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Abstract

Background: Cancers have long been recognized to be not only genetically but also epigenetically distinct from
their tissues of origin. Although genetic alterations underlying oncogene upregulation have been well studied, to
what extent epigenetic mechanisms, such as DNA methylation, can also induce oncogene expression remains
unknown.

Results: Here, through pan-cancer analysis of 4174 genome-wide profiles, including whole-genome bisulfite
sequencing data from 30 normal tissues and 35 solid tumors, we discover a strong correlation between gene-body
hypermethylation of DNA methylation canyons, defined as broad under-methylated regions, and overexpression of
approximately 43% of homeobox genes, many of which are also oncogenes. To gain insights into the cause-and-
effect relationship, we use a newly developed dCas9-SunTag-DNMT3A system to methylate genomic sites of
interest. The locus-specific hypermethylation of gene-body canyon, but not promoter, of homeobox oncogene
DLX1, can directly increase its gene expression.

Conclusions: Our pan-cancer analysis followed by functional validation reveals DNA hypermethylation as a novel
epigenetic mechanism for homeobox oncogene upregulation.

Keywords: Pan-cancer analysis, DNA methylation, Whole-genome bisulfite sequencing, Gene-body,
Hypermethylation, Transcription, Homeobox oncogene, Methylation editing

Background
Upregulation of growth-promoting oncogenes is one of
the key steps during tumorigenesis [1]. Genetic alter-
ations underlying such oncogene upregulation have been
extensively studied, including single nucleotide variation,
chromosome translocation, focal amplification, and re-
cently reported disruption of chromosome neighbor-
hoods [2]. Meanwhile, cancers have also long been
recognized to be not only genetically but also epigeneti-
cally distinct from their tissues of origin, yet little is

known about the epigenetic alterations that can cause
oncogene activation.
DNA methylation is the most extensively documented

epigenetic modification that can influence cell fate and
gene expression [3]. Previous DNA methylation analyses
have been largely focused on long-range (> 100 kb) hy-
pomethylation corresponding to lamina-associated do-
mains (LAD) [4], variably methylated islands and shores
[5], and highly methylated domains [6]. In most normal
cells, DNA methylation patterns are stable [7], with 70–
80% of all CpGs being methylated, and the remaining
unmethylated CpGs tend to cluster together to form in-
terspersed under-methylated regions (UMRs). These
UMRs are generally associated with active regulatory re-
gions, such as promoters and enhancers [8]. Aberrant
DNA methylation has been repeatedly observed in many
cancer types [9, 10], including colorectal [4, 11], lung
[12], breast cancers [13], and hematological tumors. Fur-
thermore, promoter hypermethylation-induced silencing
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of tumor suppressor genes [14, 15] is usually thought to
be a key epigenetic event of tumorigenesis.
Besides promoter hypermethylation, several studies have

established a positive correlation between gene expression
and gene-body DNA methylation [16–19]. For example,
the deoxycytidine-mediated gene-body hypomethylation
has been shown to cause gene repression [11]. However,
the causal claim in this study was based on the global
hypomethylation agent 5-aza-2′-deoxycytidine, which
lacks specificity and potentially suffers from significant
off-target effects. For example, about 42% (188,631 out of
482,421) of the probes on Illumina Human Methylation
450 K BeadChip data were hypomethylated after deoxycy-
tidine treatment in HCT116 cell [11]. Thus, whether the
repression of a specific gene was caused by gene-body hy-
pomethylation of the same gene remained unclear.
Recently, broad (i.e. > 3.5 kb) UMRs were reported as

DNA methylation canyons [20] or DNA methylation valleys
[21]. Canyons usually span promoters and gene-bodies and
are very conserved across almost all normal cells.
Canyon-associated genes are specifically enriched for devel-
opmental regulators, many of which have low or no expres-
sion in normal cells [20]. Alterations in canyon borders in
hematopoietic stem cells are associated with dysregulated
genes in acute myeloid leukemia [20] and promoters within
canyons are hypermethylated in a colon cancer [21].

In this study, to gain insights into the functional role of
DNA methylation canyon in tumorigenesis, we conducted
an integrative analysis of 4174 genome-wide profiles, in-
cluding whole-genome bisulfite sequencing (WGBS) data
from 30 normal tissues and 35 solid tumors across seven
major cancer types. Our pan-cancer analysis followed by
functional validation using dCas9 mediated DNA methy-
lation editing revealed an unexpected causal role of
gene-body canyon hypermethylation for the activation of
homeobox oncogenes.

