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SUMMARY

Adaptation of learning and decision-making might depend on the regulation of activity in the 

prefrontal cortex. Here, we examined how volatility of reward probabilities influences learning 

and neural activity in the primate prefrontal cortex. We found that animals selected recently 

rewarded targets more often when reward probabilities of different options fluctuated across trials 

than when they were fixed. Additionally, neurons in the orbitofrontal cortex displayed more 

sustained activity related to the outcomes of their previous choices when reward probabilities 

changed over time. Such volatility also enhanced signals in the dorsolateral prefrontal cortex 

related to the current, but not the previous, location of the previously rewarded target. These 

results suggest that prefrontal activity related to choice and reward is dynamically regulated by the 

volatility of the environment, and underscore the role of the prefrontal cortex in identifying aspects 

of the environment that are responsible for previous outcomes and should be learned.
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Massi et al. show that signals in the prefrontal cortex related to choices and outcomes are 

enhanced when reward probabilities are volatile rather than stable. Furthermore, when reward 

probabilities are volatile, rewards strengthen task-relevant, but not task-irrelevant, signals.

INTRODUCTION

What and how an animal should learn depends on the stability of the animal’s environment. 

For example, even when outcomes of actions chosen by decision makers are stochastic and 

unpredictable, if the probabilities of different outcomes from actions are fixed and precisely 

known, it is not necessary to update decision-making strategies. By contrast, if little is 

known about the probabilities of different outcomes, the outcome from each action is likely 

to have stronger influence on the decision-maker’s subsequent strategies. Previous studies 

have shown that humans and other animals adjust their learning strategies nearly optimally 

depending on the level of uncertainty or volatility of their environment (Behrens et al., 2007; 

Nassar et al., 2012; Lee et al., 2014; McGuire et al., 2014). In addition, given the role of the 

prefrontal cortex (PFC) in learning and decision making (Miller and Cohen, 2001; Wallis 

and Kennerley, 2010), flexible regulation of activity in the PFC might facilitate different 

learning strategies (Doya, 2002; Yu and Dayan, 2005; Nassar et al., 2012; Tervo et al., 2014; 

Farashahi et al., 2017). In particular, recurrent connections in PFC networks are thought to 

facilitate persistent activity (Compte et al., 2000; Wang et al., 2013; Murray et al., 2014; 

Chaudhuri et al., 2015), and relatively small changes in the strength of recurrent connections 

determines whether neural circuits respond to stimuli from the recent or distant past 

(Chaudhuri et al., 2015; Wong and Wang, 2006; Murray et al., 2012). Persistent PFC signals 

related to an animal’s previous choices and their outcomes might contribute to multiple 

aspects of reinforcement learning, such as value updating and temporal credit assignment 

(Curtis and Lee, 2010; Walton et al., 2010; Bernacchia et al., 2011; Donahue et al., 2013; 

Donahue and Lee, 2015; Asaad et al., 2017). However, how PFC signals related to an 

animal’s choices and their outcomes might be modulated by the stability or volatility of the 

environment is not known.

To address this question, we trained rhesus monkeys to perform a probabilistic reversal 

learning task in which we manipulated the volatility of the reward probabilities associated 

with the available options. During volatile blocks, the reward probabilities of each option 

underwent periodic reversals (Donahue and Lee, 2015), which encouraged the animals to 
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choose their actions according to their recent choice and reward histories. By contrast, 

during stable blocks, the reward probability for each target was fixed throughout the 

experiment. We found that past outcomes tended to influence the animal’s behavior strongly 

during the volatile blocks but not the stable blocks. In addition, single neurons in the 

prefrontal cortex tended to have a stronger representation of past choices and outcomes 

during the volatile blocks than during the stable blocks. Previous rewards also enhanced the 

neural signals that combined information about the events in the previous trial with stimulus 

parameters of the current trial, but only during the volatile blocks. These findings suggest 

that the representation of reward in the PFC depends on environmental volatility and shapes 

the encoding of other task-relevant information for learning.

RESULTS

Volatility Promotes Learning

To test whether volatility affects the nature of PFC signals that are important for decision 

making, we trained two monkeys (U and X) to perform a probabilistic reversal task (Figure 

1A). In each trial, the animal was required to select one of two peripheral targets with 

variable reward probabilities and magnitudes. In a given block of trials, one target color or 

shape was associated with a high reward probability (80%), and the other with a low reward 

probability (20%). During the volatile blocks, target colors associated with high and low 

reward probabilities were switched after 20 or 40 trials (Donahue and Lee, 2015), whereas 

during the stable blocks, target colors or shapes corresponding to high and low reward 

probabilities were fixed throughout the entire experiment. As expected, the animals adjusted 

their preference for different target colors based on the outcomes of their recent choices 

significantly and substantially more during the volatile blocks than during the stable blocks 

(Figures 2A and S1A). During the volatile blocks, the animals rapidly adjusted their 

preferences following reversals regardless of the length of the preceding volatile sub-block 

(Figure S1B). Learning rates estimated with a reinforcement learning model (Sutton and 

Barto, 1998) were significantly larger (paired t-test, p<10−59 for both animals) during the 

volatile blocks (both animals αv = 0.22; Figure 2B) than during the stable blocks (αs = 0.01 

and 0.02 for monkeys U and X, respectively). We also tested a model with two separate 

learning rates for rewarded and unrewarded outcomes and found that the learning rate varied 

with both volatility (main effect of volatility in a 2-way ANOVA, p<10−16 for both animals) 

and outcome (reward main effect, p<10−16 for both animals). In addition, the effect of 

reward on learning rates (mean±s.d.) was significantly larger for the volatile block than for 

the stable block (αv-rewarded = 0.39± 0.13, αv-unrewarded = 0.22±0.07, αs-rewarded = 

0.13±0.12, αs-unrewarded = 0.00± 0.01; reward × volatility interaction, p<0.005 for both 

animals). The relative reward magnitude also influenced behavior. The regression coefficient 

(mean±s.d.) for the difference in magnitude between the two options (see STAR Methods) in 

our reinforcement learning model was significantly above zero for both monkeys 

(1.35± 0.31 and 1.39±0.21, for monkeys U and X, respectively; one-sample t-tests, p<10−111 

for both animals). Thus, animals’ decisions depended both on their estimates of reward 

probabilities and the explicit cues associated with the reward magnitude for each option.
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Multiplexing of Task-related Signals in the Prefrontal Cortex

While the animals performed the task, we recorded single-neuron activity from three regions 

in the PFC (N=174 neurons in dorsolateral prefrontal cortex, DLPFC; N=135 in 

orbitofrontal cortex, OFC; N=135 in anterior cingulate cortex, ACC; Figure 1B) to test 

whether task-related activity was influenced by volatility of reward probabilities or the 

outcomes of previous trials. We focused on how different types of task-related information 

included in neural activity was modulated by reward and learning (Donahue et al., 2013; 

Donahue and Lee, 2015; Histed et al., 2009). Consistent with previous findings (Donahue et 

al., 2013; Kennerley et al., 2011; Cai and Padoa-Schioppa, 2014), we identified several types 

of signals related to the visual stimuli and actions in the activity recorded from three cortical 

areas. Some of these signals were not affected by volatility of reward probabilities or the 

outcomes of previous trials. To examine the strength of signals and how they were affected 

by volatility, we calculated the coefficient of partial determination (CPD; Kim et al., 2008), 

or proportion of variance accounted for by variables of interest. To examine more closely 

how the outcome of the previous trial impacted neural representation of various factors, we 

further examined these signals using a decoding analysis (see STAR Methods).

