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Iron Inhibits the
Secretion of
Apolipoprotein E in
Cultured Human
Adipocytes

Nonalcoholic steatohepatitis (NASH)
is characterized by adipose tissue
dysfunction with insulin resistance and
the dysregulation of adipokines.1 Recent
data indicate repartitioning of iron from
the liver to adipocytes in obesity and a
role for iron in the development of adi-
pose tissue dysfunction.2,3 However, the
molecular mechanisms have not been
established. To test the hypothesis that
iron modulates adipokine release, we
performed a quantitative proteomics
analysis of the human Simpson-Golabi-
Behmel Syndrome (SGBS) adipocyte
secretome after 48 hours of treatment
with ferric ammonium citrate (FAC). We
used stable isotope-labeled amino acids
in cell culture (SILAC) to characterize
changes in the adipocyte secretome in
response to iron. This technique has
enabled direct comparison of quantities
of individual proteins in the adipocyte
secretome in response to iron using a
proteomics approach as a tool for the
identification of novel treatment targets
in NASH. Detailed methodology is
described in Supplementary Methods.

We first showed that 100 mmol/L
FAC causes significant adipocyte iron
Figure 1. SGBS ApoE expression after F
densitometry (*P ¼ .001, ratio paired t test)
(D) secretome ApoE immunoblot, and (E
presented as means and SEM.
loading without compromising cell
viability. We found that compared
with vehicle, both 100 mmol/L and
500 mmol/L FAC caused significant
increases in cellular iron concentration
(P ¼ .007 and P ¼ .006, respectively)
(Supplementary Figure 1A). There was
no effect of iron loading on cellular
viability (MTS) assay, total messenger
RNA (mRNA), total whole-cell lysate
protein, or total secretome protein
(Supplementary Figure 1B–E).

Given thesefindings,we selected 100
mmol/L FAC as the concentration to
compare with vehicle in the secretome
SILAC proteomic analysis. A total of 338
proteins were quantified in the adipo-
cyte secretome by SILAC proteomics.
These are represented by the volcano
plot in Supplementary Figure 2 and the
proteomics data have been deposited
into the ProteomeXchange Consortium
via the Proteomics Identifications
(PRIDE) partner repository (www.
proteomexchange.org) with the data
set identifier PXD006341. Iron treat-
ment led to significant differential
secretion of 60 of these proteins (>2-
fold change; P < .05). We then manu-
ally reviewed UniProt database de-
scriptions of these 60 proteins.4 This
generated a list of 20 proteins of interest
(highlighted in bold in Supplementary
Table 1). These proteins of interest and
their synonyms thenwere entered into a
PubMed title/abstract search in associ-
ation with NASH and its synonyms. This
AC treatment. (A) ApoE mRNA (P ¼ NS,
, (C) lysate ApoE densitometry normalized t
) whole-cell lysate ApoE and b-actin imm
identified 3 proteins as candidate in-
termediates for iron-induced adipose
tissue dysfunction in NASH. These pro-
teins were adiponectin, annexin A1, and
apolipoprotein E (ApoE).

Our SILAC analysis showed that
iron treatment resulted in an 81%
reduction in annexin A1 secretome
signal intensity (P ¼ .001). This may
be important because annexinA1
knockout (KO) mice show greater
degrees of hepatic lobular inflamma-
tion and fibrosis than controls when
fed a methionine-choline–deficient
diet.5 Adipocyte iron also previously
has been shown to transcriptionally
down-regulate serum adiponectin in
mouse-derived adipocytes, 3T3-L1
cells.6 Our findings now support this in a
human adipocyte cell line with a 55%
reduction in adiponectin signal intensity
in iron-treated SGBS cells (P ¼ .005).

