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Abstract

Increasing predictability of animal models of posttraumatic stress disorder (PTSD) has required 

active collaboration between clinical and preclinical scientists. Modeling PTSD is challenging as it 

is heterogeneous disorder with 20+ symptoms. Clinical research is increasingly utilizing objective 

biological measures (e.g. imaging, peripheral biomarkers) or non-verbal behaviors/physiological 

responses to complement verbally reported symptoms. This shift toward more objectively 

measurable phenotypes enables refinement of current animal models of PTSD, and supports 

incorporation of homologous measures across species. We reviewed >600 articles to examine the 

ability of current rodent models to probe biological phenotypes of PTSD (e.g. sleep disturbances, 

hippocampal and fear-circuit dysfunction, inflammation, glucocorticoid receptor hypersensitivity) 

in addition to behavioral phenotypes. Most models reliably produced enduring generalized 

anxiety- and/or depression-like behaviors, as well as hyperactive fear circuits, glucocorticoid 

receptor hypersensitivity, and response to chronic SSRIs. Although a few paradigms probed fear 

conditioning/extinction and/or utilized peripheral immune, sleep, and non-invasive imaging 

measures, which we argue should be incorporated more to enhance translation. There was little 

data in females, at different ages across the lifespan, or on temporal trajectories of phenotypes 

post-stress, which would inform model utility and experimental design for treatment studies. 

Overall, preclinical (and clinical) PTSD researchers are increasingly incorporating homologous 

biological measures to assess markers of risk, response and treatment outcome. This shift is 

exciting, as we and many others hope it will support translation of drug efficacy not only from 

animal models to clinical trials, but potentially improve predictability of stageII for stageIII 

clinical trials.
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Introduction

Globally the prevalence rate for posttraumatic stress disorder (PTSD) is 4-6% with the 

disorder being described by Koenen et al. (2017, p. 2) as a “life sentence due to its 

association with increased risk of chronic disease, accelerated aging, and premature 

mortality” (1). Efficacious prophylactic and therapeutic agents are urgently needed (2), and 

animal models are critical to establish causality of putative mechanisms and verify potential 

treatment efficacy. Unfortunately, PTSD continues to be diagnosed via a menu of 20+ 

separate self-reported symptoms, with little input from neuroscience-based research. Animal 

models of PTSD rely primarily on face validity for complex human symptoms or predictive 

validity for current treatments (selective serotonin reuptake inhibitors, SSRIs), validity types 

which offer relatively poor translation or bias towards detection of “me too” drugs.

Recently, neuroscience- and molecular-based clinical research has identified PTSD-related 

phenotypes operationalized not by symptoms but by biological markers (e.g. circuit changes, 

peripheral biomarkers) or non-verbal dimensional behaviors/physiological responses (e.g. 

sleep, fear response physiology). This shift enables refinement of current animal models of 

PTSD to probe novel and hopefully more translatable mechanisms of PTSD. Given these 

recent advances it is good time to examine current rodent models of PTSD and their efficacy 

in recapitulating these potentially more translatable phenotypes. This review aims to guide 

readers in identifying paradigms that probe particular PTSD-relevant behavioral and 

biological constructs of interest for their drug/molecular target (e.g. treat extinction deficits, 

sleep disturbances, circuit abnormalities). We will in particular highlight biological measures 

incorporated by these models that can support cross-species translation.

PTSD is triggered by multiple trauma types (physical vs. emotional) and given the 

heterogeneity in biological and environmental factors that likely mediate PTSD in humans, 

expecting a “one size fits all” PTSD model in rodents is a fool’s errand. Instead, rodent tests 

should be utilized interpreted within the PTSD-related phenotypes they do and do not 

produce. This approach will allow for drug targeting at specific mechanisms and constructs, 

and hopefully result in enhanced translation to the clinic. Within this context, our guidelines 

in choosing which paradigms to evaluate were: the paradigm must (1) focus on outcome 

variables that endure long after the trauma/stress has ended (e.g. >1 week after the stressor is 

terminated), (2) measure more than 1 behavioral outcome variable for reliability/robustness, 