During the interval immediately after target onset (post-target period; see STAR Methods), 

the DLPFC tended to encode the signals related to the animal’s previous action more 

strongly than those in the OFC and ACC, and similarly for volatile and stable blocks (main 

effect of region in a region × volatility two-way mixed ANOVA on CPD, p<10−3; main 

effect of region in a region × volatility × reward 3-way mixed ANOVA on decoding 

accuracy, p<10−4; Figures 3A, 3B, and S2). Consistent with the findings in our previous 

study (Donahue and Lee, 2015), we did not find any evidence that the decoding accuracy for 

the animal’s action in the previous trial was affected by reward (main effect of reward and 

reward × volatility interaction in a repeated measures ANOVA, p > 0.05 for all cortical 

areas; Figures 3C, 3D, and S2B). By contrast, we had also shown that during the matching 

pennies task, signals related to previous action are enhanced in the DLPFC when the animal 

was rewarded in the previous trial (Donahue et al., 2013). We confirmed that the difference 

between accuracy of decoding the previous action for rewarded and unrewarded trials during 

the volatile block for the DLPFC in the present study was indeed significantly smaller than 

the corresponding effect previously observed during the matching pennies task (Donahue et 

al., 2013; one-sample t-test, p<10−3). Given that animals learned the values of target 

locations or actions during the matching pennies task, but not during the tasks used in the 

present study, this suggests that representation in the DLPFC might be modulated by reward 

only when it is behaviorally relevant (Donahue et al., 2013; Donahue and Lee, 2015).

Like the signals related to previous choice, signals related to the animal’s upcoming choice 

in the DLPFC were stronger than those in the OFC and ACC (main effect of region in a 

region × volatility two-way repeated measures ANOVA on CPD, p<0.05; Figures 4A, 4B, 

and S3), but did not differ for the volatile and stable blocks (paired t-test on CPD, p=0.07). 

By contrast, signals related to the upcoming choice were unreliable in the OFC (one-sample 

t-tests, p>0.1 for rewarded and unrewarded trials in both volatile and stable blocks; Figures 

4C and 4D), whereas they were weakly but significantly present in the ACC (one-sample t-

tests, p<0.05 in all cases; Figures 4C, 4D, and S3B). The accuracy of decoding upcoming 
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choice was not affected by the outcome of the previous trial (main effect of reward in a 

reward × volatility 2-way repeated measures ANOVA, p>0.05) in any of three cortical areas.

During the task used in this study, a target’s color or shape consistently signaled the reward 

probability of that target during the stable blocks, but the reward probability of a given target 

color varied during the volatile blocks. Therefore, information about the identity of the target 

in a given location should be more reliably decoded in the stable condition from the activity 

of neurons encoding the position of the high-reward probability target. Indeed, the color or 

shape of the target in a given location could be reliably decoded for the DLPFC neurons in 

the stable condition, but not in the volatile condition (main effect of volatility in a reward × 

volatility 2-way repeated measures ANOVA, p<0.001; Figures 5 and S4). By contrast, the 

identity of the target in a given location could not be decoded reliably in the OFC, whereas 

this was weakly represented in the ACC only after unrewarded trials (one-sample t-test, 

p<0.05). More importantly, the accuracy of decoding the target identity was not significantly 

different for volatile and stable conditions in the OFC or ACC (p>0.1 in both cases). This 

difference across 3 cortical areas was statistically significant (region × volatility interaction 

in a region × volatility × reward 3-way mixed-ANOVA, p<0.01). However, the accuracy of 

decoding the target identity was not consistently affected by the outcome of the previous 

trial in any cortical areas (main effect of reward and reward × volatility interaction in a 

repeated measures ANOVA, p > 0.05 for all cortical areas).

Volatility Enhances the Prefrontal Activity related to Past Events

In contrast to the signals related to the actions chosen in the previous and current trials, we 

found that the signals relevant for learning were encoded more robustly during the volatile 

blocks than during the stable blocks. In particular, the color of the target chosen by the 

animal in the previous trial and the outcome of this choice were key for learning for the task 

used in the present study, and activity in the PFC related to these two variables were 

represented more strongly during the volatile blocks.

We found that across all cortical areas in aggregate, target color chosen in the previous trial 

was reliably decoded, but only when the animal was rewarded in the previous trial during the 

volatile block (volatility × reward interaction in volatility × reward × region 3-way mixed 

ANOVA, p<0.05; Figures 6 and S5). For example, during the post-target period, the DLPFC 

represented the target color chosen in the previous trial more accurately when the animal 

was rewarded in the previous trial during the volatile blocks than when it was not rewarded 

(paired t-test on decoding accuracy, p<0.005). The effect of previous reward was not 

significant for the stable blocks (p=0.7), although this difference between the volatile and 

stable blocks was not statistically significant in any individual cortical region (reward × 

volatility interaction in 2-way repeated measures ANOVA, p>0.1 for all areas). The effect of 

volatility on the neural activity related to the previously chosen color was similar in the OFC 

(Figure 6 and S5). In particular, the outcome of the previous trial impacted the 

representation of the previously chosen target color in the OFC (main effect of reward in a 2-

way repeated measures ANOVA, p<0.005). During the volatile blocks, target color chosen in 

the previous trial was decoded more accurately from the activity of OFC neurons when the 

animal was rewarded in the previous trial than when it was not rewarded (paired t-test, 
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p<0.005). However, during the stable blocks, this difference was not significant (p=0.41). 

For ACC, the accuracy of decoding previously chosen color was not significantly influenced 

by reward, volatility, or their interaction in the ACC (p>0.3 in all cases), although previously 

chosen color could be decoded reliably when the animal was rewarded in the previous trial 

during the volatile blocks (Figure 6C).

