAs per agent) (Fig. 2c, d, Supplementary Data 3,
Methods section). When using AUC22 as an indicator of drug
response, a highly consistent lncRNA-drug pairs network was
obtained (r= 0.63, p < 0.0001, Pearson’s correlation) (Fig. 2e,
Methods section).

To validate the identified lncRNA-drug predictive pairs, we
calculated the correlation between the expression of these
lncRNAs and drug response in two independent datasets: the
CCLE and CTRP (Supplementary Data 2). We observed a
significantly higher correlation for the lncRNA-drug predictive
pairs compared to the non-predictive ones in both datasets (two-
side Kolmogorov-Smirnov (KS) test: p= 1.01 × 10−7 for CCLE; p
= 2.39 × 10−32 for CTRP) (Supplementary Fig. 2a). Moreover, we
also performed the same feature selection procedure using the
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drug response data from CCLE and CTRP datasets. For the 14
overlapping agents between CCLE and GDSC, we identified 512
and 1366 lncRNA-drug pairs respectively. Among the 512
lncRNA-drug pairs in CCLE, 90 (17.6%) were also found to be
significant (PS >= 0.25) in GDSC (odds ratio (OR)= 5.71, p=
1.41 × 10−34 Fisher’s exact test). For the 76 overlapping drugs

between CTRP and GDSC, we identified 4827 and 7938 lncRNA-
drug pairs, respectively. Among the 4827 lncRNA-drug pairs in
CTRP, 612 (12.7%) were also found to be significant (PS >= 0.25)
in GDSC (OR= 3.59, p= 8.89 × 10−136, Fisher’s exact test).
Notably, the lncRNA-drug pairs identified by EN regression
model have a significantly higher robustness among independent
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databases than those identified by Spearman's correlation (3.6%
for CCLE and 1.4% for CTRP).

The EN regression successfully identified lncRNAs that are well
documented to regulate drug response. For instance, our model
identified MEG3 overexpression as a predictor of cisplatin
sensitivity, which is consistent with previous findings that lung
and ovarian cancer patients with MEG3 over-expression have
better response to cisplatin treatment26–28. Our model also
identified previously reported regulation of cisplatin response by
HOTAIR29, MALAT130, and NEAT131. Besides, we also uncov-
ered novel interactions that potentially contribute to clinical
outcome. For example, the expression of LINC00992 in primary
tumors increases along with the disease progression (Supplemen-
tary Fig. 2c) and correlates with poor patient survivals in multiple
cancer types that are routinely treated with chemotherapy
(Supplementary Fig. 5d). Meanwhile, LINC00992 is identified as
a drug-resistance predictor for many cytotoxic agents, including
cisplatin (PS: 0.99) and gemcitabine (PS: 0.99). LINC00992
overexpression-related chemo-resistance might account for the
observed poor prognosis in patients with high LINC0992
expression.

Notably, agents targeting the same pathway tended to share
similar predictive lncRNAs (Fig. 2c, Supplementary Fig. 2b, d,
Methods section). For example, agents targeting the genome
integrity shared significantly more predictive lncRNAs (p= 9.6 ×
10−9, Wilcoxon rank-sum test, Fig. 2f). Moreover, within the
genome integrity group, PARP inhibitors olaparib and talazo-
parib shared a significantly higher proportion of predictive
lncRNAs (OR= 3.32, p= 1.6 × 10−55, Fisher’s exact test) than
with CHEK inhibitor AZD7762 (OR= 1.44, p= 8.9 × 10−6,
Fisher’s exact test), indicating that lncRNA-drug predictive pairs
might imply the mechanism that is involved in the drug response
in these cell lines.

LncRNA-based models predict drug response in cell lines.
Using the most predictive lncRNAs identified by the boot-
strapping training, a lncRNA-based EN prediction model (LENP)
was built for each agent (Supplementary Fig. 1a, Methods sec-
tion). The model performance was assessed by tenfold cross-
validation using Pearson’s correlation coefficient and Kendall’s τ
of observed versus predicted IC50s (Supplementary Data 4,
Methods section).

Here we refer to LENP models trained using IC50 values, but
very similar results were obtained by using AUCs (Supplementary
Fig. 3a). Compared to the previous bootstrapping procedure with
all of the lncRNAs included, LENP models have a substantially
improved performance in predicting the cell lines IC50s by using
the top predictive lncRNAs (Fig. 3a). The improved model
performance indicated the EN regression’s power in identifying
lncRNAs that are highly predictive of drug response. Overall, the
pan-cancer LENP models reached a median performance at r=
0.55 (p < 10−33, Pearson’s correlation), while the cancer-specific
LENP models have a median performance at r= 0.71 (p < 10−6,
Pearson’s correlation) (Fig. 3b, see Methods section). Notably,
agents with higher pan-cancer performance tend to be agents that

have a broader anti-cancer spectrum (Fig. 3c). For instance, in
pan-cancer models, agents targeting the cell cycle, genome
integrity and mitosis have overall better performances than
agents targeting the ABL signaling and IGFR signaling (Fig. 3c).
We also observed that some models built for targeted agents have
increased performance in cancer-specific models compared to
pan-cancer models. For example, the acute myeloid leukemia
(LAML)-specific model for imatinib had an elevated performance
(r= 0.82, Pearson’s correlation) compared to the pan-cancer
model in predicting the IC50s in leukemia cell lines (r=−0.09,
Pearson’s correlation).

Next, we sought to validate the LENP models using the CCLE
and the CTRP databases (Supplementary Data 4, see Methods
section). Among the 14 overlapped agents in CCLE database,
LENP models successfully predicted the cell line response for 9
agents (p < 0.05, Spearman’s correlation), including paclitaxel
(rho= 0.34, p= 0.0014, Spearman’s correlation) and 17-AAG
(rho= 0.32, p= 4.6 × 10−7, Spearman’s correlation) (Fig. 3d, e).
For 76 overlapped agents in CTRP database, LENP models could
predict the drug response for 34 of them (p < 0.05, Spearman’s
correlation). We observed a strong positive association
between prediction performance and the inter-database drug
sensitivity measurements consistency (r= 0.59, p= 0.028 for
CCLE; r= 0.62, p= 1.7 × 10−9 for CTRP, Pearson’s correlation),
indicating the independent validation performance largely
depends on the agreement between databases32 (Supplementary
Fig. 3b).