Results
Identification of human reference under-methylated
regions
To fully characterize DNA methylation canyons and
their alterations across diverse tumor types, we designed
a comprehensive pipeline (see “Methods”) to define the
human reference UMRs using WGBS data from 30 nor-
mal tissues and 35 solid tumors across seven tumor
types (Fig. 1a and Additional file 1: Table S1). A total of
46,384 recurrent (Poisson p value < 1.0e-8) human refer-
ence UMRs (tumor and normal UMRs combined) were
identified that cover approximately 2.2% of the genome
and also overlap with 71% (18,551) of 26,233 RefSeq
genes (Additional file 2: Table S2). About 2935 (6.3%) of
reference UMRs are > 3.5 kb and thus are defined as
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Fig. 1 Human reference UMRs. a The statistical framework for the identification of conserved reference UMRs using WGBS data from 30 normal
tissues and 35 solid tumors (Online Methods). b Cumulative distribution of UMR width for normal and tumor samples. Reference canyons
(length > 3.5 kb) account for about 6% of all reference UMRs. The remaining short UMRs are regarded as control cUMRs. c Percentage of
reference canyons/cUMRs covered by CpG islands (downloaded from UCSC). For each reference UMR, the percentage of UMR covered by the
CpG islands is defined as the length of the UMR covered by CpG islands (either partially or entirely) divided by the total length of the UMR.
Random represents 46,384 randomly selected regions for human genome that have the same length distribution, but without overlapping with
reference UMRs. d Percentage of reference canyons/cUMRs covered by DNase I hypersensitivity clusters (DNaseI cluster) 125 cell types [23],
transcription factor binding site clusters (TFBS cluster) of 161 TFs in 91 cell types [24], and enhancer clusters of H3K27ac peak regions in 88
human cell types [25]
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reference DNA methylation canyons. The remaining
short UMRs are regarded as control (cUMRs, Fig. 1b).
Vertebrate CpG islands identified based on GC content

and the observed to expected value (O/E value) of dinucleo-
tide CpG have been shown to be associated with transcrip-
tion start sites with low methylation [22]. Interestingly, CpG
islands can only explain, on average, 40–50% of reference
UMRs (Fig. 1c). On the other hand, most (> 80%) of the ref-
erence UMRs are covered by active cis-regulatory elements
collected from hundreds of cell types, including DNase I
hypersensitive sites [23], clusters of transcriptional factor
binding sites [24], and enhancers [25] (Fig. 1d). These results
indicate that the reference UMRs and canyons are associated
with active regulatory regions yet distinct from CpG islands.

DNA methylation canyons are prone to hypermethylation
in cancers
To uncover aberrant UMRs in cancers, we first used a
Shannon entropy-based method QDMR [26] to remove
heterogeneous UMRs across normal tissues. This is in-
spired by recent advances in the analysis of GWAS data,
in which high frequency mutations from a normal cohort

will be removed since they are not likely to be associated
with the disease phenotype. We then implemented a beta
statistical framework to identify pan-cancer differentially
methylated (BH corrected p value < 0.001) UMRs, which
are significantly altered in most of 35 tumors but show al-
most no change within 30 normal tissues (see “Methods”).
The resulting pan-cancer differential UMRs are thus unlikely
to be artifacts due to the lack of matched normal tissues in
our analysis. These pan-cancer differential UMRs can be fur-
ther divided into four categories: (1) tumor-hypermethylated
canyons; (2) tumor-hypermethylated cUMRs; (3) tumor
-hypomethylated canyons; and (4) tumor-hypomethylated
cUMRs (Fig. 2a and Additional file 3: Table S3). About 90%
of pan-cancer differential UMRs can be recurrently identified
in at least three individual tumor types (Fig. 2b). Notably,
while cUMR has almost an equal number of hypermethyla-
tion and hypomethylation, canyons are surprisingly much
more prone to hypermethylation (18%), but not hypomethy-
lation (5%), in tumors (chi-square test p value < 0.001)
(Fig. 2c). For example, a large (> 10 kb) pan-cancer hyper-
methylated canyon is located around HOXB13 (Fig. 2d), an
oncogene in ovarian [27] and breast [28] cancers.
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Fig. 2 Pan-cancer differentially methylated UMRs. a The statistical framework for the identification of pan-cancer hypermethylated or
hypomethylated UMRs. Red (blue) lines represent significant methylation increase (decrease) (p value < 0.001corrected by BH) in each tumor type
and in pan-cancer. Tumors types include bladder urothelial carcinoma (BLCA), breast invasive carcinoma (BRCA), glioblastoma multiforme (GBM),
lung adenocarcinoma (LUAD), lung squamous cell carcinoma (LUSC), stomach adenocarcinoma (STAD), and uterine corpus endometrial
carcinoma (UCEC). b Pan-cancer differential UMRs found in individual tumor type. c Percentage of human reference canyons/cUMRs that are
either hypermethylated or hypomethylated in pan-cancer. d DNA methylation genome browser tracks of a pan-cancer hyper-methylated canyon
around homeobox gene HOXB13
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Hypermethylated canyons are enriched for homeobox
genes and oncogenes
Pan-cancer differential UMRs exhibit distinct genomic
features (Additional file 4: Figure S1). Hypomethylated
canyon/cUMRs have low-CpG density, are mainly lo-
cated in intergenic regions, and have no significant func-
tional enrichment (Fig. 3a) for their associated genes,
and thus are excluded from further analysis. In contrast,
hypermethylated canyon/cUMRs have high CpG density
and are mainly located in promoters and gene-bodies.
Functional annotation of their associated genes (Fig. 3a
and Additional file 5: Table S4) revealed that the 434
pan-cancer hypermethylated canyon (but not cUMR)
genes include a significant (p value = 2.6e-109) amount
(109, i.e. ~ 43% of 256 total) of homeobox genes [29]
(named as m-homeobox hereafter), a superfamily of
transcription factors (TFs) that are critical for cellular
growth and differentiation [30]. To further investigate
the role of hypermethylated canyons in tumorigenesis,