We next focused on the iron regula-
tion of ApoE secretion. ApoE appears to
protect against steatohepatitis in mice.
In an ApoE KO model, unlike wild-type
controls, ApoE KO mice fed 7 weeks of
a Western diet developed impaired
glucose tolerance, steatohepatitis, and
hepatic fibrosis.7 ApoE is a component
of lipoproteins, and promotes very low
density lipoprotein–induced adipo-
genesis.8 ApoE knockout mice also
readily develop atherosclerosis on an
atherogenic diet.8

Iron reduced secreted ApoE by 58%
(P ¼ .001) and 76% (P ¼ .007), as
ratio paired t test), (B) secretome ApoE
o b-actin (#P ¼ .0005, ratio paired t test),
unoblots (N ¼ 3 per group). Data are
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measured by SILAC and Western blot,
respectively. Conversely, iron treat-
ment increased intracellular ApoE
levels bymore than 11-fold (P¼ .0005),
without causing a significant change in
mRNA levels (Figure 1). It therefore
appears that iron inhibits the secretion
of ApoE from adipocytes, causing ApoE
to become sequestered intracellularly.

Similar effects on ApoE secretion
have been shown with iron treatment
in primary cultured astrocytes and
cortical neurons.9 Taken together with
our data, it seems possible that iron
may have similar effects on a range of
cell types and represents a clear target
for further investigation. Treatment
with iron in our study showed an up-
regulation of anti-oxidant responses
(heme-oxygenase-1 and glutathione
peroxidase-1 mRNA), indicating the
presence of oxidative stress. Inter-
leukin 6 mRNA, however, was not
increased with iron treatment, and
there was no difference among multi-
ple markers of endoplasmic reticulum
stress (Supplementary Figure 3A–I).

We considered whether iron may
have a generalized effect on pathways
of protein secretion, used by a variety
of proteins. We evaluated the role of
iron in the secretion of proteins by the
classic and exosomal pathways using
the UniProt and EVpedia databases,
respectively.4,10 We found enrichment
of signal peptide-containing (P ¼ .02),
but not exosome-secreted, proteins
(P ¼ .51) among the iron-dysregulated
proteins, suggesting that iron may
have a specific effect on proteins
secreted via the classic pathway
(Supplementary Figure 3J–M).

This research has characterized
the effect of iron on the adipocyte
secretome. These data provide a
platform for multiple avenues for
future research. In addition, we have
been able to show that increased iron
results in sequestration of ApoE
within adipocytes, which may be of
key importance in the regulation of
insulin resistance and liver injury in
NASH. Identifying the molecular
mechanisms of iron-induced inhibi-
tion of ApoE secretion from adipo-
cytes, particularly relating to the role
of oxidative stress, may show novel
therapeutic strategies for improving
adipocyte function in NASH.
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Supplementary Methods
Simpson-Golabi-Behmel
Syndrome Pre-Adipocyte
Differentiation and Iron
Treatment
SGBS pre-adipocytes were a gift from
Martin Wabitsch (University of Ulm,
Ulm, Germany).1,2 SGBS cells were
passaged, proliferated, and differenti-
ated at less than 50 generations in
12-well plates and 100-mm dishes as
previously described.3 Cells were
treated with 90 mg/mL heparin and 1
ng/mL fibroblast growth factor-1
(both Sigma-Aldrich, St. Louis, MO)
throughout proliferation and differen-
tiation. After 14 days of differentiation,
cells were incubated with 0, 25, 100, or
500 mmol/L FAC (Sigma-Aldrich) for
24 hours. Media then was replaced
with the same for a further 24 hours
until the end of the experiment.

RNA Extraction and Real-Time
Quantitative Polymerase Chain
Reaction
RNA was extracted from treated SGBS
adipocytes using a PureLink RNA
mini kit (Invitrogen, Carlsbad, CA).
Complementary DNA was synthesized
from 1 mg RNA using a Sensifast com-
plementary DNA synthesis kit (Bioline,
London, UK) after treatment with
DNase 1 (Invitrogen). Samples under-
went thermal cycling using a ViiA7
real-time polymerase chain reaction
machine (Invitrogen) with a Sensifast
SYBR Lo-ROX Kit (Bioline). The
following protocol was used: 2 minutes
at 95�C, then 40 cycles of 5 seconds at
95�C, alternating with 20 seconds at
63�C, followed by a melt curve anal-
ysis. Relative mRNA quantities were
determined by calibration of cycle
threshold values to the standard curve
of pooled complementary DNA sam-
ples. Results were normalized to cycle
threshold values of cyclophilin.