We also found that in the OFC, neural signals related to the previous outcome were more 

robust during the volatile blocks than during the stable blocks. For example, during the 0.5 s 

interval before target onset, the activity of the OFC neuron shown in Figure 7A was 

modulated by the previous outcome more strongly in the volatile blocks than in the stable 

blocks (n=585 trials, volatility × reward interaction in 2-way ANOVA, p<0.05). During the 

same period, a significant fraction of neurons in the OFC (N=14 neurons, 10.4%; binomial 

test, p<0.01) modulated their activity more strongly according to the previous outcome in 

the volatile blocks than in stable blocks, whereas the percentage of such neurons in the 

DLPFC (N=9 neurons, 5.2%) and ACC (N=6 neurons, 4.4%) was not significantly above 

chance (p>0.4 for both areas). For the OFC, we also found that the effect size (CPD) of the 

activity modulation related to the previous outcome was significantly larger in the volatile 

blocks than in the stable blocks (paired t-test, p=0.03; Figure 7B). This difference was not 

significant for the ACC (p=0.06) or DLPFC (p=0.65). We also analyzed the signals related 

to the feedback in the current trial during a 1-s window starting 0.25 s after feedback onset 

and found that the outcome of the current trial was represented by many neurons in the 

DLPFC (N=108 neurons, 62.1%), the OFC (N=76, 56.3%), and the ACC (N=91, 67.4%). In 

addition, we found that the mean CPD for the current outcome was significantly stronger in 

the ACC (main effect of region in a region × volatility mixed effects ANOVA, p<0.01). 

Nevertheless, we found no evidence that this information was affected by volatility (main 

effect of volatility, p>0.5; Figure S6A). In addition to information about the choice and 

outcome of the previous trial, information about reward magnitude was represented in the 

PFC. For example, a significant fraction of neurons in the DLPFC (N=24, 13.8%; binomial 

test, p<10−5), OFC (N=28, 20.7%; binomial test, p<10−9), and ACC (N=30, 22.2%; 

binomial test, p<10−11) represented the difference between chosen and unchosen reward 

magnitudes. The strength of this magnitude information varied significantly across different 

cortical areas (effect of region in region × volatility mixed effects ANOVA, p<0.01), and was 

greater in the ACC than in the OFC (p<0.004). By contrast, volatility did not significantly 

affect the amount of magnitude-related information at the population level in any cortical 

area (Figure S6B).

Volatility Facilitates Updating of Value Signals in the PFC

We have hypothesized that the PFC might be involved in estimating the position of the target 

associated with a higher reward probability by combining the relevant information about the 

animal’s previous experience and incoming sensory stimuli (Donahue and Lee, 2015). 

During the volatile condition of the task used in the present study, this can be accomplished 

by integrating 3 different types of information: the target color chosen in the previous trial, 

the outcome of that choice, and the current position of the same target color. For example, if 

the animal was rewarded for choosing a red target in the previous trial, and if the same red 

target appears on the right side in the current trial, then the rightward target is more likely to 
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have a higher reward probability in the current trial. The rightward target would be also 

deemed desirable by the animal when the previously chosen but unrewarded target appears 

on the left. In the following, the target color favored by the animal’s choice and its outcome 

in the previous trial would be referred to as the high-value target, and its current location 

(i.e., current position of the previous chosen color × previous reward interaction) as the high-

value location (HVL).

We found that signals related to HVL were represented most strongly in the DLPFC and 

were stronger in the volatile blocks than the stable blocks. For example, during the volatile 

blocks, the activity of the DLPFC neuron illustrated in Figure 8A was higher during the 0.5 s 

period beginning 0.25 s after target onset when the HVL was left than when it was right. 

This difference was significantly attenuated for the stable blocks (n = 640 trials, current 

position of the previous chosen color × previous reward × volatility interaction in 3-way 

ANOVA, p<0.05). During the same epoch, the proportion of neurons with activity related to 

the HVL that was significantly modulated by volatility was significantly above the chance 

level for the DLPFC (N=20 neurons, 11.5%; binomial test, p<10−3), but not for the OFC 

(N=11, 8.1%; binomial test, p=0.08) or the ACC (N=10, 7.4%; binomial test, p=0.14). A 

significant fraction of DLPFC neurons displayed stronger signals related to the HVL during 

the volatile blocks than during the stable blocks in both monkey U (11/102 neurons, 10.8%; 

binomial test, p<0.05) and monkey X (9/72 neurons, 12.5%; binomial test, p<0.01). 

Although this difference in the overall proportion of neurons across cortical areas was not 

statistically significant (χ2-test, p>0.4), analysis of the effect size (CPD) and decoding 

accuracy indicated that volatility influenced the activity related to HVL in the DLPFC. For 

example, during the post-target period, the average CPD for the HVL was significantly 

larger during the volatile blocks than during the stable blocks (main effect of volatility in a 

region × volatility 2-way mixed ANOVA, p<0.01). This effect was significant only in the 

DLPFC (paired t-test, p<0.0005), and significantly weaker in other cortical areas (region × 

volatility interaction, p<0.005; Figure 8B). Similarly, both previous reward and volatility 

affected the accuracy of decoding the current position of the previously chosen target color 

only in the DLPFC (region × volatility, region × reward, and reward × volatility interactions 

in a reward × region × volatility 3-way mixed ANOVA, p<0.05 in all cases; Figures 8C, 8D, 

and S7). The average decoding accuracy for the current position of the previously chosen 

color was significantly higher after rewarded trials than after unrewarded trials in the 

DLPFC during the volatile blocks, but this difference was not significant during the stable 

blocks (previous reward × volatility interaction in a 2-way repeated measures ANOVA, 

p<0.005; Figures 8C, 8D, and S7B). In addition, the difference in the decoding accuracy for 

the current position of previously rewarded and unrewarded target color was stable 

throughout the volatile block, as it did not differ significantly between the first and 

subsequent sub-blocks in the volatile condition (paired t-test, p>0.5). By contrast, the signals 

related to the HVL were largely absent in the OFC and ACC (Figures 8C and 8D). These 

results suggest that the DLPFC might play a special role in estimating the desirable target 

location according to the animal’s previous experience in volatile environments.

