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The mouse has become an indispensable and versatile model
organism for the study of development, genetics, behavior, and
disease. The application of comprehensive gene expression profil-
ing technologies to compare normal and diseased tissues or to
assess molecular alterations resulting from various experimental
interventions has the potential to provide highly detailed qualita-
tive and quantitative descriptions of these processes. Ideally, to
interpret experimental data, the magnitude and diversity of gene
expression for the system under study should be well character-
ized, yet little is known about the normal variation of mouse gene
expression in vivo. To assess natural differences in murine gene
expression, we used a 5406-clone spotted cDNA microarray to
quantitate transcript levels in the kidney, liver, and testis from each
of 6 normal male C57BL6 mice. We used ANOVA to compare the
variance across the six mice to the variance among four replicate
experiments performed for each mouse tissue. For the 6 kidney
samples, 102 of 3,088 genes (3.3%) exhibited a statistically signif-
icant mouse variance at a level of 0.05. In the testis, 62 of 3,252
genes (1.9%) showed statistically significant variance, and in the
liver, there were 21 of 2,514 (0.8%) genes with significantly
variable expression. Immune-modulated, stress-induced, and hor-
monally regulated genes were highly represented among the
transcripts that were most variable. The expression levels of
several genes varied significantly in more than one tissue. These
studies help to define the baseline level of variability in mouse
gene expression and emphasize the importance of replicate mi-
croarray experiments.

DNA microarray � variation � transcript � ANOVA

The use of DNA microarrays to obtain qualitative and quan-
titative profiles of gene expression has increased dramati-

cally over the past several years. Microarrays can provide rapid
and accurate measurements of thousands of distinct transcripts
simultaneously. Most of the microarray expression studies per-
formed to date have used relatively controlled systems that are
manipulable in vitro, such as single-cell organisms (e.g., yeast)
and clonal cell lines (1–3). The technology has also been applied
to more complex in vivo systems involving mammalian tissues
and organs. Many of these studies have been performed by using
the mouse as a model organism, in part because of the relative
ease of genetic manipulation coupled with the extensive
genomic, anatomical, and physiological synteny with humans.
Microarrays have been used to analyze gene expression in
murine liver (4–8), kidney (9), brain (10), adipose tissue (11),
pancreas (12), placenta (13), skeletal muscle (14), and heart (15).
It is likely that murine applications for microarray analysis will
continue to expand as functional genomics efforts increasingly
use the mouse for determining genotypic and phenotypic rela-
tionships in the context of development and disease.

Although the use of DNA microarray technology for the study
of gene expression in complex mouse tissues is certainly infor-
mative, several concerns are apparent that do not exist for
single-celled organisms or clonal cell populations. Tissues are
comprised of several distinct cell types that may be present in
different proportions in different mice. Second, the environment
of an organ cannot be controlled. Even genetically identical mice

housed under the same conditions are likely to have a different
hormonal milieu. The state of the immune system and the degree
of inflammatory activity in a given tissue are also likely to vary
from mouse to mouse. Third, the process of killing the animal
may itself cause global changes in gene expression that are
inconsistent from one mouse to the next, especially if time-
intensive dissection of the organ is necessary. This process is
particularly problematic in studies concerned with stress-
responsive genes.

These problems with in vivo studies of gene expression are not
new but they are of great importance when using DNA microar-
rays or other comprehensive expression profiling technologies
because of the sheer number of genes analyzed. When assaying
the expression of thousands of transcripts, there is a high
likelihood of finding ‘‘differentially expressed’’ genes that actu-
ally vary as a result of technical limitations of the method or that
vary normally in the tissues under study. Before microarray data
from complex tissues and organisms can be interpreted mean-
ingfully, it is first necessary to define the normal physiological
variance in gene expression. Natural variability is also interesting
from a biological standpoint. A component of the variability in
gene expression for outbred populations such as humans is likely
the result of genotypic variation. However, inbred mouse pop-
ulations are genetically alike, allowing one to study how gene
expression varies independently of genetics.