Iron, Cellular Viability (MTS),
and Protein Assays
Iron levels were quantified using a
chromagen reagent method.4 Cellular
viability was assessed using a CellTiter
96 AQueous One Solution Cell Prolif-
eration Assay (Promega, Madison, WI)

according to the manufacturer’s in-
structions. Whole-cell lysate and
secretome samples underwent protein
estimation using a Pierce BCA protein
assay kit (Thermo Fisher Scientific,
Waltham, MA).

Stable Isotope-Labeled
Amino Acids in Cell
Culture Proteomics
SILAC incorporates stable amino acid
isotopes, without altering cellular
biology, allowing direct comparison of
the secretome by mass spectrometry
between treatment groups.5 SGBS pre-
adipocytes were grown in SILAC
Dulbecco’s modified Eagle medi-
um:F12 media (Thermo Fisher Scien-
tific) supplemented with dialyzed fetal
bovine serum (Thermo Fisher Scienti-
fic) and 22.81 mg/L 2H4-lysine and
36.88 mg/L 13C6-arginine (K4R6) or
22.81 mg/L 13C6

15N2-lysine and 36.88
mg/L 13C6

15N4-arginine (K8R10).
Incorporation of labeled amino acids
was confirmed by liquid chromatog-
raphy tandem mass spectrometry on
tryptic peptides prepared from whole-
cell lysates. Cell pellets were lysed in
8 mol/L urea in 100 mmol/L triethy-
lamonium bicarbonate, and protein
concentration was estimated using the
Bradford assay (BioRad, Hercules, CA).
Thirty micrograms of cell lysate was
reduced and alkylated by incubating
samples for 30 minutes at 37�C with
2.5 mmol/L tris(2-carboxyethyl)
phosphine and then 5 mmol/L
2-chloroacetamide. The urea concen-
tration was diluted to 1 mol/L with 100
mmol/L triethylamonium bicarbonate
before adding 0.6mg of trypsin. Samples
were incubated overnight then acidified
to 1% trifluoroacetic acid and cleaned
with OMIX C18 tips according to the
manufacturers’ protocol (Agilent, Santa
Clara, CA). Liquid chromatography tan-
dem mass spectrometry was performed
as described later.

Labeled (>97%) cells underwent
differentiation to adipocytes as
described earlier. At day 14 after dif-
ferentiation, cells were treated with
vehicle (media) (K4R6, medium-
weight cells) or 100 mmol/L FAC
(in media) (K8R10, heavy-weight cells)
for a further 48 hours using exactly

equal volumes of media, replacing the
media after 24 hours. Media for
secretome analysis was collected from
K4R6 and K8R10 cells and mixed 1:1
(vol/vol) before centrifugation at
600 � g at 4�C for 10 minutes to
remove cell debris. Supernatant then
was concentrated using Amicon Ultra
15 mL 10-kilodalton centrifugal filter
units (Merck Millipore, Burlington,
MA) in a fixed-angle centrifuge at
5000 � g to provide approximately
1-mL samples of concentrated mixed
secretome. Thirty micrograms of pro-
tein was separated on 10% sodium
dodecyl sulfate–polyacrylamide elec-
trophoresis gels to 10 mm. Protein
visualization, excision of bands, and
in-gel trypsin digestion were per-
formed using a semiautomated method
as described.6 A band corresponding to
the same molecular weight as trans-
ferrin (media additive) was removed
before digestion to provide a protein
sample exclusively secreted from
cultured adipocytes.