we tested their enrichment in oncogenes or tumor suppres-
sor genes defined in the COSMIC [31] Cancer Gene Census
database. Unexpectedly, those pan-cancer hypermethylated
canyons (but not cUMRs) are enriched in oncogenes but not
in tumor suppressor genes (Fig. 3b). Notably, those
m-homeobox genes are also significantly enriched in onco-
genes (Fig. 3c binomial test p value = 3.5e-07).

Hypermethylated canyons are strongly associated with
increased expression of homeobox oncogenes
To evaluate the functional consequence of canyon hyperme-
thylation, we compared gene expression between uterine
corpus endometrial carcinoma (UCEC) tumors and matched
normal tissues. Surprisingly, pan-cancer hypermethylated
canyon genes have significantly higher gene expression in
UCEC tumors than in normal samples (Wilcoxon
signed-rank test p value = 1.0e-05, r-value = 0.49; Fig. 3d).
Accordingly, the 110 m-homeobox genes (but not other
homeobox genes) also have higher gene expression in UCEC
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Fig. 3 Canyon hypermethylation is associated with increased expression of homeobox oncogenes. a DAVID functional annotation of pan-cancer
hypermethylated, hypomethylated, and conserved canyons/cUMRs. The p values were adjusted by the BH method. b Oncogene or tumor
suppressor [31] gene enrichment levels in the pan-cancer hypermethylated/hypomethylated canyon/cUMRs. P values were computed by Fisher’s
exact test. c Venn diagram showing the overlap between pan-cancer canyon hypermethylated homeobox genes (m-homeobox genes) and
oncogenes. P value was computed by Fisher’s exact test. d Boxplots showing mean gene expression distribution of five categories gene sets of
pan-cancer hypermethylated/hypomethylated canyons/cUMRs associated genes and all genes in the uterine tumor (427) and normal (22)
samples. P values were calculated by Wilcoxon signed-rank test. Boxplots represent the interquartile range (25–75%), with the median; whiskers
correspond to 1.5 times the interquartile range. e Mean gene expression distribution of the m-homeobox genes and the other homeobox genes
between uterine tumors (427) and normal (22) samples. The average expression of each gene was first computed across 22 normal samples or
427 tumor samples. The boxplot shows the average expression of all genes
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tumors (Wilcoxon signed-rank test p value = 1.5e-06,
r-value = 0.38; Fig. 3e). In contrast, no global expression dif-
ference was observed for hypomethylated canyons/cUMRs
and hypermethylated cUMRs. Furthermore, the unique asso-
ciation between increased expression and canyon hyperme-
thylation was also observed in four other tumor types
including BLCA, BRCA, LUAD, and LUSC (Additional file 4:
Figure S2). Together, our analysis suggested a previously
unrecognized link between canyon hypermethylation and in-
creased expression of homeobox oncogenes.

Hypermethylation of gene-body but not promoter within
canyon is associated with increased gene expression
To understand the relationship between hypermethy-
lated canyon and increased gene expression, we plot-
ted canyons/cUMRs around their associated genes.
Although almost all the canyons/cUMRs are enriched
in promoters, about 40% of hypermethylated canyons
also cover the entire gene-bodies (Additional file 4:
Figure S3). This observation suggested that gene-body
(but not promoter) canyon hypermethylation might ex-
plain the gene overexpression, consistent with previously
reported positive correlation between gene-body methyla-
tion and gene expression [11, 32]. As expected, in a com-
parison between a UCEC tumor and its matched normal
tissue, we found that, for upregulated hypermethylated
canyon genes in tumors, methylation level increased dra-
matically in gene-bodies (two-sided t-test p value =
3.8e-08) but not in promoters (Fig. 4a). In contrast, for
downregulated hypermethylated canyon genes, DNA
methylation increased only at gene promoters (two-sided
t-test p value = 1.9e-06) but not in gene-bodies, consistent
with the extensive studies of promoter hypermethylation
associated with gene silencing. For example, the hyper-
methylated homeobox gene HOXB13 overexpression and
gene-body hypermethylation was observed in UCEC
(Fig. 4b) and four other tumor types including BRCA,
LUAD, LUSC, and STAD (Fig. 2d and Additional file 4:
Figure S4a). In ovarian [27] and breast [28] cancer cell
lines, HOXB13 has been shown as an oncogene
involved in upregulation of estrogen receptor (ER),
increase of cancer cell proliferation, and invasiveness. Using
Illumina 450 K methylation array and RNA-sequencing
(RNA-seq) in a large cohort of UCEC tumors, we further
validated that HOXB13 had significantly increased gene
expression and gene-body (but not promoter) methylation
(Fig. 4c). Furthermore, hypermethylation of HOXB13
gene-body (but not promoter) is strongly correlated with
(Spearman’s rank correlation p value = 1.7e-73) their gene
expression (Fig. 4d). Together, our data revealed that the
canyon gene upregulation is mainly associated with
hypermethylation of gene-bodies but not promoters within
canyons.