In this report, we describe the results of using cDNA microar-
rays to ascertain the variance in transcript levels for several
thousands of genes expressed in normal mouse tissues. By using
ANOVA, we determined that 0.8, 1.9, and 3.3% of all transcripts
assayed were normally variable in the liver, testis, and kidney,
respectively. The expression levels of several genes varied sig-
nificantly in more than one tissue. Several of these genes have
been reported previously as differentially expressed in microar-
ray studies of murine development or disease states. These
results emphasize the requirement for rigorous experimental
design when using microarrays to study gene expression in
complex tissues.

Materials and Methods
Animal Studies and RNA Preparation. Six male C57BL6 mice were
individually killed in a CO2 chamber at 15 weeks of age. The
liver, kidney, and testis were removed, in that order, and in each
case the left kidney and left testis were used only. Care was taken
to ensure the time between time of death and harvest of each of
the organs was as rapid and consistent as possible. All organs
were harvested in the same sitting, and only 30 min elapsed
between the time of death of the first mouse to the last. Organs
were snap-frozen in liquid nitrogen immediately after harvest.

Abbreviations: RT, reverse transcription; GH, growth hormone; log, logarithm; apo, apo-
lipoprotein.
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Total RNA was extracted from tissue by using the TRIzol
reagent (Life Technologies, Grand Island, NY) according to the
manufacturer’s protocol. For an RNA reference standard, equal
quantities of total RNA from the livers, testes, and kidneys of
each mouse were combined to produce a composite RNA pool
representing 18 organs. The same reference RNA was used
for synthesizing cDNA reference probes for each microarray
experiment.

Microarray Preparation. Replicate-spotted cDNA microarrays
were prepared on polylysine-coated glass microscope slides by
using a robotic spotting tool as described (2). Each array
consisted of 5,285 mouse cDNAs chosen from the Research
Genetics sequence-verified set of IMAGE clones (http:��www.
resgen.com�products�SVMcDNA.php3). The clone inserts
were amplified by PCR, purified, and verified by gel electro-
phoresis. Additional control and reference cDNAs were in-
cluded for a total of 5,406 unique genes represented on the array.

Probe Construction, Microarray Hybridization, and Data Acquisition.
The protocol used for indirect labeling of cDNAs was a modi-
fication of a protocol described elsewhere (http:��cmgm.
stanford.edu�pbrown�protocols�aadUTPCouplingProce-
dure.htm). Briefly, cDNA probes were made from 30 �g of total
RNA in a reaction volume of 30 �l containing oligo(dT) (16)
primer�0.2 mM 5-(3-aminoallyl)-2�-deoxyuridine-5�-triphos-
phate (amino acid-dUTP; Sigma-Aldrich)�0.3 mM dTTP�0.5
mM each dATP, dCTP, and dGTP�380 units of Superscript II
reverse transcriptase (Life Technologies). Purified cDNA was
combined with either Cy3 or Cy5 monoreactive fluors (Amer-
sham Pharmacia) that covalently couple to the cDNA-
incorporated aminoallyl linker in the presence of 50 mM
NaHCO3 (pH 9.0). Reference and experimental probes were
combined and competitively hybridized to microarrays under a
coverslip for 16 h at 63°C. Slides were washed in graded SSC (1 �
SSC � 0.15 M sodium chloride�0.015 M sodium citrate, pH 7)
and spun dry. Fluorescent array images were collected for Cy3
and Cy5 emissions by using a GenePix 4000A fluorescent
scanner (Axon Instruments, Foster City, CA). Image intensity
data were extracted and analyzed by using GENEPIX 3.0 microar-
ray analysis software. Each experiment was performed in qua-
druplicate (two experiments with each fluorescent label to
account for dye effects).