Mass Spectrometry
A Q Exactive Plus Orbitrap Mass
Spectrometer (Thermo Fisher Scienti-
fic), coupled with Easy-nLC 1000 and
EASY-spray ion source (both Thermo
Fisher Scientific), was used to analyze
the digested peptides. Samples were
loaded onto an EASY-Spray PepMap
RSLC C18 2-mm column (50 cm � 75
mm ID), with a Nanoviper Acclaim C18
guard (75 mm � 2 cm) (both Thermo
Fisher Scientific). A 90-minute
method was run using a combination
of buffer A (0.1% formic acid) and
buffer B (0.1% formic acid:-
acetonitrile). A 2-step gradient was
run comprising a 60-minute gradient
from 3% to 25% buffer B and a 12-
minute gradient from 25% to 40%
buffer B. The flow rate was 250 nL/
min. The mass spectrometer was
programmed to acquire a full mass
spectrometry resolution of 70,000
with an ACG target of 3 � 106, with a
maximum injection time of 100 ms.
The mass spectrometry scan range
was from 350 to 1400 m/z. Tandem
mass spectrometry was set to acquire
a resolution of 17,500 with an ACG
target of 5 � 105 and a maximum
injection time of 55 ms. The loop
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count was set to 20 with a dynamic
exclusion after 30 seconds. Raw data
were processedwith Spectrummill (Rev
B.05.00.181 SP1; Agilent). Selected
modifications included fixed carbami-
domethylation of cysteine and SILAC
labels (Arg 0-6-10 daltons Lys 0-4-8
daltons) and variable oxidized methio-
nine. Results were searched against the
Human UniProt database (downloaded
June 1, 2015).7 Trypsin was selected as
the digestion enzyme, with 2 maximum
missed cleavages allowed. The precur-
sor mass tolerance was set at ±20 ppm
and product mass tolerance was ±20
ppm. Data were analyzed using the on-
line Quantitative Proteomics P value
Calculator using no normalization and
nonadjusted P values.8

Immunoblotting
Western blot using whole-cell lysate
samples (10 mg) and 5-mL concentrated
secretome samples was performed as
previously described.9 A 1:500 dilution
of primary antibody against ApoE (sc-
53570; Santa Cruz, Dallas, TX) was
applied to the membranes. A 1:100,000
dilution of goat anti-mouse horseradish
peroxidase antibody (Invitrogen) was
applied as secondary antibody. ApoE
whole-cell lysate densitometry was
normalized against densitometry using
b-actin as a reference protein (1:2000
primary antibody) (cat no. 4967, Cell
Signaling, Danvers, MA) and 1:20,000
goat anti-rabbit horseradish-peroxi-
dase antibody (Invitrogen).
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Supplementary Figure 1. Optimization of iron loading in SGBS cells. (A) Iron assay, P ¼ .004 (1-way analysis of variance
[ANOVA]), *P < .01 (Dunnett multiple comparisons test compared with 0 mmol/L FAC, n ¼ 2 per group). (B) Total RNA (P ¼ NS
by 1-way ANOVA, N ¼ 3 per group). (C) Total lysate protein (P ¼ NS by 1-way ANOVA, n ¼ 3 per group). (D) Total secretome
protein (P ¼ NS by 1-way ANOVA, N ¼ 3 per group). (E) Viability assay (MTS) (P ¼ NS by 1-way ANOVA, N ¼ 3 per group). Data
are presented as means and SEM. MTS, [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-
tetrazolium].
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Supplementary Figure 2. Volcano plot of relative signal intensity of proteins identified in the adipocyte secretome. The