In contrast to signals related to the position of the previously rewarded target color in the 

volatile block, signals related to the position of the high reward-probability target in the 

stable block were unaffected by events in the previous trial (Figure 5). To further test 
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whether the previous outcome enhanced the signals related to the HVL selectively in the 

volatile condition, we tested whether the signals related to the HVL in the volatile condition 

and the position of the high reward-probability target in the stable block were similarly 

affected by the previous outcome. To do so, we examined decoding accuracy for the current 

position of the previously chosen target color in the volatile block following rewarded and 

unrewarded trials, and compared it to decoding accuracy for the position of the high vs. low 

reward-probability targets in the stable block following rewarded and unrewarded trials. We 

found that the previous outcome enhanced the accuracy of decoding HVL in the DLPFC 

during the volatile blocks significantly more than the signals related to the position of the 

high-reward probability target during the stable blocks (previous reward × volatility 

interaction in a 2-way repeated measures ANOVA, p<10−4). Nevertheless, the same 

population of neurons in the DLPFC tended to represent both the position of the high reward 

probability target in the stable block and the position of the previously rewarded target color 

in the volatile blocks (correlation of regression coefficients, r=0.42, p<10−7). Thus, our 

findings suggest that the same prefrontal cortical circuits might be flexibly tuned to compute 

values over different time scales in volatile and stable environments.

Finally, we directly tested the hypothesis that volatility causes reward to enhance the 

representation of task-relevant information, but not task-irrelevant information. To do this, 

we compared the neural representations of previous action (Figure 3) and the location of 

previously chosen target color (Figure 8) using a 3-way ANOVA on decoding accuracy in 

the DLPFC, with volatility, the outcome of the previous trial, and task-relevance (i.e., 

previous action vs. location of the previously chosen target) as factors. In this analysis, the 

three-way interaction reflects the degree to which task-relevance changes the effect of 

volatility on how reward enhances information representation. Significant interactions were 

found between previous outcome and volatility (p<0.05) as well as previous outcome and 

task relevance (p<0.005), although 3-way interaction was only marginally significant 

(p=0.069). Collectively, these results offer evidence that reward modulates task-relevant 

variables, but not task-irrelevant variables, when the environment is volatile.

DISCUSSION

During the task used in the present study, the animals adjusted their learning strategies 

according to environmental volatility. The animals assigned a higher weight to the outcomes 

of their recent choices, resulting in a higher learning rate when reward probabilities for 

alternative options were volatile, compared to when they were stable. This was paralleled by 

more robust encoding of reward signals in the prefrontal cortex, especially in the OFC, 

indicating that neural representations of recent outcomes are enhanced in volatile 

environments during learning. In addition, high volatility of reward probabilities altered how 

other task-relevant signals in the prefrontal cortex were affected by the outcomes of the 

animal’s previous choices. In particular, signals related to the current position of the 

previously chosen target were enhanced by reward in the DLPFC during the volatile blocks, 

but not during the stable blocks. By contrast, signals related to previous or upcoming actions 

were not influenced by volatility or previous outcome. Collectively, our results suggest that 

signals related to task-relevant variables in the PFC are flexibly combined with reward 

information to facilitate learning.
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Volatility Modulates Choice and Outcome Signals

The results from this study suggest that prefrontal signals related to the outcome of previous 

choices might be selectively enhanced when they are useful for updating the values of 

prospective actions. Specifically, neural representations of the previous trial’s outcome were 

strengthened during the volatile blocks in the OFC, which carries signals related to values 

and expected outcomes that are critical for decision making (Kennerley et al., 2011; Padoa-

Schioppa and Assad, 2006). The OFC is thought to play causal roles in behavioral 

adjustment during decision-making tasks (Schoenbaum et al., 2002; Fellows and Farah, 

2003; Rudebeck et al., 2008; Camille et al., 2011), so modulation of reward signals may be 

critical for adjusting stimulus-reward associations in volatile environments. While some 

studies have shown that simply learning the best option during a reversal learning task (i.e., 

model-free reinforcement learning; Sutton and Barto 1998) does not depend on the OFC 

(Kazama and Bachevalier, 2009; Rudebeck et al., 2013), the finding that reward-related 

signaling in the OFC changes with environmental volatility is consistent with the previously 

identified role of this region in model-based reinforcement learning (Jones et al., 2012) and 

the representation of behavioral strategy (Chau et al., 2015). In particular, the results in the 

present study suggest that environmental volatility might alter the timescale of reward 

representation in the OFC, which may facilitate reinforcement learning (Bernacchia et al., 

2011; Murray et al., 2014; Meder et al., 2017).

In addition to the outcome of previous choices, information about the previously chosen 

target color was critical for making valuable choices during the volatile blocks of the task 

used in this study. We found that neurons in the DLPFC and OFC tended to exhibit a 

stronger representation of the previously chosen target color following rewarded trials during 

the volatile blocks. By contrast, prefrontal signals related to the previously chosen target 

color were weaker and unaffected by prior outcomes during the stable block. These results 

add to the evidence that DLPFC signals related to task-related variables, such as the animal’s 

choice in the previous trial, might be enhanced by the previous outcome only when they are 

relevant for learning. For example, several studies have found that neural signals related to 

the animal’s previous or current choice in the prefrontal cortex and striatum are enhanced by 

the outcome of the animal’s previous choice (Donahue et al., 2013; Histed et al., 2009; Ito 

and Doya, 2009). Consistent with the results from a previous study (Donahue and Lee, 

2015), however, we found that when the animal’s previous action was not relevant for 

decision-making in the current trial, signals related to the previous action were still encoded 

in the DLPFC but not affected by the previous outcome.

Previous research has shown that neurons in the ACC carry signals related to learning, 

reward, and decision-making (Seo and Lee, 2007; Hayden et al., 2009; Hayden and Platt, 

2010; Kennerley et al., 2011). Furthermore, neuroimaging work has shown that volatility 

may influence learning-related signals in this region. The BOLD signals in the ACC track 

environmental volatility (Behrens et al., 2007), and the learning rate for the value 

representation in the ACC increases in volatile environments compared to stable 

environments (Meder et al., 2017). We did not find robust learning-related signals that were 

influenced by volatility in the ACC at the single neuron level, and this might be because 

volatility was explicitly indicated by sensory features of the targets in the present study. We 
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found that many neurons in the ACC carried signals related to the relative reward available 

from chosen and unchosen targets. During the task used in this study, the animals had to 

combine learned reward probabilities with information about reward magnitude, and 

therefore neural signals in the ACC related to the relative reward available from both options 

might contribute to reward-maximizing behavior. Moreover, the ACC had stronger 

representation of the signals related to the outcome in the current trial. These results are 

consistent with those of previous studies implicating ACC in flexible decision-making 

(Heilbronner and Hayden, 2016).

Prefrontal Contributions to Flexible Value Updating

The results from this study indicate that in the DLPFC reward signals were flexibly 

combined with other mnemonic and sensory signals relevant to updating the animal’s 

behavioral strategies. In particular, signals related to the target color chosen in the previous 

trial and the current location of the previously chosen color in the DLPFC were enhanced by 

previous outcome only during the volatile block. Consistent with the results from previous 

studies (Cai and Padoa-Schioppa, 2014; Kim et al., 2012), these results suggest that the 

DLPFC plays an important role in transforming multiple types of signals relevant for 

decision making in action frame of reference, and that heterogeneous conjunctive codes 

might be essential for this transformation (Fusi et al., 2016). Reward information may be 

dynamically routed to the DLPFC in volatile environments (Donahue and Lee, 2015), 

perhaps via the ACC and OFC, to support the formation of these conjunctive signals. 