Quantitative Real-Time PCR. cDNA was generated from 30 �g of
total RNA from each sample by using the same protocol
described previously for array probe synthesis except that amino
acid-dUTP was not added to the reaction. After removal of
primers and salts with a Microcon 30 filter (Amicon), the cDNA
was quantitated in duplicate by using 2 �l of undiluted cDNA in
a Gene-Spec III spectrophotometer (Hitachi, Tokyo). Real-time
PCR reactions were performed in quadruplicate by using 5 ng of
cDNA template, 0.3 �M of each primer, and 1� SYBR green
PCR master mix (Applied Biosystems) in a volume of 50 �l.
Reactions were analyzed on an Applied Biosystems 5700 se-
quence detector by using a fluorescence threshold corresponding
to the middle of the exponential range. For each primer set, a
standard curve was generated by using 10, 1, and 0.1 ng of cDNA.
For the 10-fold dilutions the difference in threshold cycle
number was always between 3.2 and 3.4, indicating high PCR
efficiency. Control reactions with RNA as template and with
template omitted did not produce significant amplification
products. Primers to ribosomal protein S16 were used to
normalize cDNA loading as described (16). The sequences of
the primers used in this study are CisH forward, 5�-
GGTGGGGCACAACATAGAGA-3�; CisH reverse, 5�-
GGTGGCCAGACAGACAGGAG-3� (102-bp amplicon);
Bcl-6 forward, 5�-CACACCCGTCCATCATTGAA-3�; Bcl-6

reverse, 5�-TGTCCTCACGGTGCCTTTTT-3� (50-bp ampli-
con); complement factor D forward, 5�-CCACGTGAGAC-
CCCTACCCT-3�; complement factor D reverse, 5�-CCGGGT-
TCCACTTCTTTGTC-3� (50-bp amplicon); S16 forward, 5�-
AGGAGCGATTTGCTGGTGTGGA-3�; and S16 reverse, 5�-
GCTACCAGGCCTTTGAGATGGA-3� (102-bp amplicon).

Data Analysis. A gene was considered expressed if the spot had at
least 6 foreground pixels greater than 4 standard deviations above
background on every array. For each spot, the expression levels of
Cy5 and Cy3 probes were obtained by subtracting median back-
grounds from median foregrounds. The logarithm (log) base 2
ratios of these two channels were taken to quantify the relative
expression levels of genes between experimental and control sam-
ples. To allow for interarray comparisons, each array was normal-
ized to remove systematic sources of variation. Instead of using
global mean or median gene expression values for each array, a
print-tip-specific intensity-based normalization method was used
(17). A scatter-plot smoother, which uses robust locally linear fits,
was applied to capture the dependence of the log ratios on overall
log-spot intensities. The log ratios were normalized by subtracting
the fitted values based on the print-tip-specific scatter-plot
smoother from the log ratios of experimental and control samples.
To assess potential systematic experimental variation resulting from
different batches of arrays, different RNA preparations, or other
unanticipated factors, we examined the scales of the normalized log
ratios for each gene from every experiment. A comparison of
boxplots of the log ratios across all arrays for each tissue indicated
that the spread of log ratios varied somewhat from array to array
with some variation attributable to different array printings (data
available at www.pedb.org). We did not observe a correlation with
any other identified experimental variable. To account for these
differences in the overall analysis, each array was scale-adjusted so
that the median of the deviation from the median, a robust estimate
of scale, was the same for all arrays from each tissue. It is important
to note that other systematic sources of variation may still exist
which could influence the experimental results obtained by using
microarray methods. For example, there may be temporal changes
in individual pin-tip performance or in the concentration of spot-
ting material during a microarray printing run.