LENP models predict therapeutic outcomes in cancer patients.
We have shown that cancer cell lines could recapitulate the
lncRNA transcriptomic, genomic, and epigenetic alterations in
primary tumors. To determine whether cancer cell line based
LENP model could predict patient drug response, we applied the
LENP models to TCGA tumor lncRNA expression profile and
predicted patient drug response across 21 cancer types (Supple-
mentary Figs. 1a, 4a, Supplementary Data 5, see Methods sec-
tion). Since chemotherapy is widely used in advanced stages of
solid tumors, the prediction is restricted to solid tumor patients
with stage II (or later) disease and all LAML patients.

Our analysis revealed that LENP is capable of predicting the
known and novel drug sensitivities in patients (Supplementary
Fig. 4b, see Methods section). For example, bleomycin is an FDA
approved agent to treat head-neck squamous cell carcinoma
(HNSC), uterine corpus endometrial carcinoma (UCEC), cervical
squamous cell carcinoma and endocervical adenocarcinoma
(CESC). Compared to an average sensitivity rate (see Methods
section) at 23.8% of other cancer types, a significantly higher
sensitivity rate to bleomycin was observed in patients with UCEC
(sensitive rate: 95.3%; p= 3.59 × 10−74, two-side KS test), CESC
(sensitive rate: 55.5%; p= 3.53 × 10−16), and HNSC (sensitive
rate: 38.5%; p= 0.06) (Fig. 4a, see Methods section). Besides these
FDA approved indications (i.e. drug-cancer type pairs), our data
suggest that 46 out of 49 (93.9%) drugs had a proportion of
‘sensitive’ tumors for which the treatment by such drugs has not
been approved (Supplementary Fig. 4b, see Methods section). For

Fig. 1 Cancer cell lines recapitulate the LncRNA alterations in primary tumors. a Genomic and epigenetic alterations of cancer-related lncRNAs in 505
cancer cell lines. Cell lines are arranged by columns. LncRNAs are arranged by rows. Three heatmaps indicate the patterns of the expression (left), DNA
methylation (middle), and copy number (right) for cancer-related lncRNA (Methods section). Twenty-two cancer types are indicated by different colors on
top of each heatmap. b Percentage of lncRNA genomic and epigenetic alterations occurring in at least one or at least three cell lines. c-e Pairwise Pearson’s
correlation of lncRNA alterations between cell lines and patient tumors for each cancer-type in CNV, methylation, and expression. The correlation of
lncRNA alteration within the same and different cancer types are shown in the boxplots (center lines represent median correlation, the box limit indicates
the lower quantile and upper quantile, and whiskers represent the minimal and maximal correlations). f Performance of the nearest-neighbor matching
algorithm to predict cell origin using expression, methylation, CNV and merged features, respectively
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Fig. 2 The landscape of LncRNA-drug predictive pairs in cancer cell lines. a Effect of cell lineage on drug response prediction for each agent. The linage
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bootstrapping process. Pearson correlation coefficients (x-axis) and negative log10-transformed p-values (y-axis) indicate the model performance. c
lncRNA-drug predictive pairs landscape across 265 agents and 505 cancer cell lines. The predictive score for each lncRNA-drug interaction and the
negative log-transformed p-value for Pearson’s correlation between the lncRNA expression and IC50 were shown in the y-axis and x-axis of the volcano
plot. d The distribution of Spearman’s correlation coefficients between lncRNA expression and ln-transformed IC50s. The density plot of the coefficients is
shown for (i) strong predictive pairs with PS >= 0.8; (ii) moderate predictive pairs with 0.25 <= PS < 0.8; (iii) weak predictive pairs with 0 <= PS < 0.25;
(iv) non-predictive pairs and (v) the combination of all lncRNA-drug pairs. e Scatter plot of the predictive score between lncRNA-drug predictive pairs
identified in IC50 models and those identified in AUC models. f Agents targeting genome integrity clustered by shared predictive lncRNA signatures. One-
sided Fisher exact test p-values were indicated by different colors in the heatmap
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example, Imatinib is an FDA approved agent to treat chronic
myeloid leukemia (CML). Based on LENP model, 100% of acute
myeloid leukemia (AML) patients are predicted to be imatinib
sensitive (p= 2 × 10−15, two-side KS test) (Fig. 4a).
Besides, ~74.2% of patients with glioblastoma (GBM) (p=
7.41 × 10−6, two-side KS test) and 99.1% of patients with low-
grade glioma (LGG) (p= 3.96 × 10−60) were predicted to be
sensitive to imatinib (Fig. 4a). Although this drug is not currently
approved for glioblastoma or AML treatment, phase II clinical
trials have been carried out to test the efficacy of imatinib in
treating glioblastoma and AML33–35.

Because the TCGA cancer patients were mostly treated based
on standard chemotherapy protocol36, we hypothesized that
patients would likely to undergo poor prognosis if they were
predicted to be resistant to therapies. For 49 FDA approved
therapeutic agents, we observed 66 significant associations
between predicted drug response and poor survival outcome in
different cancer types (p ≤ 0.05, univariate Cox regression)
(Fig. 4b, see Methods section).

In clinic, patients usually take a combination of different drugs
rather than single agents. Thus, to better study the chemotherapy
response of cancer patients, we give each patient a consensus drug
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Fig. 3 LncRNA-based EN-prediction models predict drug response in cancer cell lines. a Performance comparison between LENP and bootstrapping EN
models for 265 drugs in pan-cancer and specific cancer types. Model performance is shown on the y-axis. b LENP performance of pan-cancer models and
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response score by combining the prediction of first- and second-
line chemotherapy (Supplementary Data 5) that are approved by
FDA for each cancer type (see Methods section). Using this
heuristic method, we observed a trend in poor prognosis among
patients that are predicted to be chemotherapy resistant in THCA
(Thyroid Carcinoma, hazard ratio (HR)= 1.76, p= 0.05, multi-
variate Cox regression), STAD (Stomach Adenocarcinoma, HR

= 1.40, p= 0.02) and CRC (Colorectal Cancer, HR= 1.38, p=
0.08) after adjusting known prognostic factors such as age at
diagnosis and disease stages (Fig. 4c, Supplementary Fig. 4c, d, see
Methods section).