Canyon gene expression is more susceptible to gene-
body DNA methylation change
To better understand the role of canyon in the relation-
ship between hypermethylation and increased gene
expression, we performed locus-specific correlation ana-
lysis for the same UCEC tumor and matched normal
sample. Each gene (normalized into 5 kb) and the flank-
ing 1-kb regions were split equally into non-overlapping
70 bins with 100 bp for each bin. The Spearman’s rank
correlation between DNA methylation and gene expres-
sion was computed for each bin (Fig. 4e). As expected,
for all differentially expressed genes, there is a strong
negative correlation in promoter and relatively weak
positive correlation in gene-body [18]. However, the can-
yon genes exhibit much stronger positive correlation in
gene-body than hypermethylated cUMR genes and dif-
ferentially expressed genes, although the negative correl-
ation in promoter is similar across all three gene sets.
Thus, the hypermethylated canyon genes represent a
unique set of genes, whose expression might be more
susceptible to gene-body DNA methylation change.

Gene-body canyon hypermethylation by dCas9-SunTag-
DNMT3A can directly increase oncogene DLX1 expression
Recent advances in epigenetic editing allow the targeted
modulation of DNA methylation of regions of interest
(ROI) by the fusion of DNMT3A or TET1 with a
nuclease-deactivated Cas9 (dCas9) [33, 34]. DNMT3A
has been shown to occupy and methylate gene-bodies
and intergenic regions involved in transcription upregu-
lation of neurogenic genes in mouse postnatal neural
stem cells [35]. To test whether gene-body canyon
hypermethylation can directly lead to gene activation, we
harnessed the newly developed dCas9-SunTag-DNM
T3A system [36] to methylate gene-body ROIs (Fig. 5a)
in the HEK293T human embryonic kidney cell line.
Due to the difference between cell lines and primary

cells, the HOX13B gene-body is already highly methyl-
ated in HEK293T cells. We therefore decided to focus
on two other m-homeobox genes, DLX1 and POU3F3,
in the dCas9-mediated methylation editing experiments.
Gene-body canyon hypermethylation of DLX1 and its
aberrant overexpression were widely observed in four
tumor types including BLCA, LUAD, LUSC, and UCEC
(Fig. 5b and Additional file 4: Figure S4b). DLX1 has also
been found to promote ovarian cancer cell growth, cell
migration, and invasion [37]. To specifically methylate
the gene-body canyon of DLX1 without affecting the
promoter, single guide RNAs (sgRNA; sgDLX1) were de-
signed in intron 1 of DLX1 using the CRISPR analysis
tool CHOPCHOP [38] (Fig. 5b). Induction of dCas9-
SunTag-DNMT3A expression can methylate gene-body
portion of the canyon (average methylation of 25 CpGs in-
creases from 5.1% to 46.2%), while keeping the remaining
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part (mostly promoter) of the canyon largely unchanged
(average methylation of 27 CpGs changes from 1.0% to
1.1%) (Fig. 5c). Quantitative polymerase chain reaction
(qPCR) showed that the dCas9-SunTag-DNMT3A to-
gether with sgRNAs can directly increase DLX1 gene
expression by about twofold, comparing to the same cells
without induction of dCas9SunTag and scFvDNMT3A. Further-
more, induction of dCas9SunTag and scFvDNMT3AE756A with
sgRNAs did not change DLX1 expression, suggesting DNA
methylation, rather than dCas9SunTag-DNMT3A complex, is