ANOVA models were used to identify genes whose variability
in expression among mice is greater than zero. Dye effect was
incorporated as a covariate to account for the possible systematic
difference in expression values between the two dyes. ‘‘Array
variance,’’ defined as the mean of squared errors that are not
explained by either dye or mouse effect, and ‘‘mouse variance,’’
defined as one-fourth the difference between the mean square
for mouse and the array variance were estimated for each gene
according to the following formulas:

�array
2 �

�
j � 1

J �
k � 1

K

yjk
2 � �

j � 1

J

Kȳj.
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where yjk denotes the log ratio for the jth mouse and kth replicate,
and n is the total number of arrays, J�K. Subscript j. refers to the
mean of all arrays for a given mouse and .. refers to the grand
mean of all mice and all replicates. �red and �green refer to the
mean of all arrays in which the experimental RNA was labeled
with Cy5 or Cy3, respectively. F values were obtained by the
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division of mean square for mouse and the array variance. The
degrees of freedom associated with the F values are (no. of
mice � 1) and (no. of arrays � no. of mice � 1).

The Westfall and Young step down-adjusted P values were
used to adjust for the multiple comparisons. A permutation
algorithm proposed by Dudoit et al. (17) was adopted for the
calculation of these adjusted P values, where the t test statistics
were replaced by the F statistics. A total of 1,000 permutations
were conducted. A significance level of 0.05 is used throughout
this article unless otherwise stated. For simplicity, the analysis
was restricted to the subset of genes that have complete data on
all arrays for each tissue. Additional array analyses and statistical
data may be viewed in Figs. 4–12, which are published as
supporting information on the PNAS web site, www.pnas.org.

Results
Experimental Outline. To identify genes whose expression levels
vary normally in the mouse, we isolated RNA from the kidney,
liver, and testis of 6 genetically identical male C57BL6 mice. An
experimental reference was created by combining equivalent
amounts of RNA from each of the three organs of each mouse.
This reference RNA was used as the control for every array
experiment to make all experiments comparable. Four separate
microarray assays were conducted for each organ from each
animal, for a total of 24 arrays per organ. For half of the replicate
arrays, the experimental RNA was labeled with the Cy3 dye and
the reference RNA with the Cy5 dye; for the other half, the
labeling scheme was reversed to control for any dye-based bias.

Determining Variance: Finding Normally Variable Genes. For each
expressed gene, the variance of log ratios among the six mice
(mouse variance) was calculated as described in Materials and
Methods. Looking across all expressed genes, the testis showed
the highest average gene expression variance among mice at
0.054. The average gene expression variance in the kidney was a
little lower than the testis at 0.038, whereas the liver showed
more stable gene expression with an average variance of 0.018
(Table 1). An F value was calculated for each gene correspond-
ing to the ratio of expression differences among mice divided by
the experimental error (array variance). The higher the F value
of a gene, the more likely it is that the gene is truly variable
among mice. The distribution of F values for all expressed genes
shows that the kidney and testis had larger F values overall than
the liver, suggesting more gene expression variability in the
kidney and testis and less in the liver (Fig. 1). Comparing the
observed F distribution to the null distribution demonstrates that
all three organs are shifted toward higher F values than would be
expected by chance. P values adjusted for multiple comparisons
were calculated based on the F values as described in Materials
and Methods. The majority of genes did not vary significantly
among mice (P � 0.05), but an unexpected number of genes
showed considerable variance. The kidney had the greatest
number of variable genes with 3.3% of all genes having a P �
0.05. Of testis genes, 1.9% varied significantly among the mice,
and 0.8% of the genes expressed in liver were variable (Table 1).
The most highly variable genes from each of the three tissues are

listed in Fig. 2. Additional significantly variable genes can be
viewed at http:��www.pedb.org.

One concern is that highly expressed genes will tend to have
higher F values as a result of a greater variance. However, plots
of F value vs. intensity revealed little correlation between
intensity and F value (data available at www.pedb.org). The
majority of the statistically significant variable genes had an
average intensity value near the mean of all expressed genes on
the array (Fig. 2).