(3) have replicable effects across more than one laboratory, and (4) present an unpredictable, 

inescapable severe stressor (e.g. vary stressor intensity, duration) to avoid habituation and 

mimic “life threatening” aspects of trauma associated with PTSD (3). We also did not review 

animal models of fear conditioning and extinction per se, as although this construct is highly 

relevant to PTSD, excellent reviews as how these models pertain to PTSD can be found 

elsewhere (within 24-48 hrs; (4; 5)). Overall, paradigms that fit these criteria included those 
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that used foot shocks, predator stress, single prolonged stress, immobilization stress, 

unpredictable variable stress, and social defeat.

We reviewed these paradigms both for efficacy in evoking PTSD-like constructs (learned 

fear and extinction, avoidance, reduced motivation/reward, arousal and cognitive deficits) in 

addition to biological and physiological phenotypes associated with PTSD (Table 1). One of 

the most consistent is increased glucocorticoid receptor (GR) sensitivity and enhanced 

negative feedback of the hypothalamo-pituitary-adrenal (HPA) axis (6). Other established 

biological phenotypes include increased activity/function of amygdala, reduced function and 

structural abnormalities in prefrontal cortex (PFC) and hippocampus (6–9). PTSD is 

consistently associated with increased inflammation both as a risk factor and in relation to 

symptom state (10). Finally, sleep disturbances, including reduced sleep duration or 

fragmented rapid eye movement (REM), are commonly described in PTSD (6). These 

phenotypes can be assessed across species as outcome measures of risk or enduring stress 

response. When conducting our review we were most interested in what PTSD-related 

behavioral and biological phenotypes were and were not reliably produced in each paradigm 

(Table 1) (e.g. consistent over cohorts and laboratories). We also examined approaches to 

categorize “resilient” vs. ”susceptible” animals, and identify biological/behavioral risk 

factors (e.g. immune response, early-life stress) that predict individual variance in 

susceptibility. This is not meant to be an extensive review of each model, but instead to 

highlight robust and replicable findings for model across phenotypes.

Inescapable shocks

Foot- or tail-shock is one of the most common aversive stressors used in rodent fear models, 

typically to examine acute stress responses, fear learning or depression-like effects under 

chronic exposure (e.g. learned helplessness model) (11). Although it is not considered 

ethologically valid, shock is highly feasible and doesn’t cause injury (Figure 1). A single 

exposure to foot shocks induce enduring (up to 56 days) PTSD-like phenotypes: 

hyperarousal, generalized avoidance, sleep disturbances, hippocampal-dependent memory 

deficits and thermal hyperalgesia (see Table S1 for details and references). The generalized 

avoidance and depression-like effects are sensitive to chronic administration of SSRIs (11–

15). Parameters vary substantially however (e.g. 1-20 shocks, 0.3-1.5 mA, 0.5-10s) across 

laboratories, species, and strains. Susceptible and resilient animals have been defined by 

success or failure to escape subsequent shock exposures (16). Interestingly, REM 

immediately before (24 hrs) foot-shock exposure predicts long-term emergence of 

hyperarousal after the foot-shock protocol (17), suggesting that this paradigm may be useful 

in examining treatments. This paradigm also induces enhanced neuronal activity in the PFC 

and amygdala and decreased volume in the hippocampus (13; 18–23) (Table 2). Some of 

these behavioral and circuit effects manifest weeks after the trauma (Tables 2 and S1), which 

can be exploited to examine different preventative vs. treatment strategies for early vs. late 

effects of trauma.

Overall, the major strengths of shock exposure models are: (1) in some cases, enduring (up 

to 8 weeks) avoidance, hyperarousal, spatial memory deficits and fear-response to trauma 

cues (e.g. shock context) in both rats and mice; (2) sensitivity to sleep disturbances and 
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induction of fear circuit pathology; and (3) the tight control over the stimulus parameters. 