Moreover, neurons that represented information about the current location of the previously 

rewarded target color in the volatile block also tended to represent the position of a high 

reward-probability target in the stable block. Therefore, DLPFC neurons might reflect the 

values of specific choices estimated on different time scales according to the volatility of the 

environment.

Previous work has indicated that prefrontal signals related to choice and outcome are 

represented in multiple time scales (Bernacchia et al., 2011; Meder et al., 2017). In this 

study, we showed that the strength of such persistent activity and its effect on other types of 

prefrontal signals is modulated by the volatility of reward probabilities. Given that timescale 

of persistent activity can be controlled by recurrent excitation (Wang et al., 2008; Murray et 

al., 2014; Chaudhuri et al., 2015), volatility of the animal’s environment might influence the 

neural activity related to learning and decision making by controlling the efficacy of local 

recurrent connections in the PFC. Alternatively, the effects of volatility on prefrontal signals 

might be mediated by short-term plasticity induced by dopamine receptor signaling 

(Seamans et al., 2001; Young and Yang, 2005; Soltani et al., 2013). Currently, the precise 

underlying neural mechanism for altering the time scale of integration in the prefrontal 

cortex remains unknown (Farashahi et al., 2017). Nevertheless, prefrontal signals modulated 

by volatility and previous outcomes identified in the present study might contribute to the 

identification of the features relevant for reinforcement learning and hence the resolution of 

the temporal credit assignment problem (Sutton and Barto, 1998).
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STAR METHODS

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Daeyeol Lee (daeyeol.lee@yale.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Two healthy male rhesus monkeys (U and X) were used. They weighed approximately 13 

and 9 kg, and were 6 and 7 years old, respectively, during the experiment. Monkey X was 

experimentally naïve, whereas monkey U was used for a previous experiment utilizing a 

similar task (Donahue and Lee, 2015). Eye movements were monitored at a sampling rate of 

225 Hz with an infrared eye tracker (ET49, Thomas Recording, Germany). All procedures 

were approved by the Institutional Animal Care and Use Committee (IACUC) at Yale 

University.

METHOD DETAILS

Behavioral Task—To assess how animals integrate choice and outcome history under 

varying levels of environmental volatility, we trained the animals to perform a probabilistic 

reversal task where the volatility of target reward probabilities was manipulated across 

blocks (Figure 1A). To initiate a trial, the animals were required to maintain fixation on a 

small white square (0.7° × 0.7°) in the center of a computer monitor for 0.5 s. Next, two 

peripheral targets were presented along the horizontal meridian (diameter=1.4°). In a given 

block of trials, one of the targets was associated with a high reward probability (80%) and 

the other was associated with a low reward probability (20%). After a 0.5 s interval (target 

period), a set of small yellow tokens (diameter=0.6°) were presented around each target 

indicating the magnitude of available reward. The central fixation cue was extinguished after 

a random interval ranging from 0.5 to 1.2 s following magnitude onset according to a 

truncated exponential distribution (min = 500 ms, mean = 705 ms). After the central fixation 

target disappeared, the animals were free to shift their gaze towards one of the two 

peripheral targets. Following fixation on the chosen target for an additional 0.5 s (pre-

feedback period), the animals received visual feedback indicating the trial’s outcome. The 

feedback was a colored ring shown for 0.5 s around the chosen target (red or green in 

rewarded trials; blue or gray in unrewarded trials). In rewarded trials, the animals received 

the magnitude of juice according to the number of tokens (0.1 ml/token) after the after offset 

of the feedback rings. The inter-trial interval was 1 s.

The volatility of target reward probabilities was indicated by the visual characteristics of the 

targets in each block. In volatile blocks, the animals were presented with a red and green 

disks. One of the colors was associated with an 80% reward probability and the other was 

associated with a 20% reward probability. The identity of the high reward probability target 

underwent periodic reversals (20 or 40 trials) so that the animals had to estimate the reward 

probability for each target from their recent experience. In stable blocks, the animals were 

presented with either a pair of colored targets or shape targets, which were presented in 

smaller sub-blocks (20 to 40 trials). During color sub-blocks, the two targets were orange 

and cyan disks, respectively, whereas and during shape sub-blocks, they were a white 
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diamond and a white square (Figure 1A, inset). The reward probability associated with each 

target in the stable blocks was fixed for the entire course of the experiment (across all 

sessions) such that one of the color (shape) targets was always associated with an 80% 

reward probability and the other color (shape) target was always associated with a 20% 

reward probability. The identity of the high reward probability target was counterbalanced 

across monkeys so that the cyan disk and white diamond represented the high reward 

probability target in monkey U and the low reward probability targets in monkey X, 

respectively.

Volatile and stable blocks alternated every 80 trials. In volatile blocks, the reward 

probabilities associated with the two targets remained fixed for sub-blocks with a length of 

20 or 40 trials. To ensure that the identity of the high reward probability target was evenly 

distributed between the red and green targets, the reversal pattern was randomly drawn from 

the following 3 sequences of trial numbers: 20-20-20-20, 20-40-20, and 40-40. In stable 

blocks, transitions between sub-blocks in the color and shape condition underwent the same 

trial structure above, assuring that the animals sampled the color and shape sub-blocks 

evenly. The magnitudes of rewards associated with the two targets were drawn from the 

following 10 possible combinations: ({1,1} {1,2}, {1,4}, {1,8}, {2,1}, {2,4}, {4,1}, {4,2}, 

{4,4}, {8,1}). Each magnitude pair was counter-balanced across target locations, yielding 20 

unique trial conditions that were presented in a pseudo-random order. A custom-developed 

Windows software (Picto) was used to deliver all visual stimuli and control the experiment.

Neurophysiological Recording—Single neuron activity was recorded from the DLPFC, 

OFC, and ACC of both monkeys (Figure 1B) using a 5-channel or 16-channel multielectrode 

recording system (Thomas Recording, Germany) and a multichannel acquisition processor 

(Tucker-Davis Technologies, FL or Plexon, TX). For the recordings in DLPFC, the 

recording chamber was centered over the left principal sulcus, and was located 9 mm 

(monkey X) and 10 mm (monkey U) anterior to the genu of the arcuate sulcus based on 

magnetic resonance images. Area 13 in OFC was targeted using the same recording chamber 

used for DLPFC. A cannula was used to guide the electrodes for these recordings. Neurons 

in ACC were recorded from the dorsal bank of the cingulate sulcus (area 24c; Seo and Lee, 

2007).