To further test the LENP model in the patients that actually
received the corresponding chemotherapy, we parsed the
chemotherapy treatment data from TCGA patient clinical
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Fig. 4 LncRNA-based EN-prediction models predict drug response in patient tumors. a Imatinib (left), bleomycin (middle), and gefitinib (right) were
predicted to be sensitive in FDA approved or yet-to-be approved cancer types. b Different overall survival rates between patients with different predicted
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information (see Methods section). Although most cancer
patients’ chemotherapy treatment data are missing, several cancer
types, including breast cancer, ovarian cancer, uterine, and gastric
cancer, have relatively complete chemotherapy treatment history
in record. We found LENP can predict the therapeutic outcome
for a number of drugs. For example, there are 24 ovarian cancer
patients and 210 breast cancer patients received tamoxifen
treatment in TCGA cohorts. Among those patients, poor survival
is observed for patients with predicted drug resistance by LENP-
tamoxifen model (log-rank test: p= 0.01, OV; p= 0.19, BRCA)
(Fig. 4d, Supplementary Fig. 4c, see Methods section). When
applying LENP-paclitaxel model to 111 breast cancer patients,
138 ovarian cancer patients and 47 endometrial cancer patients
who have been treated with paclitaxel, we also observed a trend of
poorer survival among patients with predicted drug resistance
(log-rank test: p= 0.12, BRCA; p= 0.30, OV; p= 0.10, UCEC)
(Fig. 4d, Supplementary Fig. 4c, see Methods section). In
addition, we applied LENP-5FU model to 49 fluorouracil-
treated stomach adenocarcinoma patients. We found that patients
with lower IC50s predicted by LENP-5FU model tend to have a
better survival outcome compared to the rest (log-rank test: p=
0.08, STAD) (Fig. 4d, see Methods section).

In addition, we also constructed the protein-coding gene
(PCG) based models for 49 FDA approved agents using the
similar training-testing framework. We compared the perfor-
mance of PCG and LENP models in predicting cell line response
and the patient survival outcome. For drug response prediction in
both cell lines and patients, we observed overall comparable
performances between LENPs and PCGs (Supplementary Fig. 4f).
Interestingly, the LENP models outperform PCG-based models in
many cases including the aforementioned ones. For example,
LENP-tamoxifen model could better predict the prognosis of OV
patients treated with tamoxifen (log-rank test: p= 0.01; HR=
3.62; 95% confidence interval (95%CI), 1.26–11.13) than PCG-
based model (log-rank test: p= 0.13; HR= 2.32; 95% CI,
0.74–7.24). The predicted 5FU resistance by LENP model is
better associated with poor survival of STAD patients (log-rank
test: p= 0.07; HR= 2.24; 95% CI, 0.89–5.64) than that of PCG-
based model (log-rank test: p= 0.66; HR= 1.23; 95% CI,
0.49–3.09). In the cases of paclitaxel-treated OV and UCEC
patients, the LENP models predicted resistant patients would
undergo poor prognosis; however, the PCG-based models
predicted resistant patients would undergo a beneficial prognosis
(Supplementary Fig. 4g).

LncRNA may regulate drug resistance through drug metabo-
lism. LncRNAs have been reported to regulate the cancer drug
response through regulating the protein-coding genes involved in
drug-metabolism and drug-target pathways19,20. Since multi-drug
resistance remains a major obstacle of successful chemotherapy in
clinical treatment of primary and recurrent disease37, we are
particular interested in lncRNAs that are predictive of multi-drug
response of agents with different mechanisms (Fig. 5a, Supple-
mentary Fig. 2h). By using an entropy-based approach, we
identified 381 potential multi-drug response (MDR) related
lncRNAs that are independent from drug-target mechanism
(Supplementary Data 6, see Methods section). To determine the
possible functional roles of these lncRNAs, we performed Gene
Sets Enrichment Analysis (GSEA)38 on the co-expression profile
between lncRNAs and protein coding genes (Supplementary
Fig. 5a; see Methods section). We observed a significant corre-
lation between MDR lncRNAs and xenobiotic metabolism (rho
= 0.32, p= 5.76 × 10−55, Spearman’s correlation), glycolysis (rho
= 0.29, p= 7.13 × 10−47), apoptosis related pathways (rho= 0.34,
p= 4.11 × 10−57, Fig. 5b, Supplementary Fig. 5b, Supplementary

Data 6) and ABC transporters (rho= 0.19, p= 2.01 × 10−16,
Spearman’s correlation). Previous studies have highlighted the
remarkable contribution of xenobiotic metabolism, glycolysis and
apoptosis in inducing multi-drug resistance39,40. Genes involved
in xenobiotic metabolism (e.g., cytochrome P450 genes) could
regulate the drug metabolism and modulate the intracellular drug
concentration, which would result in drug resistance and het-
erogeneous response among individual tumors37,39,40.

Our analysis identified 164 MDR-related lncRNAs that are
significantly correlated with xenobiotic metabolism (FDR < 0.25,
GSEA) (Fig. 5c, Supplementary Data 7). LINC00992 (a.k.a. CTC-
504A5.1) is identified as one of these MDR lncRNAs. LINC00992
is an intergenic lncRNA located on chromosome 5q23.1 and is
expressed in multiple cancer types (Supplementary Fig. 5d). Being
predictive of cell line response of 118 agents (Fig. 5e, Supple-
mentary Data 7), LINC00992 exhibited significant positive
expression correlation with CYP2J2 (r= 0.29, Pearson’s correla-
tion, p < 0.001), CYP1A1 (r= 0.21, Pearson’s correlation, p <
0.001) as well as several other genes involved in xenobiotic
metabolism pathway (NES: 1.25, FDR < 0.01, GSEA) (Fig. 5d,
Supplementary Fig. 5b, c). Cancer cell lines with high expression
of LINC00992 and CYP genes showed resistance to 116 (98.3%) of
the predictable agents (Fig. 5e–g). Furthermore, elevated expres-
sion of LINC00992 associated with poor survival in patients of
BRCA (p= 0.022, log-rank test), LIHC (p= 0.065), THCA (p=
0.024) and READ (p= 0.178) (Fig. 5h, i, Supplementary Fig. 5e
and f). Interestingly, LINC00992 has been identified as a potential
regulator of CYP genes41, which play important roles in
chemotherapy resistance in cancer37,39,40. Therefore, LINC00992
may serve as a novel biomarker and a potential master regulator
for multi-drug resistance through xenobiotic metabolism.