Limitations include: (1) little data in females (Tables S2-S3); (2) the relatively non-

ethological stressor; and (3) varied shock protocols across laboratories.

Predator stress model

Predator stress paradigms consist of a single-stress exposure, either unprotected exposure to 

a predator, exposure with a physical barrier, or exposure to a predator scent, that is 

inescapable, unpredictable and ethological (Figure 1) (24). These manipulations evoke 

enduring behavioral and physiological abnormalities up to 3 months after exposure, 

including general avoidance, exaggerated fear response, hyperarousal, and hyperalgesia (see 

Table S1 for details and references). In direct predator exposure paradigm, avoidance of 

trauma-related cues is assessed via subsequent exposure to predator odors in different 

contexts (25; 26) (Table S1). It is also sensitive to chronic administration of clinically 

effective SSRIs, mainly sertraline and amitriptyline (27; 28).

Predator exposure recapitulates some biological phenotypes in PTSD. Dendritic spines are 

reduced in hippocampus, while amygdala activity (cFos and dendritic spines number/length) 

is increased (29–31) (Table 2). It produces enhanced negative feedback of the HPA axis (25; 

32), and an inverse correlation between post exposure levels of adrenocorticotropic hormone 

(ACTH) and corticosterone (CORT) and avoidance behaviors (33), suggesting that reduced 

HPA response to stress may predict long-term anxiety-like effects in this model (34). 

Predator stress can induce long-term inflammation in brain and is sensitive to anti-

inflammatory treatments, however peripheral inflammation effects are not well described 

(for review see (10)).

Cohen and colleagues established a “cut-off behavioral criteria”, to classify susceptible vs. 

resilient animals based on a composite of extreme reductions in exploratory behavior and 

increased arousal (24) 7-90 days post-stress. This approach has been standardized (24) and 

meets the discriminant criteria to address the variance in individual response (35). Other 

groups identify resilient and susceptible individuals based on response to a “trauma 

reminder” (e.g. predator odor-paired chamber (36; 37)). Individual differences are not 

explained by differences in learning and memory per se, i.e. “resilient” animals are not 

simply bad at remembering past events (36).

Strengths of the predator stress model include (1) etiological validity with exposure to a 

single intense stressor; (2) robust behavioral and biological phenotypes (3) sensitivity to 

chronic SSRIs; and (4) established approach distinguishing susceptible vs. resilient animals. 

Limitations are the lack of data on sleep and depression/anhedonia measures (Table 2, Table 

S1). There are less data in females (Tables S2-S3), although females may be more 

susceptible to this paradigm than males (38). There are a number of variants of predator 

stress, from relatively severe (physical contact) to relatively mild (scent exposure only), thus 

moving across physical to purely “emotional” trauma models. Some paradigms require 

secondary stressors to increase efficacy (e.g. social instability post-stress (39)). Many of 

these parametric differences are laboratory specific, thus reliability across laboratories of 

specific protocols are difficult to assess.
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Single prolonged stress (SPS)

SPS was developed by Liberzon et al. as a “single traumatic event”-like procedure to induce 

increased negative HPA feedback, a consistent neuroendocrinological characteristic of PTSD 

(40; 41). SPS applies three severe stressors in succession: a 2 h restraint-immobilization 

stress, followed by forced swimming for 20 min, and finally exposure to diethyl ether until 

loss of consciousness (Figure 1). It was proposed that SPS recapitulates the psychological, 

physiological and direct endocrine stress challenges that contribute to PTSD pathogenesis, 

although it is not clear how all 3 factors contribute in an additive/synergistic way to induce 

full symptomatology (42). Exposure to ether is required compared to other dissociative 

anesthetics (42), perhaps due to its unique effects on membrane permeability and/or 

neurotoxic effects. Ether may act via anoxia, as anoxia via underwater stress also produces 

some enduring PTSD-like phenotypes (43).