All neurons in the dataset were recorded for a minimum of 320 trials (mean = 518.3 trials; 

standard deviation = 162.0 trials). The dataset consisted of 174 neurons in DLPFC (102 in 

monkey U, 72 in monkey X), 135 neurons in OFC (76 in monkey U, 59 in monkey X), and 

135 neurons in ACC (72 in monkey U, 63 in monkey X). Data were collected during 182 

sessions in monkey U, and 134 sessions in monkey X. Neurons were not pre-screened prior 

to collection, and all well-isolated neurons were recorded using Plexon or Tucker-Davis 

online spike-sorting software and included in subsequent analysis.

QUANTIFICATION AND STATISTICAL ANALYSIS

Analysis of Behavioral Data—All analysis of behavioral data was conducted using 

custom software written in MATLAB (Mathworks, MA). To perform the task used in this 

experiment, the animal would be expected to combine the reward magnitude and reward 
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probability for each target. The magnitude information was given explicitly by the visual 

cues, whereas the probability information needed to be estimated through experience. 

Furthermore, the estimate for reward probabilities should be updated more frequently during 

volatile blocks than during stable blocks. To investigate how animals estimated reward 

probabilities in each block type, several variations of reinforcement learning models (Sutton 

and Barto, 1998) were fit to the animal’s choice data.

To explicitly test whether and how volatility affected learning, we examined a model with 

two separate learning rates for volatile and stable blocks. Following each trial’s outcome, 

estimates of the reward probability from the chosen target were updated using the following 

equation:

Pc(t + 1) = Pc(t) + α[R(t) − Pc(t)],

where Pc(t) is the estimate of the reward probability for the target chosen in trial t, R(t) is the 

outcome in trial t (1 if rewarded, 0 otherwise), and α is the learning rate. We fit separate 

learning rates in volatile (αv) and stable (αs) blocks. We also tested a model in which 

learning rate varied separately for rewarded and unrewarded outcomes in both volatile and 

stable blocks (Donahue and Lee, 2015). Reward probabilities were combined with 

magnitudes additively, according to the following logistic regression model, in order to 

compute the likelihood of a choice on each trial, as we have found this model to perform 

better than a multiplicative model (data not shown), consistent with the results our previous 

study (Donahue and Lee, 2015).

logit p(right) = β0 + β1ΔPLR(t) + β2ΔMLR(t),

where p(right) is the probability of choosing the target on the right, ΔPLR(t) = Pright(t) − 

Pleft(t) is the difference between the estimated reward probabilities of the targets on the right 

and left in trial t, ΔMLR(t) = Mright(t) − Mleft(t) is the difference between the magnitudes of 

the targets on the right and left in trial t, and β0~β2 are regression coefficients. Average 

values of fitted parameters are given in the results section where applicable. For behavioral 

analysis, we fit these models separately to each session (182 for monkey U, 134 for monkey 

X). To examine the relationship between model predictions and values from regression 

analysis of neural data, we fit these models separately for the trials associated with each 

neuronal recording within each session. For these analyses, sample size corresponds to the 

number of neurons included in the regression analysis.

Linear Analysis of Neural Data—All analysis of neural data was conducted with 

custom software written in MATLAB. For all regression analyses, we analyzed activity 

during the fore-period (−1 to 0 s before target onset) for signals related to the previous trial, 

and the post-target period (0.25 s to 1.25 s after target onset) for signals pertinent to the 

stimuli of the current trial. The former epoch was chosen because it is the period 

immediately prior to the onset of targets during the current trial, and is thus the last window 

before signals related to the previous trial could be affected by information about the current 

trial. The latter epoch was chosen because it contains the majority of the time during the 
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current trial, plus a small 0.25 s delay for stimulus information to reach the PFC. The spike 

density functions were constructed with a Gaussian filter (σ=40ms) and all other 

visualizations of the results of the regression were obtained with a 0.5 s sliding window. 

Neurons for which the design matrix was not full rank in either volatile or stable were 

omitted from the analysis (see below).

A multiple linear regression model was used to determine how individual neurons in each 

region encoded various types of information in the volatile and stable blocks. Some of this 

information was obtained by combining more basic elementary terms. For example, the 

color of the previously chosen target and the current positions of the two target colors can be 

combined to indicate the current location of the previously chosen color. To analyze how 

such higher-order features were encoded by single neurons, we compared the fit of two 

regression models to activity in the volatile and stable blocks. The following model was fit 

to the firing rate of each neuron during the volatile block.

y(t) = β0 + β1ΔMCU(t) + β2ΔMLR(t) + β3CLR(t − 1) + β4CLR(t) + β5CRG(t − 1) +
β6CRG(t) + β7R(t − 1) + β8POSRG(t) + β9HVRG(t) + β10CLR(t − 1)R(t − 1) +
β11CRG(t − 1)R(t − 1) + β12CRG(t − 1)POSRG(t) + β13POSRG(t)R(t − 1) +
β14HVRG(t)CRG(t − 1) + β15HVRG(t)CRG(t) + β16HVRG(t)CRG(t − 1)R(t − 1) +
β17HVRG(t)CRG(t − 1)POSRG(t) + β18HVRG(t)POSRG(t)R(t − 1) + β19HV(t),

where y(t) is the firing rate of a neuron for a given epoch in trial t, ΔMCU(t) is the difference 

in reward magnitude between the chosen and unchosen targets in trial t, ΔMLR(t) is the 

difference in reward magnitude between the left and right targets in trial t, CLR(t) is the 

position of the chosen target in trial t (1 if right, −1 otherwise), CRG(t) is the chosen target 

color in trial t (1 if red, −1 otherwise), R(t) is the outcome in trial t (1 if rewarded, −1 

otherwise), and POSRG(t) is the position of the red and green targets on trial t (1 if red is on 

the right, −1 otherwise). The HVRG(t) term indicates the target currently associated with the 

high reward probability target (1 if red is high probability, −1 otherwise). The last variable in 

the model, HVL(t), is the three way interaction given by CRG(t−1) R(t−1) POSRG(t). This 

indicates the current position of the target color that was rewarded in the previous trial. For 

example, if the animal chose red (green) on the previous trial and was rewarded 

(unrewarded), and red was on the left in the current trial, then the current position of the 

previously rewarded target would be on the left. β0 – β19 are regression coefficients.

During the stable blocks, target features were strictly correlated with reward probabilities. 