x-axis denotes log2 of the ratio of iron/vehicle-treated cells, with proteins to the left of zero representing those down-regulated
by iron and those to the right representing up-regulation by iron. The y-axis denotes statistical significance with a line rep-
resenting a P value of .05. Proteins above this line have a P value <.05. SILAC-labeled adipocytes generated 338 proteins that
were identified in the secretome by mass spectrometry. Of these, 213 had reduced signal intensity in response to iron,
whereas 125 had increased signal intensity. Of the 213 proteins with reduced signal intensity, 61 had a statistically significant
(P < .05) down-regulation in response to iron. Of these, 53 had a greater than 2-fold decrease in response to iron. Of the 125
proteins with increased signal intensity, 11 had a statistically significant (P < .05) up-regulation in response to iron. Of these, 7
proteins had a greater than 2-fold increase response to iron. Those proteins containing signal peptide (as determined by signal
peptide annotations on the UniProt database) are shown in red. Those without signal peptide are shown in blue.
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Supplementary Figure 3. (See previous page). Mechanistic aspects of iron-related dysregulation of protein secretion.
(A) Interleukin 6 (IL6) mRNA (P ¼ NS, paired t test, N ¼ 3 per group). (B and C) Oxidative stress (*P < .05, both N¼ 3 per group).
(B) Heme-oxygenase (HO-1) mRNA (P ¼ .01, paired t test). (C) Glutathione peroxidase 1 (GPX1) mRNA (P ¼ .049, paired t test).
(D–I) Endoplasmic reticulum stress (all N ¼ 3 per group). (D) Unspliced X-box binding protein (XBP1) mRNA (P ¼ NS, paired t
test). (E) Spliced XBP1 mRNA (P ¼ NS, paired t test). (F) Immunoglobulin binding protein (BiP) mRNA (P ¼ NS, paired t test). (G)
Endoplasmic reticulum degradation-enhancing a-mannidose-like protein (EDEM) mRNA (P ¼ NS, paired t test). (H) Activating
transcription factor 4 (ATF4) mRNA (P ¼ NS, paired t test). (I) CCAAT/enhancer-binding protein homologous protein (CHOP)
mRNA (P ¼ NS, paired t test). (J–M) Enrichment with signal peptide and exosome proteins. (J) Proportion of proteins down-
regulated significantly by iron with signal peptide vs no signal peptide. (K) Proportion of proteins not down-regulated signif-
icantly by iron with signal peptide vs no signal peptide. (L) Proportion of proteins down-regulated significantly by iron with
exosome secretion vs no exosome secretion. (M) Proportion of proteins not down-regulated significantly by iron with exosome
secretion vs no exosome secretion. Of the 61 proteins down-regulated significantly, 62% (38 of 61) had signal peptide,
whereas of the remaining proteins only 47% (129 of 277) had signal peptide. The 1-tailed Fisher exact test showed significant
enrichment with signal peptide (P ¼ .02) among the group down-regulated significantly. In contrast, there was no significant
enrichment of the exosomal pathway (P ¼ .51, 1-tailed Fisher exact test), because 15% (9 of 61) of the proteins down-
regulated significantly and 14% (39 of 277) of the remaining secretome proteins had been reported previously in the high-
confidence proteins from the EVpedia database.
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Supplementary Table 1.List of SGBS Secretome Proteins With Significantly Altered Signal Intensity in Response to Iron