responsible for increased DLX1 expression (Fig. 5d). Similar
to DLX1, another m-homeobox gene POU3F3 has hyperme-
thylation canyon in gene-body and aberrant overexpression
in multiple tumor types including BLCA, LUSC, and UCEC
(Additional file 4: Figure S5a and S5b). We used the
dCas9-SunTag-DNMT3A methylation editing tool to specif-
ically methylate the gene-body canyon of POU3F3 (average
methylation of 23 CpGs increases from 4.9% to 28.0%), while
keeping the promoter at a low methylation level (average
methylation of 71 CpGs changes only from 1.3% to 1.9%)
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Fig. 4 Hypermethylation of gene-body but not promoter within canyon is associated with increased gene expression. a DNA methylation of
upregulated and downregulated pan-cancer hypermethylated canyon genes between a uterine tumor (Data ID: TCGA-AX-A1CI-01A) and its
matched normal sample (TCGA-AX-A1CI-11A). b Increased methylation in gene-body and low methylation around TSS for HOXB13. c Gene
expression and DNA methylation in HOXB13 promoter (chr17: 46,806,000-46,807,000) and gene-body (chr17:46,802,200-46,805,999) between
uterine normal (22) and tumor (427) samples. P values were calculated by Wilcoxon signed-rank test. d Correlation between HOXB13 expression
and methylation level at gene promoter (left) and gene-body (right) in uterine normal (22) and tumor (427) samples. The rho and p value were
computed by Spearman’s rank test. e Locus-specific spearman’s rank correlation of gene expression change and DNA methylation change (see
“Methods”) between a uterine tumor and its matched normal sample in Fig. 4a for pan-cancer hypermethylated canyon genes (left), pan-cancer
hypermethylated cUMR genes (middle), and all differentially expressed genes (right)
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(Additional file 4: Figure S5c). Consistent with the result of
DLX1, the expression of POU3F3 also exhibits significant in-
crease (approximately twofold) due to gene-body canyon
hypermethylation (Additional file 4: Figure S5d). Together,
our methylation editing experiments on two independent
homeobox genes (DLX1 and POU3F3) provide robust ex-
perimental evidence that gene-body canyon hypermethyla-
tion can directly increase oncogene expression.

Discussion
Our pan-cancer analysis of 35 solid tumors across seven can-
cer types revealed that DNA hypermethylation preferentially

occurs in broad (i.e. canyons) but not in short UMRs. To
overcome concerns regarding the lack of matched normal
tissues, we removed tissue-specific UMRs in our pan-cancer
analysis and then focused on UCEC tumors and their
matched normal tissues in the downstream functional
analysis. The hypermethylated canyon genes are strongly
associated with increased expression of homeobox onco-
genes and represent a unique set of genes whose expression
might be more susceptible to gene-body methylation change.
Our locus-specific dCas9-mediated DNA methylation
editing experiment reveals an unexpected causal role of
gene-body canyon hypermethylation for gene activation. This

a b
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Fig. 5 Gene-body canyon hypermethylation by dCas9-SunTag-DNMT3A can directly increase oncogene DLX1 expression. a Schematic graph for
dCas9-SunTag-DNMT3A DNA methylation editing system. De-activated Cas9 (dCas9) was fused to SunTag epitopes and single-chain variable
fragment (scFv) was fused to GFP and DNMT3A to methylate the gene-body canyon and activate gene expression. b Genome browser tracks of
gene-body hypermethylated canyons around homeobox gene DLX1 across 30 normal and 35 tumor samples. c CpG DNA methylation level
dramatically increased at the gene-body of DLX1 after adding guide RNA DLX1 (gray bar) with induction of dCas9SunTag and scFvDNMT3A, yet the
methylation level in gene promoter was not affected. CpG DNA methylation level was calculated based on two biological replicates. Error bars
represent mean ± s.e.m. of biological replicates. d qPCR shows significant increase of gene expression of DLX1 with induction of dCas9SunTag and
scFvDNMT3A compared to the same cells without induction. P value was computed by two-sided Student’s t-test
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is fundamentally different from the well-known promoter
hypermethylation [10, 39–41] leading to the silence of tumor
suppressor genes.
In the human genome, most gene-bodies have low CpG

density and are heavily methylated [17, 32]. Gene-body
methylation is involved in preventing alternative pro-
moters, spurious transcription initiation, and retrotrans-
poson elements to maintain gene transcription efficiency
[42, 43]. Our study is the first to use a locus-specific DNA
methylation editing system to prove gene-body canyon
hypermethylation can directly increase expression of a
unique set of homeobox oncogenes.
Homeobox genes comprise a superfamily of TFs that

are critical for cellular growth and differentiation. The
homeodomain (the evolutionary conserved helix–loop–
helix DNA-binding motif) is usually present in the second
exon. Homeobox genes in general have high CpG density,
which might facilitate the establishment of DNA methyla-
tion canyons. In fact, about 67% (157 out of 234) of
homeobox genes are associated with reference canyons
(Additional file 3: Table S3). Growing evidence has dem-
onstrated that homeobox genes are frequently dysregu-
lated in cancers [44]. However, very few of them are
associated with pan-cancer oncogenic genetic signatures
[45], such as copy number variation (CNV) and somatic
mutation (Additional file 4: Figure S6). In contrast, the
pan-cancer hypermethylated canyons are associated with
~ 43% of homeobox genes that are overexpressed in mul-
tiple tumors (Fig. 3e and Additional file 4: Figure S2b).
This observation suggests that the gene-body canyon
hypermethylation might be a dominant epigenetic mech-
anism for homeobox oncogene activation in tumors.