Thus, it was necessary to use similar but separate models for the volatile and stable blocks to 

account for these differences. The following model was fit to the firing rate of each neuron 

during the stable block.

y(t) = β0 + β1ΔMCU(t) + β2ΔMLR(t) + β3CLR(t − 1) + β4CLR(t) + β5CHV(t − 1) +
β6CHV(t) + β7R(t − 1) + β8POSHV(t) + β9BCS(t) + β10CLR(t − 1)R(t − 1) + β11CHV(t −
1)R(t − 1) + β12CHV(t − 1)POSHV(t) + β13POSHV(t)R(t − 1) + β14BCS(t)CHV(t − 1) +
β15BCS(t)CHV(t) + β16BCS(t)CHV(t − 1)R(t − 1) + β17BCS(t)CHV(t − 1)POSHV(t) +
β18BCS(t)POSHV(t)R(t − 1) + β19HVL(t),
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where CHV(t) is the chosen target in trial t (1 if high-reward-probability target, −1 otherwise) 

and POSHV(t) is the position of the high- and low-reward-probability targets on trial t (1 if 

the high-reward-probability target is on the right, −1 otherwise). Additionally, the BCS(t) 
term indicates whether the targets are differently colored or shaped on trial t. Because target 

features are correlated with reward probability during the stable block, the CHV(t−1) term in 

this model is analogous to the CRG(t−1)HVRG(t) term in the above model for volatile blocks, 

and the BCS(t) CHV(t) term indicates the position of a specific target feature, analogous to 

the CRG(t) term. Remaining terms have the same meaning as in the model for volatile 

blocks. For example, the HVL(t) is the interaction between CHV(t−1), R(t−1), and 

POSHV(t), and therefore indicates the position of the target color (or shape) that yielded a 

reward on the previous trial. For the analysis of reward signals during the feedback period, 

we added a term indicating whether the outcome of the current trial was rewarded or not, 

R(t), to the above two models.

Although we report the results only for a subset of the variables in this model, the inclusion 

of each term was necessary. Some terms corresponded to a lower-order effect associated 

with HVL, so they were necessary for interpreting values and significance of the 

corresponding regression coefficient. Others were included because they are known to have 

a neural representation in the prefrontal cortex (Donahue and Lee, 2015; Kim et al., 2008; 

Barraclough et al., 2004), and is thus an important factor to control for when analyzing the 

effects of other factors on firing rates. We omitted neurons from the analysis for which some 

regressors were perfectly correlated in either model, or there were an insufficient number of 

spikes to fit the model during the time windows of interest. For the fore-period, this left 164 

(94.3%) neurons in the DLPFC, 132 (97.8%) neurons in the OFC, and 121 (89.6%) neurons 

in the ACC that could be fitted by both models. For the post-target period, 162 (93.1%) 

neurons in the DLPFC, 131 (97.0%) neurons in the OFC, and 119 (88.1%) neurons in the 

ACC could be fitted by both models.

After fitting, the coefficient of partial determination (CPD) for each variable was computed 

separately for individual neurons, as follows.

CPD =
SSEreduced − SSE full

SSEreduced
,

where SSEfull is the sum of squared errors for the full model, and SSEreduced is the sum of 

squared errors for a reduced model that omits the variable of interest. CPD quantifies how 

much variance in the data is accounted for by that variable. We performed a mixed-effects 

ANOVA on the CPD to test whether there were volatility effects or regional differences in 

the representation of each variable, by treating volatility as a within-subject factor and region 

as a between-subject factor. Raw CPDs are shown in figures, but they were log-transformed 

prior to conducting statistical analysis. The mean and S.E.M. of all CPDs tested is given in 

figures.

To analyze the representations of variables of interest within individual neurons, we 

performed 2-way ANOVAs with the variable of interest, and volatility as factors. One 

exception was the analysis of the fraction of neurons that significantly encoded the 
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difference between chosen and unchosen reward magnitudes, for which we used a simple 

multiple regression model with volatility and the difference in chosen magnitude as factors. 

ANOVA was not possible for this analysis, because the animals seldom chose the low-

reward-probability target with small reward magnitude during the stable blocks. Mean and 

S.E.M. of firing rate are depicted in figures, and the number of trials is given in the main 

text.

Single Neuron Decoding Analysis—We applied a linear discriminant analysis with an 

n-fold cross-validation to determine whether neural signals related to spatial position, 

volatility, and target color were modulated by previous outcomes (Donahue and Lee, 2015). 

The classifiers were trained to classify a particular variable (discriminandum) using the 

firing rates of an individual neuron during a given time window. We trained classifiers to 

decode the previously chosen location, the location of the upcoming choice, the previously 

chosen target color (or shape), the position of the two targets, and the current location of the 

previously chosen target color (or shape). Trials were randomly assigned to n different 

subgroups for the n-fold cross-validation. Each subgroup served as a test set once, with the 

trials in the remaining subgroups used as the training set. To ensure that classifiers were 

unbiased, each subgroup was balanced by randomly removing trials until each value of the 

discriminanda was equally frequent. Additionally, the subgroups for the classifier decoding 

the location of the upcoming choice were balanced with respect to the current position of the 

previously rewarded target color, and the subgroups for the classifier decoding the current 

location of the previously chosen color and the classifier decoding the position of the two 

targets were also balanced with respect to the previously chosen target color (or shape).

To obtain a sufficient number of neurons available for the analysis, a 5-fold cross-validation 

was used for decoding the previously chosen location and location of the upcoming choice, 

and a 3-fold cross validation was used for decoding the previously chosen target color, the 

position of the two targets, and the current location of the previously chosen target color. 

Neurons that had fewer than n trials (needed for an n-fold cross-validation) for any 

combination of the discriminandum and other variables used for balancing were thus 

removed from the analysis. For example, the classifier trained to decode the current position 

of the previously chosen target color required at least 3 trials for each of the 16 possible 

combinations of the position of the previously chosen target, the previously chosen target 

color (or shape), and the previous outcome, and block type (volatile vs. stable). This resulted 

in 88 DLPFC neurons, 90 OFC neurons, and 84 ACC neurons in the decoding analysis for 

the current location of the previously chosen target and the position of the two targets. 

Similarly, 166 DLPFC neurons, 132 OFC neurons, and 129 ACC neurons were included in 

the decoding analysis for the location of the upcoming choice, whereas 168 DLPFC neurons, 

132 OFC neurons, and 128 ACC neurons were included in the decoding analysis for the 

previously chosen target color. All recorded neurons were included in the decoding analysis 

for the previously chosen location. A mixed three-way ANOVA with region, reward, and 

volatility as factors was used to examine the representation of these variables in the 

prefrontal cortex during the post-target period (0.25 s to 1.25 s after target presentation). 