SPS reliably induces many PTSD-related behavioral (Table S1) and neurobiological 

phenotypes (Table 2). It produces elevated GR expression in the hippocampus and PFC, 

major negative feedback circuits for the HPA axis. Basal HPA axis activity and reactivity 

however (ACTH/CORT) are elevated post-trauma unlike in PTSD patients (Table 2) (i.e., 

low or normal cortisol) (6). SPS is also sensitive to chronic treatment with SSRIs (Table 2). 

Major strengths of SPS are (1) broad characterization of PTSD-relevant behavioral 

phenotypes and underlying neurobiological mechanisms (Tables 2 and S1), which (2) are 

fairly consistent across studies, and (3) a standardized procedure reproduced by multiple 

laboratories. Several phenotypes require a sensitization or incubation-like period (1 week) 

post-trauma to develop (41; 44), offering a well-defined time window for mechanistic 

studies targeting PTSD pathogenesis. Limitations include lack of data about (1) sex 

differences, (2) avoidance of trauma-related cues, and (3) less use of resilient vs. susceptible 

groupings (but see (45)).

Immobilization/restraint (IMO/RES) stress

In single IMO or RES stress, subjects are attached to a board or placed in a plastic restraint 

device for 30-120 min (Figure 1). Restraint is a strong, reliable psychogenic stressor 

inducing marked activation of the sympathetic nervous system and HPA axis. Restraint is 

more commonly used to probe mechanisms of acute stress responses and recovery or 

responses after chronic exposure, but enduring outcomes of single restraint is less well 

studied (Tables 2 and S1). Ressler and colleagues have developed an IMO variant, which 

uses a single 2 hrs board placement as the stressor. This stressor reliably induces long-term 

(>6 days after stress) generalized avoidance, increased startle, depression-like phenotype, 

and deficits in memory and fear extinction (see Table S1 for details and references). 

Extinction deficits are a consistent and relatively specific phenotype of PTSD and this is a 

construct with proven translation across animal and human studies (46).

The strengths of IMO are (1) extensive data on HPA axis-related changes and time course, 

(2) detailed and differential analysis of structural and functional changes in the prefrontal-

hippocampal-amygdalar network, (3) available data on both sexes (although females are 

resilient) (Tables S2-S3), and (4) very reliable effects on fear-specific processes. In contrast, 
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limitations are (1) limited data on other PTSD-relevant behavioral or biological outcomes, 

(2) few available studies using single exposure in combination with long-term 

measurements, and (3) limited use of vulnerable-resilient subgrouping approaches.

Unpredictable variable stress (UVS)

Although the UVS model is commonly considered a model of depression (47), this 

paradigm has face and predictive validities for at least some forms of PTSD, since it 

produces PTSD-relevant behavioral phenotypes and is responsive to chronic SSRIs (48) and 

fast-acting antidepressant ketamine (49–51). In this paradigm, behavioral abnormalities are 

induced following daily exposure to various stressors over a period of 1 to 8 weeks (Figure 

1).

It is argued that exposing rodents to unpredictable stressors for several consecutive weeks 

mimics the prolonged and unpredictable stress experienced by soldiers during deployment 

(3). The UVS protocol induces most PTSD-relevant behaviors except for avoidance of 

trauma-specific cues (Table S1). Fear circuit abnormalities are also reported (higher c-fos in 

amygdala and its subregions) (52; 53), and susceptible and resilient groups differ in 

hippocampal and cortical functional activity (54). The UVS paradigm also induces enhanced 

negative feedback of the HPA axis in response to a subsequent stress or to dexamethasone 

(6) (Table 2). Behavioral markers of “pre-trauma risk” include pre-stress novelty-seeking 

and escape behavior predicting higher responses post-stress (53; 55).

Overall, UVS has (1) potential etiological validity for repeated, uncontrollable and 

unpredictable traumatic events such as deployment stress; (2) face validity for inducing 

long-lasting behavioral and physiological alterations similar to those observed in PTSD 

patients; and (3) approaches to identify susceptible and resilient groups, which allows 

researchers to identify potential biomarkers associated with higher vulnerability to stress. 