Genes with Variable Expression in the Kidney. Of 3,088 genes with
detectable expression in the kidney, 102 (3.3%) were signifi-
cantly variable among mice. Among the most highly variable
were several immune-modulated and stress-responsive genes,
including BCL-6, complement factor D, uromodulin, and CisH
(Fig. 2). CisH belongs to the SOCS family of proteins that
negatively regulate cytokine signaling. The transcription of this
gene is known to be induced by a variety of cytokines, suggesting
that the variability in gene expression seen among mice may be
related to the cytokine milieu of the animal (18). SOCS genes are
also known to be regulated by growth hormone (GH) by means
of STAT5b activation (19). BCL-6 is a ubiquitously expressed
transcriptional repressor that participates in the repression of
STAT6-dependent IL4-induced genes (20). Mice deficient in
BCL-6 develop an inflammatory disease characterized by ab-
normal expression of the T helper (Th)-2 cytokines IL-4, -5, and
-13 (21).

To confirm the microarray results, the transcript levels of
complement factor D, CisH, and BCL-6 were assessed by
quantitative real-time reverse transcription (RT)-PCR in each of
the kidney samples by using SYBR green as a fluorescent
reporter (Fig. 3A). Replicate reactions produced highly repro-
ducible results with standard deviations of 0.2-fold. The assays
confirmed the variable expression of these genes, and the
direction of the relative fold differences was concordant with the
microarray data. In general, the magnitude of relative expression
differences was greater in the RT-PCR assays compared with
microarray results, a finding we have also observed with North-
ern analysis (22). The transcript levels for the ribosomal S16

Table 1. Summary of results

Government parameter Kidney Liver Testis

No. of mice sampled 6 6 6
Replicate arrays per sample 4 4 4
Total no. of expressed genes

on array
3,088 2,514 3,252

Variable genes at P � 0.05 102 (3.3%) 21 (0.8%) 62 (1.9%)

Average mouse variance 0.038 0.018 0.054

Fig. 1. Histograms of F values. The frequency of log2-transformed F values is
shown for all of the expressed genes in the kidney, liver, and testis. A higher
F value indicates a higher likelihood that a gene is variable among the six mice.
For each gene, the F value is calculated as the ratio of the mean square of log
ratios among the six mice divided by the experimental error (array variance)
among replicate experiments (see Materials and Methods and text). For
comparison, an F distribution under the null hypothesis with degrees of
freedom 5 and 17 is also plotted. The circle on the null distribution corresponds
to a type I error rate of P � 0.05.
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gene, a gene not expected to exhibit tissue expression variation,
was also measured in the kidney and liver samples. RT-PCR
results demonstrated very consistent levels of S16 expression
among all samples assayed (Fig. 3C).

Genes with Variable Expression in the Liver. The liver had the fewest
variable genes of the 3 organs studied with only 21 of 2,514 genes
showing statistically significant variability among the 6 mice (Fig.
2). Two of the genes, BCL-6 and CisH, were variable in both the

Fig. 2. Variable genes in the kidney, liver, and testis. The most statistically significant variable genes in the kidney, liver, and testis are listed with a graphical
depiction of the relative expression of each gene in the six mice. Red indicates higher relative expression and green indicates lower expression. Relative intensity
refers to the average spot intensity of the gene relative to the mean spot intensity of all expressed genes on the array. 	Fold refers to the difference in gene
expression levels among the mice with the highest and lowest measurements. The P values listed are adjusted for multiple comparisons. Relative expression levels
of genes in bold face were confirmed by alternative methods. Genes that are variable in both the kidney and the liver are marked with a 1. The gene marked
with a 2 is variable in both the kidney and the testis.
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kidney and the liver. As in the kidney, there was a relatively large
representation of immune-modulated and stress-responsive
genes that showed variability including Gadd45, MKP-1, CisH,
BCL-6, and Cyp4a12. Gadd45 is inducible by growth arrest and
DNA damage, and there is evidence that it is induced at the
transcriptional level by the stress kinase p38 (23). p38 has also
been shown to activate the dual specificity mitogen-activated
protein (MAP) kinase phosphatase MKP-1, suggesting there may
be a correlation in the variability of Gadd45 and MKP-1 (24).