Conclusions
Our data suggest that the pan-cancer gene-body canyon
hypermethylation is a novel epigenetic mechanism for
homeobox oncogene activation. Our finding might pro-
vide new insights into tumorigenesis, especially for those
tumors that harbor low genetic alterations yet are largely
epigenetically deregulated.

Methods
Public datasets
In this study, we used a total of 4174 genome wide datasets
(Additional file 1: Table S1), including 65 WGBS profiles,
449 Infinium 450 K arrays, 3660 RNA-seq data from Road-
map Epigenomics [46], ENCODE [47], and the TCGA con-
sortium [48], respectively. The TFs were downloaded from
Human TF repertoire [49]. The homeobox genes were
downloaded from HomeoDB2 database [29]. A total of 426
cancer dominant genes (oncogenes) and 128 cancer reces-
sive genes (tumor suppressor gene) were defined by the
COSMIC [31] database. The pan-cancer oncogenic signa-
tures including CNV deletion (116) and amplification

(151), somatic mutation (199), and DNA methylation (13)
were identified by a hierarchical classification method of
3299 TCGA tumors from 12 cancer types [45]. Also, a hu-
man genome-wide enhancer cluster was obtained from the
ChIP-seq datasets of H3K27ac peaks in 88 human cell types
[25]. Gene expression values of normalized read counts by
expectation-maximization (RSEM) from RNA-seq data of
primary tumor and normal samples were obtained from
the TCGA data portal (https://tcga-data.nci.nih.gov/docs/
publications/tcga/) including 19 bladder normal and 408
urothelial carcinomas (BLCA), 113 breast normal and 1102
invasive carcinomas (BRCA), 59 lung normal and 515
adenocarcinomas (LUAD), 102 lung squamous normal and
502 carcinomas (LUSC), 35 stomach normal and 415
adenocarcinoma (STAD), 22 uterine normal and 437 cor-
pus endometrial carcinoma (UCEC). Promoters were de-
fined from 1 kb upstream to 500 bp downstream of RefSeq
transcription start sites (TSS) and gene-bodies were defined
from 500 bp downstream of RefSeq TSS to RefSeq tran-
scription termination sites (TTS).

Identification of reference under-methylated regions
We developed a comprehensive statistical framework to
identify human reference UMRs from 65 high-quality
WGBS profiles (genome-wide CpG coverage percent-
age > 90%; Additional file 1: Table S1), comprising 30
normal tissues and 35 primary solid tumors:
Step 1: For each WGBS profile, we used BSMAP [50]

to trim adaptor, low-quality, and duplicated sequence
with default threshold, aligned bisulfite-treated reads to
the human genome (hg19). We used the coverage
threshold of 4 reads to ensure the accuracy of CpG
methylation detection [51]. The methylation ratio of
each CpG covered with at least 4 reads was calculated
by the module bsratio in BSMAP.
Step 2: The UMRs were identified that include at least

four consecutive hypomethylated CpGs with the mean
methylation ratio < 10% as described previously [20]. To
reduce the effect of sparse CpG density in our UMR de-
tection based on HMM model, we removed UMRs with
Obs/Exp value of CpGs < 0.1.
Step 3: A total 3,521,985 redundant UMRs from mul-

tiple tissue and tumor WGBS profiles were reduced to
369,852 non-redundant ones through merging the over-
lapping UMRs among multiple samples. To describe
genome-wide UMR enrichment distribution across tis-
sue and tumor samples, the UMR frequency (UOF) of
the intersect segment (s) among N samples was defined

as UOFðsÞ ¼
PN

i¼1
si

N ;

where si ¼ 1; if the ith sample UMR covering segment s
0; otherwise

�
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UMR occupancy scores represent the UMR co-
occupancy level of population-scale samples of normal
tissues and tumors. The higher the UOF, the more con-
served are the UMR in the population-scale samples.
Conversely, a UOF decrease represents the UMR short-
ening or loss, suggesting that hypermethylation occurs
in these regions at a population scale.
Step 4: Inspired by ChIP-seq peak calling for detection

of significantly enriched regions, we detected reference
UMRs from UOF profile within population of samples
based on a Poisson test (p values < 1.0e-8), p values ad-
justed by the Benjamini and Hochberg (BH) method.
These reference UMRs were identified for normal tissue
(32,864) and tumors (45,081), respectively. A total of
46,384 recurrent UMRs were identified through combin-
ing the normal and tumor reference UMRs (Additional
file 2: Table S2).