This is a problem for reproducibility, as it is not clear which variations are reliable in 

inducing long-term changes and if common mechanisms are shared across variations. 

Additionally, the strength of trauma-related avoidance cannot be determined due to the use 

of several stressors. There is also limited information in females (Tables S2-S3).

Social defeat stress (SDS)

SDS has been used extensively to assess behaviors and neurobiological mechanisms related 

to repeated stress exposure. SDS is typically performed in males using a resident-intruder 

procedure involving submission of the experimental animal (intruder) to an aggressive 

conspecific (resident) within the resident’s territory (see (56) for a review) (Figure 1). This 

procedure in rodents has been argued to model assault and social stress (57), however it can 

produce significant injury (58).

A consistent outcome of SDS is increased social avoidance (i.e., less time spent near a 

conspecific) (Table S1). Susceptible and resilient subgroups are also identified by social 

avoidance (e.g., susceptible animals spend <half of time near conspecific) (see Table S1 for 

details and references). Other consistent behavioral outcomes is hyperarousal, anhedonia 

(decreased sucrose preference, higher reward thresholds in intracranial self-stimulation), and 
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several other impairments in reward and motivated behavior and in reward circuits (see 

Table S1 for details and references).

SDS has produced mixed effects on other PTSD-relevant phenotypes, such as hypoalgesia to 

thermal stimuli (59), and hyperalgesia to mechanical stimuli (60) (Table S1). Effects on fear 

learning are inconsistent, with susceptible mice typically showing increased contextual and 

cued fear learning (61) but there are also reports of decreased fear learning (62), increased 

fear learning in resilient animals only (63), or no effect of SDS in either group (64). 

Preliminary data indicate a slight impairment of extinction learning in socially defeated mice 

compared to non-stressed controls (65). Conversely, SDS in adolescent rats facilitates 

extinction learning in adulthood (66). There is some, but not completely consistent, evidence 

for impaired hippocampal-dependent cognition (see Table S1 for details and references).

In terms of PTSD-relevant biological phenotypes (Table 2), SDS increases amygdala 

activity, an effect thought to be mediated by decreased PFC control (67). SDS also robustly 

induces enduring peripheral and central inflammation (68). However, unlike PTSD and the 

other paradigms reviewed here, SDS suppresses negative feedback of HPA axis activity in a 

dexamethasone suppression test 1-3 weeks after stress (69). GR suppression may be a 

feature of chronic predictable stress, as although duration and intensity of daily defeat is 

unpredictable, the stressor type is not (70). Finally, SDS impairs sleep, resulting in decreased 

REM and increased non-rapid eye movement (NREM) slow-wave sleep (71; 72).

Overall strengths of the social defeat model is that it (1) reliably induces avoidance and 

reward alterations, fear circuit abnormalities and inflammation phenotypes; (2) is sensitive to 

anti-depressants (58; 64); and (3) offers a standardized protocol for the stressor to identify 

susceptibility and resilient groups. Limitations include that repeated exposure (10 days and 

3-5 weeks for mice and rats, respectively) to a predictable stressor (defeat) is typically used 

to produce the phenomena, and it does not produce the relatively PTSD-specific phenotypes 

of extinction-deficits or increased HPA feedback. Finally, although modifications have been 

made in the procedure to test females (73), designing methodology that requires aggression 

toward female and adolescent rodents is challenging.

