Skip to main content
. 2018 Jun 22;8(8):e00978. doi: 10.1002/brb3.978

Table 3.

Ion channel genes implicated in autism spectrum disorder (ASD) and related pathologies

Genes Name Cytogenetic location Description Associated phenotypes References
CACNA1A Alpha‐1A subunit of P/Q‐type Ca2+ channel 19p13.13 Modulates the biophysical properties of P/Q‐type Ca2+ channel in neurons Autism, Asperger or PDD‐NOS, Ataxia, Migraine Breitenkamp et al. (2015) and Skafidas et al. (2014)
CACNA1B Alpha‐1B subunit of N‐type Ca2+ channel 9q34.3 Modulates the biophysical properties of N‐type Ca2+ channelwhich controls neurotransmitter release from neurons Neurodevelopmental impairments, ASD, speech delay Breitenkamp et al. (2015) and Yatsenko et al. (2012)
CACNA1C Alpha‐1C subunit of L‐type Ca2+ channel 12p13.33 Plays an important role in the development of the central nervous system and it functions, especially NMDA receptor function in the hippocampus. The mutation is also implicated in defective synaptic plasticity Timothy syndrome, psychiatric diseases (bipolar disorder, schizophrenia), Brugada syndrome, ASD Cross‐Disorder Group of the Psychiatric Genomics Consortium (2013) and Li et al. (2015)
CACNA1D Alpha‐1D subunit of voltage‐gated Ca2+ channel 3p21.1 Contributes to different brain functions, such as emotions, memory, and drug dependence. Controls gating and current properties and is involved in pacemaker current Sinoatrial node dysfunction and deafness, psychiatric diseases, ASD Pinggera et al. (2015)
CACNA1E Alpha‐1E subunit of R‐type Ca2+ channel 1q25.3 Modulates the biophysical properties of R‐type Ca2+ channel ASD, psychiatric diseases Lu et al. (2012)
CACNA1F Alpha‐1F subunit of L‐type Ca2+ channel Xp11.23 Modulates the biophysical properties of L‐type Ca2+ channel Congenital night blindness and autism Breitenkamp et al. (2015) and Hemara‐Wahanui et al. (2005)
CACNA1G Alpha‐1G subunit of T‐type Ca2+ channel 17q21.33 Modulates the Ca2+ influx of T‐type channel in neurons and muscle ASD, intellectual disability, Juvenile myoclonic epilepsy Girirajan et al. (2013)
CACNA1H Alpha‐1H subunit of T‐type Ca2+ channel 16p13.3 Abundantly expressed in cerebellum and cerebral cortex, activates small depolarization and contributes to the oscillatory behavior in neurons ASD, childhood absence epilepsy, idiopathic generalized epilepsy Splawski et al. (2006)
CACNA1I Alpha‐1I subunit of T‐type Ca2+ channel 22q13.1 Modulates the Ca2+ influx of T‐type channel in neurons and generates pacemaker activity Breitenkamp et al. (2015) and Hussman et al. (2011)
CACNA2D4 Alpha‐2/delta‐4 subunit of voltage‐gated Ca2+ channel 12p13.33 Modulates Ca2+ influx and voltage‐gated channel properties Retinal cone dystrophy 4, ASD (when gene deletion occurs along with CACNA1C) Smith et al. (2012)
CACNA2D3 Alpha‐2/delta‐3 subunit of voltage‐gated Ca2+ channel 3p21.1–p14.3 Modulates Ca2+ influx and voltage‐gated channel properties ASD Breitenkamp et al. (2015) and Skafidas et al. (2014)
CACNB2 Beta‐2 subunit of voltage‐gated Ca2+ channel 10p12.33–p12.31 Modulates the kinetics of L‐type calcium channel by increasing its activity ASD, psychiatric diseases, Brugada syndrome Breitenkamp et al. (2014)
SCN1A Voltage‐regulated sodium channel type 1 2q24.3 Expressed in neurons and central and peripheral nervous system. Highly conserved through evolution. Controls channel gating and current Inherited seizure disorder, Generalized Epilepsy with Febrile Seizures Plus (GEFS+), Juvenile myoclonic epilepsy, mental retardation, ASD Craig et al. (2012), O'Roak et al. (2011), and Weiss et al. (2003)
SCN2A Voltage‐regulated sodium channel type 2 2q24.3 Expressed in neurons and central and peripheral nervous system. Controls channel gating and current Early infantile epileptic, encephalopathy, benign familial infantile seizures, ASD Celle et al. (2013) and Weiss et al. (2003)
SCN3A Voltage‐regulated sodium channel type 3 2q24.3 Expressed in neurons and central and peripheral nervous system. Controls biophysical properties of the channel Epilepsy, ASD Celle et al. (2013) and Weiss et al. (2003)
SCN7A Voltage‐regulated sodium channel type 7 2q24.3 Na+‐specific channel in excitable cells ASD (homozygous deletion in autism) Morrow et al. (2008)
SCN8A Voltage‐regulated sodium channel type 8 12q13.13 Alters the repetitive firing pattern of cerebellar Purkinje neurons Cerebellar ataxia, epileptic encephalopathy early infantile, ASD Weiss et al. (2003)
KCNMA1 Calcium‐activated large conductance potassium channel subfamily A 10q22.3 Synaptic protein regulator of neuronal excitability Generalized epilepsy and paroxysmal dyskinesia (GEPD), ASD Laumonnier et al. (2006)
KCNMB4 BK channel beta subunit 4 12q15 Regulatory subunit of BK channel ASD Skafidas et al. (2014)
KCNQ3 Potassium voltage‐gated channel (M‐channel) 8q24.22 Modulates the kinetics of the channel Rolandic epilepsy and idiopathic generalized epilepsy (IGE) including benign neonatal convulsions, ASD Gilling et al. (2013)
KCNQ5 Potassium voltage‐gated channel (M‐channel) 6q13 Expressed in brain and muscle and implicated in slow activation of the channel. Interacts with KCNQ3 ASD Gilling et al. (2013)
GRIK2 Glutamate receptor ionotropic kainate 2 6q16.3 Glutamate receptors are the predominant excitatory neurotransmitter receptors in the central nervous system. Converts chemical signal to electrical impulse Mental retardation, ASD Ben‐Ari et al. (2012), Kang and Barnes (2013), and Laumonnier et al. (2006)
GRIK3 Glutamate receptor ionotropic kainate 3 1p34.3 Paralog of GRIK2 Schizophrenia, ASD Ben‐Ari et al. (2012), Kang and Barnes, 2013, and Laumonnier et al. (2006)
CHRNA7 Acetylcholine receptor, neuronal nicotinic, alpha‐7 subunit 15q13.3 Postsynaptic GABAergic interneuron activity. Mediates fast signal transmission at synapses Schizophrenia, ASD Ben‐Ari et al. (2012), Kang and Barnes (2013), and Laumonnier et al. (2006)
GABRG3 GABA‐A gamma subunit of GABA receptor family 15q12 Conducts chloride ions upon activation leading to hyperpolarization. Causes inhibitory effect on neurotransmission Schizophrenia, ASD Ben‐Ari et al. (2012), Kang and Barnes, 2013, and Laumonnier et al. (2006)