The Sin3-associated protein, Sap30, functions in the
Sin3�Rpd3 histone deacetylase complex (25). Histone deacety-
lases are thought to act as global repressors of transcription by
restricting access of transcription factors to their target sites.
Interestingly, the transcriptional repressor BCL-6 has also been
linked to histone deacetylases through its interaction with the
SMRT and N-CoR corepressors (26). That Sap30 and BCL-6
were quite variable in untreated mice suggests that there may be
global differences in transcriptional regulation even in the
absence of genetic heterogeneity.

The relative expression levels of BCL-6 and CisH among the
six mouse livers were confirmed by quantitative real-time RT-
PCR (Fig. 3B). As with the analysis of these genes in the kidney,
the direction of the relative fold differences were concordant
with the microarray data, and the magnitude of relative expres-
sion differences was greater in the RT-PCR assays compared
with microarray results. The relative transcript levels of the
Gadd45 gene were also confirmed by Northern analysis, and the
results were in agreement with the microarray data (results not
shown).

Genes with Variable Expression in the Testis. Of 3,252 genes with
detectable expression in the testis, 62 genes (1.9%) were signif-
icantly variable. Genes exhibiting the greatest variance represent
a diverse range of functions including vesicle transport

(coatomer, ARF-4), proteasomal (Psma1), immune function
(LPAAT-4, �-2 microglobulin), cell stress (DnaJ homolog
2�HSP40, DNA-PK, Pidd) nuclear transport (RAN-binding
protein 16), transcription regulation (USF2), and lipid transport
[apolipoprotein (apo) C1] (Fig. 2). Two genes varied in both the
kidney and the testis including �-2 microglobulin and an un-
characterized expressed sequence tag (GenBank AI450295).

The most variable genes in the testis were LPAAT-4, ApoC1,
and calmodulin-3, with LPAAT-4 and ApoCI each varying by
more than 50-fold (Fig. 2). LPAAT-4 is an acyltransferase
involved in lipid metabolism that has been shown to enhance
cytokine-induced signaling responses (27). The apoCI is a com-
ponent of very low-density lipoprotein (VLDL) and high density
lipoprotein (HDL) that is predominantly expressed in the liver,
although it has been shown to be expressed in the testis (28).
Calmodulin is a ubiquitously expressed and abundant Ca2
-
binding protein that functions in many cellular processes, in-
cluding transcriptional regulation through CaM kinase and the
transcription factor CREB (29).

Discussion
If these mice are genetically identical, the same age, and housed
under the same conditions, then to what can we attribute the
variability in gene expression? Several possibilities exist, all of
which are important to consider when analyzing gene expression
alterations in response to experimental manipulations. Mouse to
mouse differences in immune status may be one of the largest
sources of variation. We found that many of the variable genes
encode components of the immune system and are mediators of
the acute immune response. The inflammatory state of the tissue
at the time of death may vary depending on environmental
influences like injury or infection. The measured variability may
be the result of differential gene expression in the primary
cellular components of the tissue or may reflect the presence of
different numbers of tissue-infiltrating lymphoid cells.

We hypothesized that many normally variable genes would be
regulated by cytokines or hormones. This hypothesis is sup-
ported by the differences observed in measurements of cytokine-
inducible genes, as well as a cohort of putative hormone-
responsive genes. For example, the recently characterized short-
chain dehydrogenase�reductase PSDR1 was discovered as an
androgen-regulated gene in human prostate (22). Another vari-
able gene, complement factor D, is known to be regulated by
insulin (30). The cytokine-inducible genes CisH and BCL-6 are
also regulated by GH (31). Some evidence suggests that Gadd45
and the p38 stress kinase are induced by GH in the liver (32). In
male mice, GH is produced by the pituitary in a pulsatile fashion,
and fluctuations in the amount of GH may have contributed to
the variability in expression of these genes.