General discussion

Overall, the paradigms described above meet the requirement of inducing enduring 

behavioral and physiological abnormalities, typically from 7-90 days after stress 

termination. All paradigms produced enduring effects on general anxiety- and/or depression 

measures, although specific constructs mostly robustly affected varied across paradigms 

(Tables 2–3 and S1). There were some gaps in how each paradigm affected certain 

constructs. In terms of modeling behavioral phenotypes, avoidance of trauma-related cues is 

a critical feature of PTSD, but only half of the paradigms directly test this construct (SDS, 

inescapable foot shocks and variations of predator stress). At this point, only IMO and SPS 

produce robust deficits in fear extinction, another relatively specific phenotype to PTSD. In 

terms of biological phenotypes, all paradigms induced increased amygdala function, and all 

models except SDS produced GR hypersensitivity, a relatively specific phenotype for PTSD 

compared to anxiety and depression (Table 2). Other than SDS (74), little data exist on the 
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peripheral inflammatory state evoked by these manipulations, which is a significant gap 

given that most of what is known about inflammation in PTSD is garnered from peripheral 

(e.g., plasma) studies. Sleep changes are also relatively understudied with only limited data 

in inescapable footshock, SDS and UVS. Although sleep and inflammation are relatively 

non-specific phenotypes, they are consistently changed in PTSD and enable homologous 

“biomarker” measures longitudinally across rodents and there is increasing evidence that 

they contribute directly to the etiology of PTSD risk and symptom maintenance (75; 76). For 

experimental design considerations, Tables 2 and S1 indicate the longest time post-stress in 

which PTSD phenotypes are observed, with most behavioral and biological changes tested 

<30 days post-stress. When feasible, expansion of assessments to longer periods post-trauma 

(2-3 months) to assess the trajectory of behavioral and circuit changes post-stress will 

support targeting of early vs. late interventions and better mimic the timeframe of treatment 

seeking in PTSD-like patients. All models except for SDS used unpredictable stressors, 

since repeated exposures to the same stressor may lead to adaptation/habituation, and HPA 

axis desensitization as seen in SDS (70). Unpredictability of the stressor can be controlled 

by exposing rats to different conspecifics each day in the SDS model, altering the stressor 

type (e.g. SPS), its duration (number of defeats, time to defeat in SDS or restraint duration) 

and also by adjusting its intensity (foot shock).

Other gaps in the literature were how these models perform in female rodents (Tables S2-

S3), across the lifespan (e.g., in adolescent or adult animals) (77) and if they are sensitive to 

early-life stress (i.e. “double-hit”). Females have higher prevalence of PTSD, potentially 

differing heritability for risk as well as treatment responses, thus the dearth of PTSD models 

using females is a significant problem for PTSD research. In terms of potential age effects, 

cortical circuitry matures during adolescence and early adulthood (78), suggesting that the 

adolescent brain may respond differently to trauma compared to the adult brain. This may be 

particularly important when attempting to model PTSD in military populations, in which 

combat trauma exposure is typically in late adolescence/early adulthood. There are also 

limited studies investigating the effects of early-life stressors or stress hormones on PTSD-

related phenotypes (e.g. shift group to higher prevalence of “susceptible” animals) (38; 79; 

80), despite the clear evidence that early-life trauma is one of the highest risk factors for 

PTSD (81).

Many paradigms have established approaches to take advantage of individual variance in 

responses to detect mechanisms of risk or resilience to enduring effects of stress. This 

approach has been increasingly favored in PTSD models to recapitulate the relatively low 

prevalence of PTSD even in highly traumatized populations (e.g. up to 20% in combat 

veterans), thus putatively providing greater face and etiological validity. The pros of this 

strategy include an inherent reliability test involving multiple measures in an individual, 

with one measurement to identify response group and then secondary tests to establish 

response to the planned experimental manipulation (e.g. treatment). It is not clear however 

how reliably cutoff methods are able to detect a true change in behavioral/biological 

response to the trauma vs. capturing random high trait-anxiety in the population of 

“susceptible” animals. Prevalence of resilience vs. susceptibility may also vary across 

species and strains (82–85). A future consideration is that these approaches currently rely on 

behavioral cutoffs to identify the “PTSD” group, and could incorporate biological changes to 
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identify resilient and susceptible animals. With the advent of small animal imaging, 

telemetry and development of high throughput peripheral biomarkers, relatively non-invasive 

longitudinal assessments are possible. Indeed preliminary studies using non-invasive 

imaging such as MRI after stress are now emerging (86; 87). Movement towards these 

biological phenotypes can identify translational biomarkers of drug efficacy in proof-of-

concept trials. Finally, there is little data on what translatable biological factors may predict 
which animals will be resilient or susceptible to trauma. There is some early evidence that 

individual differences in immune response (74) predict trauma response in the SDS model. 