Identification of pan-cancer differentially methylated
UMRs
We sought to uncover common patterns of aberrant
DNA methylation across diverse tumor types with low
heterogeneity among normal tissues. A statistical frame-
work was devised to identify pan-cancer differentially
methylated UMRs.
Step 1: Normal tissue-specific UMRs were removed

using a quantitative method QDMR [26] based on Shan-
non entropy with default threshold. The lower the entropy
value, the bigger the difference of DNA methylation across
sample. In total, 24,098 reference UMRs with low hetero-
geneity across normal samples were retained.
Step 2: The differential methylation (DM) analysis was

performed by employing a likelihood ratio test method
to dissect aberrant methylation between tumor and nor-
mal samples. The mean methylation level of the ith
UMR in the jth normal sample is denoted as x0ij , while

the methylation level in the kth tumor sample is repre-
sented as x1ik : Here x0ij � Betaðα0i ; β0i Þ; i∈½1; 2; ::;N �; j∈½
1; 2; ::;M0� , N is the total number of UMRs and M0 is
the number of the normal samples. In addition, x1ik
� Betaðα1i ; β1i Þ; k∈½1; 2; ::;M1� and M1 is the number of
the tumor samples. Then, the goal of testing if the ith
UMR is differential across tumor and normal samples is
to determine if they have the same distribution parame-
ters. This is equivalent to test the following hypothesis

Ho : α
0
i ¼ α1i ¼ αs and β0i ¼ β1i ¼ βs vs

H1 : α
0
i ≠α

1
i or β

0
i ≠β

1
i

To this end, a likelihood ratio test for is adopted,
whose test statistics are expressed as:

Di ¼ −2 ln
YM0þM1

j¼1

P xijjαs; βs
� �

þ ln
YM0

k¼1

P xik jα0; β0
� �

þ ln
YM1

l¼1

P xiljα1; β1
� �

Here, Di approximately follows a χ2 distribution with de-
gree of freedom df2 − df1 under Ho, from which the p value
can be computed as

pvalue ¼ 1−χ2 Di; df 2−df 1ð Þ
where df2 and df1 represent the degrees of freedom for
the model under H1 and Ho, which are 4 and 2, respect-
ively. In the end, the p values for all the UMRs are ad-
justed to false discovery rate (FDR) using the BH
method. The absolute DM values of UMRs were defined
as the difference of mean methylation levels between
tumor and normal samples. Both p value adjusted by BH
method < 0.001 and DM value > 0.1 were used to iden-
tify the differentially methylated UMRs relative to all
normal samples (Additional file 3: Table S3). To com-
pare these differentially methylated UMRs with con-
served UMRs across tumor types, we established two
control groups: (1) 1398 conserved canyons; and (2)
9596 conserved cUMRs, which are not differentially
methylated in all of the seven tumor types.

Gene expression analyses
Differentially expressed m-homeobox genes were identi-
fied using the software edgR [52] with FDR-adjusted P
value < 0.01 and relative fold changes of mean expres-
sion level > 2 (tumor vs norm).

HumanMethylation450 BeadChip analysis
We selected a large cohort of Infinium Human Methyla-
tion 450 K BeadChip data for Uterine Corpus Endomet-
rial Carcinoma (UCEC), including 22 normal and 427
primary tumor samples from TCGA (Additional file 1:
Table S1). The probes with one or more single nucleo-
tide polymorphisms (SNPs) were removed and the Com-
Bat normalization was used to reduce the batch effect.
DNA methylation levels of 482,421 CpG sites were mea-
sured as β values in the range of 0–1 that cover about
1.7% of total CpGs in the human genome. 450 K Bead-
Chip probes are enriched in the pan-cancer hypermethy-
lated canyons, > 90% of which include at least 10 CpGs
(Additional file 4: Figure S7a). The mean beta value of
450 K BeadChip probes exhibited an almost perfect ac-
cordance (Pearson correlation coefficient ~ 0.90) with
the mean methylation level using WGBS (Additional
file 4: Figure S7b). Thus, the 450 K BeadChip can be
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used to reliably measure the methylation level of
pan-cancer hypermethylated canyons.

Correlation between gene expression and locus-specific
DNA methylation
Each gene (normalized into 5 kb) and the flanking 1-kb
regions were split into 70 bins with a 100-bp window.
Spearman’s rank correlation was computed in each bin.
For a single sample, Spearman’s rank correlation coeffi-
cient was computed between gene expression and the
DNA methylation level of the selected gene set at each
bin. For pairwise samples (tumor vs normal), Spearman’s
rank correlation coefficient was computed between gene
expression changes (fold change of RSEM) and the DNA
methylation level changes (absolute difference) of the se-
lected gene set at each bin.

Gene enrichment analyses
We used DAVID [53] version 6.8 for the gene ontology
analysis of pan-cancer hypermethylated canyon/cUMRs
and we only plotted the GO terms with p values <
1.0e-10 with Benjamini correction. Gene enrichment sig-
nificant levels for homeobox genes, tumor suppressors
and oncogenes were calculated by Fisher’s exact test.