Further, a repeated measures two-way ANOVA was performed on decoding accuracy 

estimated for the post-target period for each classifier with reward and volatility as factors. 
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The mean and S.E.M. of decoding accuracies used for statistical analysis is given by bar 

plots in corresponding figures. For visualization, decoding accuracy was also performed in a 

1-s sliding-window advancing in 50-ms steps. The subgroup sampling and cross-validation 

procedure was repeated 100 times for each classifier, and the decoding accuracy was 

averaged across these repetitions. We also directly tested whether signals related to the 

current position of each target color in the stable block and the current position of the 

previously rewarded target color (HVL) in the volatile block were affected differently by the 

outcome of the previous trial. To do this, we compared the decoding accuracy for the 

position of the high-reward-probability target in stable block following rewarded and 

unrewarded trials to the decoding accuracy for the current position of the previously 

rewarded target color in volatile block, using a repeated measures two-way ANOVA with 

reward and volatility as factors.

DATA AND SOFTWARE AVAILABILITY

Custom software used in the above analyses will be made available upon reasonable request 

to the Lead Contact.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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HIGHLIGHTS

• Animals repeat rewarded actions more often when reward probabilities vary.

• Outcome signals are stronger in the OFC when reward probabilities vary.

• Rewards enhance task-relevant signals in the DLPFC when reward 

probabilities vary.

• Task-irrelevant signals are unaffected by the outcome of the previous trial.
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Figure 1. Probabilistic reversal-learning task
(A) The interval used for decoding analysis is illustrated as the grey bar along the time axis. 

Targets used for the volatile and stable trials and the corresponding reward probabilities are 

shown in the inset.

(B) The solid and dashed lines represent the sulci on the dorsal (AS, arcuate sulcus; PS, 

principal sulcus) and ventral (LOS, lateral orbital sulcus; MOS, medial orbital sulcus) 

surfaces of the brain, respectively. ML, midline. All recording sites in the ACC were located 

dorsal to the cingulate sulcus in both animals.
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Figure 2. Behavioral Performance
(A) The proportion of trials in which each animal chose the same target color (or shape) as 

in the previous trial after the previous choice was rewarded (win-stay) or unrewarded (lose-

stay), separately for different targets in the volatile and stable blocks.

(B) Learning rates (α) in the volatile and stable block for each animal (see STAR Methods). 

See also Figure S1.
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Figure 3. Signals related to previous action in the PFC are unaffected by previous outcome
(A) An example DLPFC neuron that encoded the action in the previous trial during the fore-

period (n = 591 trials, effect of previously chosen location in a 3-way ANOVA, p<10−7). The 

effect of volatility or previous reward was not significant (p>0.2).

(B) Time course of the mean CPD for the previously chosen target location. Gray 

background indicates the target period.

(C) Time course of the average decoding accuracy for previously chosen target location, 

plotted separately according to block types and previous outcomes.
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(D) Average decoding accuracy for the previously chosen target location during the post-

target period (horizontal gray line in B). Shaded areas in (A) and (B) and error bars in (C) 

represent ± SEM. Lighter bars in (C) indicate that the decoding accuracies were not 

significantly above the chance level (one-sample t-test, p>0.05). See also Figure S2.
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Figure 4. Signals related upcoming action in the PFC is unaffected by previous outcome
(A) An example DLPFC neuron that encoded the animal’s current choice during the 0.5-s 

interval beginning 0.25 s after target onset (n = 640 trials, effect of chosen target location in 

a 3-way ANOVA, p<0.01), but without significant effect of volatility (p>0.1) or previous 

reward (p>0.05).

(B) Time course of the mean CPD for the position of the target chosen in the current trial.

(C) Time course of the average decoding accuracy for the position of the target chosen in the 

current trial, plotted separately according to block types and previous outcomes.
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(D) Average decoding accuracy for the position of the target chosen in the current trial 

during the post-target period (horizontal gray line in (B)). Same format as in Figure 3. See 

also Figure S3.
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Figure 5. Signals related to the position of the high-reward probability target in stable blocks are 
not affected by previous outcome
(A) An example DLPFC neuron that significantly changed its activity according to the 

position of the high reward-probability target in stable blocks (n = 330 trials, effect of target 

position in a 3-way ANOVA, p<0.10−18) significantly more strongly during the stable blocks 

(volatility × target position interaction, p<10−15). The activity of this neuron was not 

affected by previous reward (main effect of reward and its interactions, p>0.05).

(B) Time course of the average decoding accuracy for the relative positions of the two 

different target colors (or shapes) following rewarded and unrewarded trials in the volatile 

and stable blocks. Shaded areas represent ± SEM.

(C) Average decoding accuracy for the relative positions of the two different target colors (or 

shapes) during the post-target period (horizontal gray line in (A)). Error bars represent ± 

SEM. Lighter bars indicate that the decoding accuracies were not significantly above the 

chance level (one-sample t-test, p>0.05). See also Figure S4.
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Figure 6. Signals related to the target color or shape chosen in the previous trial in the PFC
(A) An example DLPFC neuron that significantly encoded the previously chosen target color 

(or shape) during the 0.5-s interval beginning 0.25 s after target onset, but only when this 

was rewarded in volatile blocks (n = 640 trials, previously chosen target × reward and 

previously chosen target × volatility interactions in a 3-way ANOVA, p<0.05).

(B)Time course of the average decoding accuracy for the previously chosen color (or shape), 

plotted separately according to block types and previous outcomes.

(C) Average decoding accuracy for the previously chosen color during the post-target period 

(horizontal gray line in (A)). Same format as in Figure 5. See also Figure S5.
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Figure 7. Effect of volatility on reward signals in the PFC
(A) An example OFC neuron that encoded the outcome of the previous trial more strongly 

during the fore-period in the volatile block than in the stable block.

(B) Time course of the CPD for the reward in the previous trial, shown separately for stable 

and volatile blocks. Shaded areas represent ± SEM. See also Figure S6.

Massi et al. Page 29

Neuron. Author manuscript; available in PMC 2019 August 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 8. Effect of previous reward and volatility on signals related to the current position of the 
previously chosen target color or shape
(A) An example DLPFC neuron that encoded the current location of the previously chosen 

target color (or shape) during the target period (gray background) more strongly when the 

previous choice was rewarded compared to when it was not in the volatile block, but not the 

stable block.

(B) Time course of the mean CPD for the current position of the target color or shape that 

was or would have been rewarded in the previous trial (HVL).
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(C) Time course of the average decoding accuracy for the current position of the previously 

chosen target color (or shape), plotted separately according to block types and previous 

outcomes.

(D) Average decoding accuracy for the current position of the previously chosen target color 

(or shape) during the post-target period (horizontal gray line in (C)). Shaded areas in (A)-(C) 

and error bars in (D) represent ± SEM. Lighter bars indicate that the decoding accuracies 

were not significantly above the chance level (one-sample t-test, p>0.05). See also Figure 

S7.
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