EPIC1 as a master regulator of BET inhibitor resistance. In
addition to the drug metabolism pathways, our analysis also
revealed lncRNAs that regulate the drug response directly
through drug-target pathways (Supplementary Fig. 6a, Supple-
mentary Data 8, see Methods section). For example, estrogen
response pathway significantly correlated with expression of 14
out of 20 (70%) top predictive lncRNAs in the pan-cancer
tamoxifen EN-model (Fig. 6a). The top predictive lncRNAs for
PARP1/2 inhibitor, including olaparib (FDA approved) and
talazoparib (in clinical trial), demonstrated significant co-
expression with genes in DNA repair (85% of top predictive
lncRNAs for olaparib; 70% for talazoparib) and G2M checkpoint
(85% for olaparib and 70% for talazoparib) (Fig. 6a). Intriguingly,
top predictive lncRNAs of Bromodomain and Extra-Terminal
inhibitors (iBETs) are significantly correlated with MYC-related
pathways (80% for iBET762 and 85% for JQ-1) (Fig. 6a). This is
consistent with the previous reports that iBETs achieve ther-
apeutic effect in multiple cancer types by targeting c-MYC
pathway42–48.

The iBETs are a class of small molecules that could block the
function of BET protein family. The iBETs have been demon-
strated to be a promising new therapy in several cancer types,
including breast cancer46,49. In our study, both pan-cancer and
BRCA-specific LENP models can predict iBETs drug response
with high sensitivity and specificity (Fig. 6b, Supplementary
Fig. 6b). Among the novel predictive features for BET inhibitors
responses are RP11-275I4.4 and RP11-708B6.2 (top predictors of
iBETs sensitivity), as well as EPIC1 (top predictor of iBETs
resistance, Fig. 6c).

EPIC1 (Epigenetically induced lncRNA 1)24 is an intergenic
lncRNA located on chromosome 22q13.31 and is highly
overexpressed in 15 cancer types including BRCA (Supplemen-
tary Fig. 6c; Supplementary Data 9). Being selected as a top
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upper heatmap shows the expression level from blue (low) to red (high) colors. The lower heatmap shows the IC50s from green (sensitive) to purple
(resistant) colors. g Pan-cancer LENP model for gemcitabine. The top curve shows observed IC50 of gemcitabine in each cell line. The central heatmap
shows the top predictive lncRNA expression in the model across all cell lines (x-axis). Bar plot (left): weight of the top predictive lncRNAs in the model for
gemcitabine sensitivity (bottom) or insensitivity (top). h, i The Kaplan–Meier curves of overall survival for patients grouped into three groups of equal
sample size, i.e., high, median, low, by LINC00992 expression level in BRCA and LIHC
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Fig. 6 EPIC1 overexpression enhances breast cancer cell lines resistance to BET inhibitors. a Enrichment of top predictive lncRNAs for each agent in cancer
hallmark pathways. The left panel lists the target information of the agents. The right panel shows the number of predictive lncRNAs that are significantly
associated with cancer hallmarks (FDR < 0.25 by GSEA). b Comparison of LENP model predicted IC50 in ten iterations and observed IC50 for I-BET-762.
Model performance in ten iterations for both pan-cancer and BRCA-specific models were demonstrated in the box plot. center lines represent median
performance, the box limit indicates the lower quantile and upper quantile, and whiskers represent the poorest and best performance. Data are presented
as mean ± SE (n= 10 for 10 iterations of CV). c LENP model for I-BET-762 in BRCA. The top curve shows observed IC50 of I-BET-762 in each cell line. The
central heatmap shows the top predictive lncRNA expression in the model across all cell lines (x-axis). Bar plot (left): weight of the top predictive lncRNAs
in the model for I-BET-762 sensitivity (bottom) or insensitivity (top). d Endogenous expression level of EPIC1 in 13 cell lines and water. e Growth inhibition
curves for EPIC1 knockdown or control MCF-7 cells treated with BET inhibitor I-BET-762 (left) and JQ-1 (right). f Growth inhibition curves for EPIC1
overexpression or control MCF-7 cells treated with BET inhibitor I-BET-762 (left) and JQ-1 (right). Data are presented as mean ± SD (n= 3 for technical
replicates)
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predictor of iBET resistance by BRCA-specific LENP-iBET model
(Supplementary Data 9), EPIC1 expression has a significant
positive correlation with IC50s of iBET762 in breast cancer cell
lines (rho= 0.53, p= 0.002, Spearman’s correlation) (Supple-
mentary Fig. 6d). Moreover, high expression of EPIC1 is also
associated with poor survival in patients of BRCA (p= 0.067,
univariate Cox regression), UCEC (p= 0.014), KIRC (p= 0.0004)
and COAD (p= 0.052) (Supplementary Fig. 6e).

We next designed primers to screen EPIC1’s expression in 13
cell lines using RT-PCR (see Methods section). EPIC1 is
upregulated in MCF-7, ZR-75-1, and Hs578T cell lines and is
expressed at low levels in A549 cell line (Fig. 6d, Supplementary
Fig. 7a). To investigate the EPIC1’s role in regulating the iBET
response in cancer cell lines, we knocked down the EPIC1
expression in MCF-7, BT-474 and ZR-75-1 breast cancer cell
lines with three EPIC1 siRNAs. Knockdown of EPIC1 signifi-
cantly increased the iBETs sensitivity in MCF-7, BT-474, and ZR-
75-1 cells (Fig. 6e, Supplementary Fig. 7d). We further cloned the
full-length human EPIC1 cDNA24 and overexpressed EPIC1 in
MCF-7 breast cancer cells and A549 lung cancer cells. In
accordance with our LENP prediction, overexpression of EPIC1
led to the drug resistance of iBET in MCF-7 and A549 cells
(Fig. 6f, Supplementary Fig. 7e).

To further explore the underlying mechanism of EPIC1 in
regulating iBETs resistance, RNA-seq analyses were performed in
four cancer cell lines including MCF-7 and Hs578T cells after
EPIC1 knockdown by EPIC1 siRNAs, individually or pooled
(GEO: GSE98538). We focused only on genes regulated in the
same direction in all three transfections to exclude the possible
siRNA off-target effects. EPIC1 knockdown in breast and ovarian
cancer cells resulted in significant expression change of 4318
genes, which were significantly overlapped with EPIC1-correlated
genes in 505 cancer cell lines (p < 0.0001, two-side Fisher’s exact
test) (Supplementary Fig. 8a, see Methods section). Moreover, 16
out of 18 EPIC1-correlated pathways in 505 cancer cell lines are
significantly regulated by EPIC1-knockdown (FDR < 0.25, GSEA)
(Supplementary Fig. 8b, see Methods section). Among them, the
MYC pathway/targets are prominent gene sets enriched with
EPIC1-associated genes in both cancer cell lines and EPIC1-
knockdown cells (Supplementary Fig. 8c, d). In another study of
our group24, we have mechanistically demonstrated that EPIC1
regulates MYC transcriptional activity by directly interacting with
MYC protein. Overexpression of EPIC1 increased MYC target
expression and breast tumorigenesis in vitro and in vivo, which
can be abolished byMYC knockdown24. Our observations suggest
that EPIC1 is an oncogenic lncRNA and also plays an important
role in promoting the resistance to iBETs by increasing MYC
protein’s transcriptional activity.