Vector construction
In order to control expression of dCas9-SunTag and
scFv-DNMT3A, we acquired doxycycline-inducible
open-reading frame expressing vector Pinducer 20 (P20)
(Addgene 44,012) from the Thomas F. Westbrook lab
and we further exchanged the selection marker of the
original P20 vector from neomycin to blasticidin
(P20-BSD). The sequence of dCas9-SunTag-2A-BFP and
scFv-sfGFP-DNMT3A was then gateway cloned to P20
and P20-BSD, respectively. Catalytic inactive mutation
(E756A) of DNMT3A was generated using agilent
QuickChange II XL kit based on manufacturer’s instruc-
tions in PDONR223-scFv-sgGFP-DNMT3A and then
gateway cloned to the P20-BSD vector.

DNA methylation editing using the dCas9-SunTag-
DNMT3A system
Locus-specific DNA methylation of DLX1 and POU3F3
gene-bodies was conducted using our dCas9-SunTag
-DNMT3A system [36]. In brief, doxycycline-inducible
lentiviral particles of dCas9-SunTag-p2A-BFP and
scFv-sfGFP-DNMT3A were transduced in a human embry-
onic kidney cell line (HEK293T). The single clones of
idCas9SunTag, idCas9SunTag + iscFvDNMT3A, and idCas9SunTag

+ iscFvDNMT3AE756A were purified. Lentiviral particles of
sgDLX1-puromycin and sgPOU3F3-puromycin were also
generated and transduced in previously generated inducible
dCas9-SunTag-DNMT3A cells. Transduced cells were
treated with 2 μg/mL puromycin for seven consecutive days

and cultured in 2 μg/mL doxycycline for another 30 days.
SgRNA primers were listed as follows: DLX1-F 5’-CACC
GGGCGGACTCGGAGAAGAGCA-3′, DLX1-R 5’-AAAC
TGCTCTTCTC CGAGTCCGCCC-3′, POU3F3-F: 5’-C
ACCGCGGCGGCGGGGGCGGCGCAG.
-3′, POU3F3-R: 5’-AAACCTGCGCCGCCCCCGCCG

CCGC-3′.

DNA methylation analysis of targeted regions
Genomic DNA of dCas9-SunTag-DNMT3A-treated cells
was extracted by Purelink Mini Kit (Invitrogen) and bi-
sulfite converted by Epitect Bisulfite Kit (Qiagen). Pro-
moter (chr2:172,950,395-172,950,785) and gene-body
(chr2:172,951,180-172,951,400) regions of DLX1, and
promoter (chr2:105,470,350-10,470,850) and gene-body
(105,471,850-105,472,350) regions of POU3F3 were
amplified from bisulfite-treated DNA by PCR using the
following program. First, samples were heat activated at
95 °C for 5 min, then kept at 95 °C for 30 s, then at 60 °
C for 2 min and 30 s and decreased by 0.2 °C every
cycle, at 72 °C for 2 min and 30 s and repeated from sec-
ond step for 40 cycles. Finally, the samples were elon-
gated at 72 °C for 10 min. Bisulfite PCR primers used
for promoter (P) and gene-body (E) of DLX1: DLX1-P-F
5′- GGGAAGTAGAGGAGAGAAAGTTTTA -3′, DL
X1-P-R 5′- CTCTCCTCTCTTCTCTTTCTCTC -3′,
DLX1-E-F: 5′- ATTTTTTTT GTAAAGGTAGGAGT
TGAG -3′, DLX1-E-R 5′- AACACATACACACA
ATAACA CCC -3′. Bisulfite PCR products were run in
2% agarose gel electrophoresis, excised, and extracted
using a gel extraction kit (Qiagen). DNA concentration
of gel-extracted products was measured using qubit
dsDNA HS assay kit (Life Technologies) and adjusted to
0.2 ng/μL for Nextera libraries preparation. Nextera li-
braries preparation was based on the manufacturer’s in-
structions (Illumina). We used the software of BSMAP
[50] to align the paired-end reads to the human genome
(hg19) and low-quality sequences were trimmed as the
default threshold. High average coverage of each sample
was obtained (> 2000×) and their methylation ratios of
CpGs with coverage depth > 1000× were computed using
the bs-ratio module in software BSMAP.

Quantitative PCR
Complementary DNA was reverse-transcripted from
1 μg RNA following the manufacturer’s instructions. Pri-
mer for qPCR: 18S-F: GTAACCCGTTGAACCCCATT,
18S-R: CCATCCAATCGGTAGTAGCG, qPCR-DLX1-F:
ATGCACTGTTTACACTCGGC, qPCR-DLX1-R: GAC
TGCACCGAACTGATGTAG. qPCR-POU3F3-F: GCGG
CTTCTAACCCCTACC, qPCR-POU3F3-R: CCCCTGC
ATGAAGTCGCTC. qPCR cycle conditions: 3 min at
95 °C; 40 cycles of 10 s for 95 °C,10 s for 55 °C, and 30 s
for 72 °C .
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