Furthermore, another study demonstrated that low hippocampal levels of N-acetylaspartate 

assessed by proton magnetic resonance spectroscopy and differences in pre-trauma REM 

predicted persistent susceptibility to inescapable shocks in mice (17; 88).

For the future, as we gain better understanding of specific circuit and cell pathology in 

PTSD, techniques such as optogenetic and chemogenetic approaches (Table S4) can provide 

new models of targeted pathology within specific cell-types and circuits. For example, 

optogenetic methods targeting specific neuronal populations (e.g. glutamatergic neurons in 

PFC that project to the amygdala) could be used to mimic PFC-amygdala circuit 

abnormalities in PTSD, offering a highly specific drug target (e.g. drugs that enhance the 

activation of this circuit), as well as enable isolatation of potential neural circuits 

contributing to susceptibility to stress and treatment response (89; 90). Designer Receptors 

Exclusively Activated by Designer Drugs (DREADDs) have promise to mimic long-term 

pathology via chronic clozapine-N-oxide treatment to modify second messenger cascades in 

a cell and circuit-specific manner. DREADD is particularly useful to manipulate large 

regions/circuits that cannot be manipulated via optogenetics due to spatial limitations (e.g. 

bed nucleus stria terminalis, microglia in PFC) (91). Overall, these tools should be used 

further in combination with stress models to enhance our understanding of the several 

circuits involved in the heterogeneity of PTSD symptoms.

Concluding remarks: In this review, we refrained from judgment of the “best” model of 

PTSD. PTSD is a heterogeneous disorder and the field is shifting towards targeting specific 

constructs/symptoms vs. overgeneralized diagnostic categories. In this context it is healthy 

to have multiple paradigms to enable appropriate hypothesis testing based on what is known 

about a given mechanism or drug target and its potential application to specific PTSD 

constructs. A long-term goal will be to identify the most robust underlying mechanisms for 

each model, to apply them to more targeted drug discovery and testing efforts. One approach 

to increase predictability of animal models is to incorporate homologous biological 

measures of risk and treatment response. Identifying reliable individual risk and treatment 

response predictors (e.g. high inflammatory response pre-trauma) in these models will be 

critical in informing appropriate clinical trial design on these models. Use of relatively non-

invasive tools that allow longitudinal assessment (e.g. peripheral inflammation, sleep and 

non-invasive imaging) will complement behavioral outcomes upon which most paradigms 

are currently based (see Box S1). The hope is that treatments may be more readily translated 

to clinical trials enriched for patient groups endorsing the behavioral and biological 

phenotypes predicted by treatment efficacy in these models. Hence, achieving enhanced 

translational will require use of these homologous objective measures not only in animals, 

but across clinical trials designs as well.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Schema illustrating the several animal models of PTSD
Inescapable shocks (A), predator stress (unprotected and protected exposure, and predator 

scent) (B), single prolonged stress (SPS) (C), immobilization or restraint stress (D), 
unpredictable variable stress (UVS) (E), and social defeat (F) models are described. Figure 

created on the Mind the Graph platform www.mindthegraph.com.
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Table 1

Operational measures of PTSD-related constructs and phenotypes

Behavioral phenotypes Operational measures

Pain perception Chronic pain, ↑ thermal pain perception Thermal: acetone, Hargreaves and hot-plate tests
Mechanical: von Frey test
Inflammatory: formalin test

Generalized avoidance/anxiety EPM, LD, MB, novelty-suppressed feeding test, OF, SAAT, SIT