Discussion
The study of lncRNAs’ role in cancer drug response has not
gained much momentum due to the dearth of genomics/epige-
netic platforms covering the non-coding region of the human
genome and the paucity of information regarding drug response
in tumors. These bottlenecks have led the majority of lncRNA
studies to use a “bottom-up” strategy by first determining each
individual lncRNA’s downstream regulatory function and then
investigating the lncRNA’s regulation of drug response in cancer.
In this project, we have adopted a “top-down” approach, which
integrates the pharmacogenomics data from both primary tumor
and cancer cells to construct the lncRNA-based drug response
prediction models and to identify the candidate lncRNAs that
may mechanistically regulate drug response. We have shown that
cancer cell lines could highly recapitulate the lncRNAs alterations
in primary tumors. Moreover, cancer cell line based EN-models,

i.e., LENP models, could readily predict chemotherapy responses
in patients with breast, stomach, ovarian, and endometrial cancer.
The integrative analyses between lncRNA and protein-coding
gene expression further suggest that lncRNAs might regulate
cancer drug response through regulating drug-metabolism or
drug-target pathways. To our best knowledge, this is the first
study to systematically link non-coding genotypes with drug
response phenotypes in both cancer cell lines and patient tumors.

By further applying the LENP model to cancer patients who
have actually received the corresponding chemotherapy, we have
shown that LENP can readily predict those patients’ che-
motherapy response. Interestingly, lncRNA-based models out-
performed protein-coding models in those cases. Although we
were only able to validate the cell line based LENP models in 4
cancer types and three drugs due to the complexity of che-
motherapy that was given to each individual cancer patient, these
serve as proof of principles for using the non-coding genotype in
cell-line-based panels to gain insights into precision cancer
medicine. With the emerging of the pharmacogenomics data of
standardly designed cancer precision medicine project like
GENIE50, we should be able to determine the performance of
lncRNA-based EN-models in patient tumor in short future.

One drawback of the lncRNA-based EN-models in present
study is that we only include the lncRNA expression levels to
train the EN-models, because (1) the lncRNA expression exhibits
the highest similarity between cancer cell lines and patient
tumors; (2) the changes of both CNA and DNA methylation will
eventually be manifested by the expression of lncRNA, and (3)
the redundancy of including lncRNA CNA and DNA methylation
data may not be properly handled by the EN-model in current
study. Moreover, we didn’t include the PCGs and other non-
coding genes such as miRNAs into the model for drug prediction.
Comparing to the lncRNAs, secreted proteins and miRNAs have
been well documented to be premium candidates for biomarkers
given their higher endogenous expression levels and better sta-
bility in detection51,52. Emerging deep-learning algorithms, such
as artificial neural networks, have shed light to modeling high-
dimension and high-redundancy data53. In future study, we will
use deep-learning algorithm to comprehensively model the can-
cer drug response by integrating lncRNA, miRNA, and PCG
genomics and epigenetic changes.

On top of drug prediction models, our feature selection strat-
egy has also identified 27,341 lncRNA-drug predictive pairs,
which may help reveal novel lncRNA regulators for drug response
in cancer. However, our ability to validate these noncoding
pharmacogenomic associations in independent databases (i.e.,
CCLE and CTRP) was largely restricted by (1) the use of different
pharmacological assays, (2) the limited number of overlapping
cell lines and agents, and (3) the lack of gold standard to define
“true positives” among those pharmacogenomic databases32,54.
We believe the ongoing efforts in standardizing and optimizing
the drug-response measurements will greatly reduce the incon-
sistency and improve the robustness of pharmacogenomic asso-
ciations across different studies in the short future22,32. Therefore,
the lncRNA-drug predictive pairs in our study still require
experimental validation and mechanism investigation. In this
regard, we have experimentally demonstrated that EPIC1, the top
predictive lncRNA for iBET drug response, regulates iBET
resistance in breast cancer by regulating MYC transcriptional
activity.

The iBETs are a class of MYC inhibitors, which have been
demonstrated to have great potential to be translated to clinic in
several cancer types, including breast cancer46,49. The success of
targeting MYC by iBET46,55,56, with only minor toxicity in
patients57, has potentiated iBETs as a very promising class of
agents for cancer therapy. However, the resistance to iBET, which
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was recently reported in multiple cancer types such as leukemia
and breast cancer, has largely hindered their translation into
clinic47,49,58. Despite that tremendous effort has been invested to
identify the underlying regulator and biomarker for iBETs
resistance, the detailed mechanism remains elusive. In our recent
publication24, we have revealed that EPIC1 can be epigenetically
activated by loss-of-DNA methylation at its promoter region in
multiple cancer types, including breast cancer. We have shown
EPIC1 can directly interact with MYC protein and regulate its
transcriptional activity. Our results suggest that EPIC1 may reg-
ulate iBET resistance through increasing MYC protein’s tran-
scriptional activity. Future mechanistic study is warranted to test
this hypothesis.

In summary, the current study established a detailed knowl-
edge base of lncRNA-drug predictive pairs in 27 cancer types and
265 agents. This should facilitate the ongoing effort in developing
novel genomic models for cancer precision medicine. Moreover,
the further identification of potential lncRNA master regulators
of cancer drug response will pave the way for lncRNA-based
cancer therapy in the short future by providing promising ther-
apeutic targets to overcome the cancer chemotherapy resistance.

Methods
Pre-processing of lncRNAs alteration data. For cancer cell lines, expression of
13,335 lncRNAs across 505 cancer cell lines from Cancer Cell Line Encyclopedia
(CCLE) was downloaded from Expression Atlas59 with matched drug response
data from Genomics of Drug Sensitivity in Cancer (GDSC). For patient samples,
expression of 2614 cancer-related lncRNAs in 5605 TCGA patient samples was
downloaded from MiTranscriptome11. Expression levels of these lncRNAs are
logarithmic transformed and z-score normalized for both cell lines and patients.
We obtained the lncRNAs copy number alteration data for both 505 cell lines and
5605 TCGA patient samples by mapping 12,139 Affymetrix SNP 6.0 microarray
segmentations to 2614 lncRNA regions. For DNA methylation, we repurposed
IIlumina 450K Human Methylation microarray to get beta values of 2804 unique
probes for lncRNAs in (i) 1028 cell lines from COSMIC22 and (ii) 5605 patients
from TCGA.