Another factor that may contribute to expression variability is
the process of killing the animal. Although great care was taken
to remove the organs and snap-freeze them quickly, it is difficult
to control this process perfectly. A host of gene expression
changes may occur immediately after death as a result of hypoxia
and ischemia. Stress-induced genes that were variable, such as
DNA-activated protein kinase, Pidd, and heat shock protein 40
in the testis, and MKP-1, Gadd45, and cytochrome p450 gene
cyp4a12 in the liver, may be variable as a result of differences in
the response to the process of death. Examining the pattern of
variance in the six mice reveals a nonrandom mouse effect for
multiple genes. For example, kidney gene expression patterns
from the first four mice are fundamentally different from the last
two mice (Fig. 2). In the testis, the first two mice are systemat-
ically different from the last four mice (Fig. 2). No pattern was
observed in the liver. Although all mice were killed within a
30-min time period, it is possible that the time of death had an
effect on gene expression levels, perhaps from natural hourly

Fig. 3. Confirmation of microarray data by quantitative real-time RT-PCR.
Kidney (A) and liver (B) RNAs were reverse transcribed and amplified by the
PCR, using real-time quantitative amplicon measurements with primers spe-
cific for complement factor D, CisH, BCL-6, and ribosomal protein S16 genes.
S16 expression levels were used to normalize real-time PCR data although
there was not more than a 1.5-fold difference in S16 expression between any
two mice in the kidney or the liver (C). Results are expressed relative to the
lowest expressing mouse for each gene (adjusted to a value of 1). Error bars
indicate the standard deviation of four microarray or four real-time PCR
experiments. Some error bars are not visible because of small standard
deviations.
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f luctuations in hormone levels or from a response induced by
removing (and killing) littermates.

Importantly, many of the genes that we found to vary normally
have been reported previously to be differentially expressed
because of a pathological process or experimental intervention.
One recent study used microarrays to investigate the effect of
aging and caloric restriction on gene expression in the skeletal
muscle of male C57BL6 mice (14). Heat shock proteins, includ-
ing DnaJ Homolog 2 (Hsp40) and other stress-responsive genes
such as Gadd45, were reported to be differentially expressed as
a result of dietary alterations. Calmodulin 3 and 60S ribosomal
protein L32 were described as differentially expressed with age,
genes we found to vary normally in the testis and kidney,
respectively. Although it is likely that many of the genes reported
in this study are truly differentially expressed with age and�or
caloric restriction, we found the same kinds of genes, and indeed
some of the very same genes, among age-matched C57BL6 mice
without dietary intervention. Also, the small sample size (n � 3)
makes this study particularly vulnerable to misinterpretation due
to normal variation in gene expression.

Several studies have used microarrays to profile gene expres-
sion in mouse liver. One report described the effects of thyroid
hormone treatment on liver gene expression and found that
tctex-1, �-globin, and two FK506-binding proteins were regu-
lated by T3 (4). These were all genes we have found to be
normally variable in at least one tissue. Another study investi-
gated the effects of acetaminophen on gene expression in the
mouse liver (8). Eight of the genes reported to differ in response
to acetaminophen, including Gadd45, CisH2, and Hsp40, were

genes we found to vary normally. A third study used microarrays
to compare apoE-deficient mice to controls and reported that
apoCI was differentially expressed as well as several heat shock
proteins (6). These expression differences may accurately reflect
the influence of apoE, but the high level of normal variance in
these genes makes this difficult to determine without rigorous
control experiments.

Genetically diverse populations such as humans are likely to
show even greater variability in gene expression than what we
have observed among inbred mice. In addition, environmental
conditions cannot be carefully controlled in humans. These
factors present challenges for microarray-based studies of human
gene expression in vivo. Meaningful interpretation of global gene
expression in humans will require an extensive characterization
of normal variability. Our data suggests that both specific genes
and functional classes of genes will be consistently variable, even
in multiple tissue types. To assist future investigations of gene
expression, a comprehensive database of normally variable genes
could be created for both mouse and human tissues and organs.
This database might be used to caution investigators about highly
variable genes, and could also identify and catalog cohorts of
genes with relatively stable expression.
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