Accession
number

Gene
name

Protein
name

Mean signal intensity ratio,
iron/vehicle SD

P
value

Q8IX30 SCUBE3 Signal peptide, CUB and EGF-like domain-containing
protein 3

0.026 0.016 .001

P61353 RPL27 60S ribosomal protein L27 0.060 0.005 .001

Q9NQH7 XPNPEP3 Probable Xaa-Pro aminopeptidase 3 0.076 0.004 .001

P07996 THBS1 Thrombospondin-1 0.083 0.047 .001

Q76M96 CCDC80 Coiled-coil domain-containing protein 80 0.090 0.031 .001

P78539 SRPX Sushi repeat-containing protein SRPX 0.096 0.620 .001

Q9UHI8 ADAMTS1 A disintegrin and metalloproteinase with thrombospondin
motifs 1

0.114 0.090 .002

Q92538 GBF1 Golgi-specific brefeldin A-resistance guanine nucleotide
exchange factor 1

0.118 0.024 .004

Q15063 POSTN Periostin 0.121 0.149 .001

P08238 HSP90AB1 Heat shock protein (HSP) 90-b 0.125 0.038 .004

P24593 IGFBP5 Insulin-like growth factor-binding protein 5 0.154 0.069 .001

Q15113 PCOLCE Procollagen C-endopeptidase enhancer 1 0.155 0.088 .001

Q9NTX5 ECHDC1 Ethylmalonyl-CoA decarboxylase 0.158 0.068 .001

P25788 PSMA3 Proteasome subunit a type 3 0.176 0.442 .001

Q12931 TRAP1 Heat shock protein 75 kilodaltons, mitochondrial 0.186 0.028 .018

P04083 ANXA1 Annexin A1 0.192 0.049 .001

P30101 PDIA3 Protein disulfide-isomerase A3 0.198 0.059 .001

Q99985 SEMA3C Semaphorin-3C 0.199 0.225 .001

Q6NZI2 PTRF Polymerase I and transcript release factor 0.210 0.134 .001

Q8TAV4 STOML3 Stomatin-like protein 3 0.220 0.084 .006

Q9UKZ9 PCOLCE2 Procollagen C-endopeptidase enhancer 2 0.226 0.030 .001

Q05469 LIPE Hormone-sensitive lipase 0.231 0.196 .023

Q13642 FHL1 Four and a half LIM domains protein 1 0.263 0.006 .029

P02749 APOH b2-glycoprotein 1 0.286 0.310 .048

P02462 COL4A1 Collagen a-1(IV) chain 0.286 0.351 .001

P15311 EZR Ezrin 0.296 0.077 .003

P42765 ACAA2 3-Ketoacyl-CoA thiolase, mitochondrial 0.308 0.136 .001

P68104 EEF1A1 Elongation factor 1-a 1 0.309 0.215 .001

Q9NQC3 RTN4 Reticulon-4 0.312 0.119 .007

Q8IY17 PNPLA6 Neuropathy target esterase 0.316 0.028 .026

Q92743 HTRA1 Serine protease HTRA1 0.324 0.075 .001

P08294 SOD3 Extracellular superoxide dismutase (Cu-Zn) 0.339 0.027 .005

Q16836 HADH Hydroxyacyl-coenzyme A dehydrogenase, mitochondrial 0.348 0.207 .011

Q99715 COL12A1 Collagen a-1(XII) chain 0.348 0.183 .001

P07355 ANXA2 Annexin A2 0.354 0.111 .001

P26038 MSN Moesin 0.362 0.110 .034

P23284 PPIB Peptidyl-prolyl cis-trans isomerase B 0.374 0.122 .001

O94769 ECM2 Extracellular matrix protein 2 0.375 0.060 .005

Q9NRN5 OLFML3 Olfactomedin-like protein 3 0.389 0.066 .002

P53396 ACLY Adenosine triphosphate–citrate synthase 0.389 0.066 .001

Q16363 LAMA4 Laminin subunit a-4 0.407 0.091 .001

P14625 HSP90B1 Endoplasmin 0.414 0.068 .025

Q9BU40 CHRDL1 Chordin-like protein 1 0.419 0.264 .001

P02649 APOE Apolipoprotein E 0.421 0.053 .001

Q9NS98 SEMA3G Semaphorin-3G 0.425 0.161 .001

P02751 FN1 Fibronectin 0.441 0.146 .001

P14543 NID1 Nidogen-1 0.442 0.190 .006
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Supplementary Table 1.Continued

Accession
number

Gene
name

Protein
name

Mean signal intensity ratio,
iron/vehicle SD

P
value

Q08431 MFGE8 Lactadherin 0.446 0.167 .026

Q15848 ADIPOQ Adiponectin 0.449 0.652 .005

O75390 CS Citrate synthase, mitochondrial 0.454 0.183 .012

Q92626 PXDN Peroxidasin homolog 0.457 0.200 .001

P07942 LAMB1 Laminin subunit b1 0.484 0.110 .001

Q08629 SPOCK1 Testican-1 0.497 0.055 .014

O00462 MANBA b-mannosidase 2.180 2.560 .034

Q13510 ASAH1 Acid ceramidase 2.222 3.135 .048

P02794 FTH1 Ferritin heavy chain 2.451 0.769 .030

Q02952 AKAP12 A-kinase anchor protein 12 2.665 0.572 .047

A6NCN2 KRT87P Putative keratin-87 protein 4.113 0.011 .022

P23468 PTPRD Receptor-type tyrosine-protein phosphatase d 10.687 2.199 .003

P10586 PTPRF Receptor-type tyrosine-protein phosphatase F 11.935 3.955 .001

NOTE. Proteins shown had a greater than 2-fold change in signal intensity in response to iron, with P < .05. Proteins high-
lighted in bold represent the 20 proteins of interest after review of the UniProt protein descriptions. Data were analyzed using
the online Quantitative Proteomics P value Calculator using no normalization and nonadjusted P values (N ¼ 3 per group).
CUB, C1r/C1s, Uegf, bone morphogenetic protein-1; EGF, epidermal growth factor; HTRA, High-Temperature Requirement A.
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