Pre-processing of drug response data. Drug response data of 265 agents across
1001 cancer cell lines were downloaded from GDSC database22. These 265 agents
include 49 clinical drugs, 84 drugs in clinical development and 132 experimental
agents. The drug response in each cell line is indicated by logarithmic transformed
IC50s and AUCs. 505 cell lines with genomic alteration data available are retained
for model training and following analysis. Clinical drug treatment information of
10,237 TCGA patients across 33 cancer types were parsed from the National
Cancer Institute (NCI) Genomic Data Commons (GDC) using the R functions
‘GDCquery’, ‘GDCDownload’ and ‘GDCprepare_clinic’ provided by
TCGAbiolinks60.

Cell lines versus tumors comparisons. The comparison between cell lines and
tumors was based on feature correlations and nearest-neighbor matching with the
average, broken down by different cancer types (Fig. 1c–f). A bootstrapping pro-
cedure was performed for each comparison: for each cancer type, we calculate the
fold-change for each genomic feature (e.g. gene expression, methylation, copy
number alterations) between that cancer type and a resampling of all other cancer
types. To ensure the representation of homogeneous tissue-type, we only retained
cancer types with primary tumor samples more than 15 and cell line samples more
than 20. Next, we calculated the pairwise Pearson’s correlation coefficient of the
fold-changes between cell lines and primary tumors. This procedure would be
iterated for 10 times with different samplings. The final asymmetric correlation
matrix for each genomic feature is an average matrix of coefficients obtained by 10
iterations. The diagonal demonstrated the agreement between cell lines and tumors
within the same cancer type. For the analysis merging three genomic features
together, the integrated correlation matrix is calculated based on the rank sum of
each feature in the original correlation matrix. A comparison with p-value fell into
the first 10% percentile would be considered as significant correlation (Fig. 1c–e).
This correlation matrix was further used to fit the nearest-neighbor matching
algorithm22 (Fig. 1f). This algorithm will determine if the input cancer type of
patients could correctly match the cancer type of cell lines within the top k (k= {1,
2, 3, 4, 5, 6, 7}) nearest neighbors. A percentage of top k nearest neighbors that
contain a correct match is calculated for matching evaluation.

Identification of lncRNA-drug predictive pairs. To identify lncRNAs that were
most associated with drug response, we applied Elastic Net regression61,62, a
machine learning approach, combined with a bootstrapping procedure for each of

the 265 agents. For each compound, this algorithm would pick up group of
lncRNAs whose expression pattern could best explain the drug sensitivity profiles
of the cell lines. The Elastic Net regression is a well-demonstrated model to work
with the conditions in which the number of features is far greater than the number
of observations. Before our study, many high-profile studies have already applied
this regression algorithm to identify critical genomic features that could predict
drug response in cancer cell lines2,22.

For each compound, we constructed a drug response vector Y∈ RN,1, where N
is the number of cell lines treated with this compound. The values in the vector
represent the drug responses across these cell lines, i.e., logarithmic transformed
IC50 or area under the curve (AUC). For these cell lines, we then constructed an
lncRNA expression matrix X∈ EN,1, where N is the number of cell lines and p is the
number of lncRNAs. With input of Y and X, we then used the scikit-learn 0.17.0
package [4] to solve the following optimization problem:

min
β0 ;βð Þ2Rpþ1

Regλ β0; β
� � ¼ min

β0 ;βð Þ2Rpþ1

1
2N

XN

i¼1

yi � β0 � xTi ; �β
� �2 þ λPα βð Þ

" #

;

where

Pα βð Þ ¼ 1� αð Þ 1
2
k β k2L2 þ α k β kL1 :

In this equation, α controls the ratio of the L1 and L2 penalty terms, while λ
controls the overall weight of the regression penalty. The optimization begins with
10 values of α∈ [0.2,1.0] and 200 values of λ= eτ with τ∈[−5,5]. The optimal α
and λ that lead to the minimal mean square error of the regression model is
obtained by tenfold cross-validation.

Next, we implemented a bootstrapping strategy to identify the most predictive
lncRNAs for each compound. This procedure would generate 200 resampled
datasets with replacement from the complete sample sets, XBSi ;YBSið Þi¼1;2;¼ ;200,
where XBSi 2 EN;p and YBSi 2 RN;1. Based on the optimal α and λ, the elastic net
equation would be solved for each of the resampled datasets, and a regression
coefficient matrix βBS would finally be built for each compound (Fig. 2b, c and
Supplementary Fig. 1b).

To assess the extent to which an lncRNA is associated with the drug response,
we then created a metric named ‘predictive score’ based on how frequent this
lncRNA is selected by the regression model during the bootstrapping. For each
lncRNA u of each compound, u∈{1,2,…,p}, the predictive score of lncRNA u is
then calculated by:

PSu ¼ 1
200

X200

j¼1

I βBSu;j

� �
;

where

I xð Þ ¼ 0; x ¼ 0

1; x ≠ 0

�
:

We have included one additional independent dataset Cancer Therapeutics
Response Portal (CTRP)23 to determine the specificity of this analysis under
different stringencies. The specificity is defined as the distribution distance between
the correlation of lncRNA expression and drug response in predictive or non-
predictive lncRNA-drug pairs in the independent datasets. As shown in
Supplementary Fig. 2a, the specificity of the predictive lncRNA-drug pairs increases
as the PS cutoff getting more stringent. The specificity of the predictive lncRNA-
drug pairs reaches to a turning point at PS cutoff= 0.25. We thus set 0.25 as cutoff
to define lncRNA-drug predictive pairs. (Fig. 2c and Supplementary Fig. 2g). The
same feature selection procedure has also been applied to the overlapped cell lines
and agents in CTRP and CCLE to determine the robustness of the above strategy.

Pairwise comparison of feature selection. To compare the similarity of pre-
dictive lncRNA sets between agents, we used three different measurements to
perform the pairwise comparison: Fisher’s exact test. For lncRNA set of each
compound d (d∈{1,2,…,26}), we dichotomized their predictive scores to 0 and 1
based on whether an lncRNA is considered as predictive or not. This operation
would generate a binary vector Bp;1

d for each compound d, where p is the number of
lncRNAs. Next, a similarity score matrix would be built based on the pairwise

comparison of Bp;1
d

� �

d2 1;2;¼ ;265f g
by performing Fisher’s exact test. The resulting

matrix would then be analyzed by hierarchical clustering using ‘average’ linkage
and Euclidean distance (Fig. 2d and Supplementary Fig. 2h).