Avoidance of trauma-related cues Freezing or avoidance behavior when in presence of stress-related 
cue (e.g. odor, stress context)

Fear learning and extinction ↑ conditioned fear and ↓ extinction of 
conditioned fear

Pavlovian fear conditioning (contextual and cued auditory fear 
responses) as assessed by freezing or startle reactivity with and 
without the presence of conditioned cues

Arousal ↑ startle, ↑ somatic signs of arousal (HR, GSR) ASR and startle habituation; PPI

Depression ↑ depression symptoms (BDI, HAM-D) Despair/helplessness: FST, TST
Anhedonia: ICSS, PRT, SP

Memory deficits (hippocampal function) ↓ processing speed, 
working memory, attention, response inhibition

EPM, MWM, NORT, RAWM

Biological phenotypes Assessments

Fear circuit dysfunctions (PFC-Amy) ↑ amygdala activity, ↓ PFC 
activity during emotional tasks in fMRI, ↓ functional connectivity 
between PFC and ACC or Amy

Functional: cFos-positive cells, LTP/LTD
Structure/Morphology: dendritic spines length/number, number of 
cells and apoptosis rate, functional connectivity (imaging)

Changes in HPA axis functioning Altered GR sensitivity, 
hypersensitive negative feedback, genomic changes in HPA gene 
pathways

Plasma: CORT/ACTH (baseline or in response to a subsequent stress, 
or DST)
Central: CRF, CRFR1/2, GR, MR expression or protein levels

Inflammation Altered inflammatory state measured by changes in 
serum levels of inflammatory markers

Plasma: levels of anti-inflammatory cytokine (IL-10) pro-
inflammatory cytokines (IL-1β, TNF-α, IL-6, IL-12, IL-18), TLR2 
and TLR4, NLRP3)
Central: microglial activation; levels of anti-inflammatory and pro-
inflammatory cytokines (described above)

Hippocampal dysfunction Functional: altered activity, altered 
hippocampal-dependent memory Structural: ↓ volume and/or 
connectivity

Functional: cFos-positive cells, LTP/LTD
Structure/Morphology: number of cells and apoptosis rate, HP 
volume, dendritic spines length/number, functional connectivity 
(imaging)

Sleep disturbances ↑ awakenings from REM, ↑ number and density/↓ 
duration of REM, recurrent nightmares

NREM, REM, EEG bands

ACC, anterior cingulate cortices; ACTH, adrenocorticotropic hormone; Amy, amygdala; ASR, acoustic startle response; BDI, Beck Depression 
Inventory; CORT, corticosterone; CRF, corticotropin-releasing factor; CRFR1/2, corticotropin-releasing factor receptor type 1 or 2; DST, 
dexamethasone suppression test; EEG, electroencephalography; EPM, elevated plus maze; FST, forced swim test; GR, glucocorticoid receptors; 
GSR, galvanic skin response; HAM-D, Hamilton Rating Scale for Depression; HP, hippocampus; HR, heart rate; ICSS, intracranial self-
stimulation; IL-1β, interleukin-1β; IL-6, interleukin-6; IL-10, interleukin-10; IL-12, interleukin-12; IL-18, interleukin-18; LD, light-dark box; LTP/
LTD, long-term potentiation/depression; MB, marble burying; MR, mineralocorticoid receptors; MWM, Morris water maze; NLRP3, NACTH, 
LRR and PYD domains-containing proteins 3; NORT, novel object recognition task; NREM, non-rapid eye movement; OF, open field; PFC, 
prefrontal cortex; PPI, prepulse inhibition of acoustic startle; PRT, probabilistic reward task; RAWM, radial arm water maze; REM, rapid eye 
movement; SAAT, social approach-avoidance test; SIT, social interaction test; SP, sucrose preference; TLR2, toll-like receptor 2; TLR4, toll-like 
receptor 4; TNF-α, tumor necrosis factor-α; TST, tail suspension test
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