Lineage effect on drug response and lncRNA expression. ANOVA are used to
evaluate the contribution of lineages to the drug response. For ANOVA, the cell
lines are grouped by cancer types, following by the comparison between the inter-
and intra-type variance of drug responses for each compound. A significant p-value
indicates that the response of that drug is likely to be cancer specific (Fig. 2a).
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Machine learning models for drug response. For each of the 265 agents, we
selected top 20 lncRNAs with highest predictive score to build predictive models of
drug response with Elastic Net regression. For each compound, we constructed a
drug response vector Y ∈ RN,1, where N is the number of cell lines treated with this
compound. The values in the vector represent the drug responses across these cell
lines, i.e. logarithmic transformed IC50 or area under the curve (AUC). For these
cell lines, we then constructed an lncRNA expression matrix X∈EN,20, where N is
the number of cell lines. With input of Y and X, we optimize the parameters with
10 values of α∈[0.2,1.0] and 200 values of λ= eτ with τ ∈ [−5,5] by tenfold cross-
validation. Using optimal parameters, we build the final model Y= f(X) for each
compound and estimate the predictive power by 10 iterations of tenfold cross
validation. The assessment is achieved by calculating the Pearson’s correlation
coefficient and Kendall’s τ between the predicted and observed drug activity. We
selected the best models based on the cross validation process (Fig. 2e, Supple-
mentary Fig. a, b). For the 49 protein-coding gene-based models of FDA approved
agents, we used the same training procedures as lncRNA-based models.

Model independent-validation. To assess the robustness of our pan-cancer as well
as cancer-specific models, we obtained drug response data in the CCLE and CTRP.
After mapping the cell lines and agents to those in our study, we got 389 over-
lapping cell lines and 14 overlapping agents for CCLE and 353 cell lines and 76
compounds for CTRP. The analysis is performed on IC50 in CCLE and AUC in
CTRP. The prediction performance is evaluated by the Pearson’s correlation
between predicted and real IC50s in CCLE study and predicted and real AUCs in
CTRP (Fig. 3d, e, Supplementary Fig. 3b).

Prediction of drug response in patients. Expression of 2614 cancer-related
lncRNAs in 3814 TCGA patients with survival information available and was
obtained from MiTranscriptome11. Patients with stage-1 disease are further filtered
out except for the LAML patients. Using the expression data, we constructed an
expression matrix E ∈ RN,p, where N is the number of patients and p is the
number of lncRNAs. For compound i, the predicted response Pi ∈ RN,1 is calcu-
lated by the model based on lncRNA expression eN,20 ∈ EN,p, forming a final
matrix of predicted response P ∈ RN,265. The predicted response is then sorted by
values, from which patients of first quantile are labeled as ‘sensitive response’. The
patients are then categorized by c cancer types, where

P

j¼1

c Cj ¼ N . The sensitive

percentage Spercentj;i for compound i is calculated by n
Cj
, where n is the number of

patients that have ‘sensitive response’ in cancer j. Finally, a matrix of sensitive
percentage Spercentj;265 for all the agents is constructed based on these results (Fig. 4a
and Supplementary Fig. 4b).

Survival analysis. Univariate Cox regression: Survival information of TCGA
patients, including overall survival (OS) and progression free interval (PFI), was
obtained from TCGA database. Cox regression based on predicted drug response
P∈ RN,i was then applied for each compound i, where i ∈ {1,2,…, 265}. The
regression algorithm is implemented by Lifelines 0.8.0.1 package. The hazard ratios
are calculated by exponentiation of the coefficients from the regression models
(Fig. 4b).

Multivariate Cox regression. Clinical information about TCGA patients,
including age and disease stages at diagnosis, was obtained from TCGA database.
For each patient, the age is dichotomized as ‘young’ and ‘old’ with a cutoff at 65
years’ old. For patients from cancer c, the predicted response of n drugs that are
approved for this cancer would be assigned ranks based on values. The weighted
average R of the ranks for each patient is given as follow:

R′ ¼
Pn

i¼1 wiRiPn
i¼1 wi

;

where

wi ¼
1:0; i 2 1st lineagentsf g
0:5; i 2 2nd lineagentsf g

�
:

Next, Kaplan–Meier analysis is performed based on the weighted average ranks
and overall survival (OS) and progression free interval (PFI). After that, the
weighted average ranks are sorted by ascending and dichotomized as ‘sensitive
response’ (top 30%), ‘partial response’ (30 ~ 50%), ‘partial resistance’ (50 ~ 70%),
and ‘resistance’ (bottom 30%). With the survival information and the input factors
(age, disease stage and weighted average rank of the predicted response), a
multivariate Cox regression is then performed for each cancer type. The hazard
ratios for each of the factors are calculated by exponentiation of the coefficients
from the regression models (Fig. 4c).

Survival analysis on patient with real treatment record. Patients with real
treatment record are segregated by the median of predicted drug response. The
analysis is performed on overall survival and a hazard ratio will be given by the
univariate cox regression using the segregated drug response. The same procedure

is also applied on the predicted drug response by protein-coding gene-based
models.

Identification of multi-drug-response related lncRNAs. To identify MDR-
related lncRNAs that are independent from drug mechanism, we constructed a
vector D with length m for each predictive lncRNA i. Each element Dj in D denotes
the target pathway of the corresponding agent j that lncRNA i is predictive to, and
j 2 1; 2; ¼ ;mf g. In total, D will be expected to have n unique elements, denoted
by C. Next, for each lncRNA i, we calculate the Shannon entropy63 Hi of D using
the following formula:

Hi Dð Þ ¼ �
Xn

k¼0

pCk
log2pCk

;

where

pCk
¼ Pr Dj ¼ Ck j2 1;2;¼ ;mf g

� �
:

The resulted entropy metrics will be further transformed into z-scores.
LncRNAs with a z-score >1, i.e., one standard deviation from the right side of the
mean, would be selected as an MDR-related lncRNA (Fig. 5a and Supplementary
Fig. 5b).

Co-expression and gene sets enrichment analysis. We calculated the Pearson’s
correlation coefficients between 19,680 protein coding genes’ expression and 2614
lncRNAs’ expression, forming a coefficient matrix βp;l , where p is the number of
protein coding genes and l is the number of lncRNAs. We ranked the protein
coding genes based on their expression correlation with lncRNAs. Gene Sets
Enrichment Analysis (GSEA) is performed based on cancer hallmarks (h) gene sets
and KEGG gene sets from GSEA database38,64. The final enrichment score matrix
is given by normalized enrichment score (NES) and false discovery rate (FDR)
from GSEA. An enrichment with FDR <= 0.25 would be considered as significant
enrichment (Supplementary Fig. 5b).

For each target pathway, we construct an lncRNA selection matrix by using top
predictive lncRNAs from respective agents. Top predictive lncRNAs are defined as
top 20 lncRNAs with highest predictive scores in single agent. An lncRNA selection
vector is constructed for each compound, and is merged into a selection-pathway
matrix with 21 rows (pathways) and 1292 columns (predictive lncRNAs that are
top predictors for at least one compound). Next, one-side Fisher’s exact test is
performed to assess the enrichment of top lncRNAs in each pathway based on
dichotomized enrichment matrix and lncRNA selection matrix (Fig. 6a,
Supplementary Fig. 6a).

Cell culture, RNA interference, and real-time PCR. Human breast cancer cell
lines, Hs578T, BT-474, and MCF-7, and human lung cancer cell line A549 were
purchased from American Type Culture Collection (ATCC) and cultured as sug-
gested by ATCC’s guidelines. Human ovarian cancer cell line, A2780 and the
cisplatin resistant version of the cell line, A2780cis, were obtained from the Eur-
opean Collection of Cell Cultures (ECACC), supplied by Sigma-Aldrich, and cul-
tured in RPMI 1640 medium supplemented with 2 mM glutamine, 10% FBS, 1%
penicillin, and 1% streptomycin; A2780cis cells were also supplemented with 1 µM
cisplatin. Phoenix cells were kindly provided by Dr. Wen Xie (University of
Pittsburgh) and maintained in Dulbecco’s Modified Eagle’s Medium supplemented
with 10% FBS, 1% penicillin, and 1% streptomycin.

For RNA interference, cells were transfected with 40 nM siRNA targeting
EPIC1, or control siRNA using Lipofectamine RNAiMAX (Thermo Fisher,
#13778150) per the manufacturer’s instructions. For quantitative real-time PCR
(qRT-PCR) analysis, total RNA was isolated 72 h later using an RNeasy Mini kit
(Qiagen, #74104) according to the manufacturer’s instructions; cDNAs were
synthesized from 0.5 µg of total RNA using a High-Capacity cDNA Reverse
Transcription Kit (Applied Biosystems, #4368813). qRT-PCR was performed with
Power SYBR Green PCR Master Mix (Applied Biosystems, #4367659) on a
QuantStudio 6 Flex Real-Time PCR System (Applied Biosystems). Relative gene
expression was determined by ΔΔCt normalized to GAPDH.

The following siRNAs (sense, antisense) were used as previously described:24

EPIC1 siRNA_A#, CCUUCAGACUGUCUUUGAAdTdT,
UUCAAAGACAGUCUGAAGGdTdT; EPIC1 siRNA_B#,
GCUUUCUCUCGGAAACGUGdTdT, CACGUUUCCGAGAGAAAGCdTdT;
EPIC1 siRNA_C#, AGUGUGGCCUCAGCUGAAAdTdT,
UUUCAGCUGAGGCCACACUdTdT; control siRNA,
GUGCGUUGUUAGUACUAAUdTdT, AUUAGUACUAACAACGCACdTdT.
Sequences of primers for qRT-PCR were: EPIC1 forward,
TATCCCTCAGAGCTCCTGCT, and EPIC1 reverse,
AGGCTGGCAAGTGTGAATCT; GAPDH forward,
GGTGAAGGTCGGAGTCAACG, and GAPDH reverse,
TGGGTGGAATCATATTGGAACA.
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Validation of lncRNA-drug predictive pairs in cell lines. MCF-7 cells (MCF-7/
Vector and MCF-7/EPIC1) and A549 cells (A549/Vector and A549/EPIC1) stably
expressing an empty vector and EPIC1 were established with retroviral particles
using the previously published method24. Briefly, full-length of EPIC1 was inserted
into retroviral pBABE-lnc vector with AgeI and XhoI enzymes and the resulting
construct was named as lnc-EPIC1. To establish stable EPIC1-expressing cells, 10
μg of pBABE-lnc or lnc-EPIC1 plasmids were transfected into a 10-cm culture dish
of Phoenix cells to produce retroviral particles, and retroviruses were collected 48 h
post transfection. Then, cells were transduced for 24 h with the retroviruses and
selected with puromycin.

The ectopic expression level of EPIC1 in stable cells was confirmed using PCR.
To validate lncRNA-Drug interactions, EPIC1 knockdown and overexpressed cells
were seeded at 2000 cells per well in 96-well culture plates and incubate for
overnight at 37 °C, 5% CO2. After treatment with a series of twofold diluted drugs
(JQ-1 and I-BET-762) for 48 h, MTT assays were performed with a CellTiter 96
Non-Radioactive Cell Proliferation Assay Kit (Promega, #G410) following the
manufacture’s guidelines. The absorbance value was measured at 570 nm using an
xMark Microplate Spectrophotometer (Bio-Rad) with a reference wavelength of
630 nm and the IC50 of JQ-1 and I-BET-762 on cells was calculated, respectively.

Code availability. Source code for training and testing the LENP model is available
at https://figshare.com/articles/Elastic_net_regression_training_and_testing_
LENP_/6480461. The authors declare that all the other scripts generating the fig-
ures and supporting the findings of this study are available from the corresponding
author upon reasonable request.

Data availability. RNA-seq of EPIC1 knockdown cell lines can be obtained from
Gene Expression Omnibus (GEO; http://www.ncbi.nlm.nih.gov/gds) under acces-
sion number GSE98538 in a pre-processed format. The drug response data of 265
agents in 1001 cancer cell lines were downloaded from GDSC database (http://
www.cancerrxgene.org). The gene expression matrix of cancer cell lines was
downloaded from Expression Atlas (http://www.ebi.ac.uk/gxa/home). The gene
expression matrix of TCGA patients was downloaded from MiTranscriptome
(http://mitranscriptome.org). The authors declare that all the other data supporting
the findings of this study are available in the article and its Supplementary Data
files or from the corresponding authors upon reasonable request.
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