
RESEARCH Open Access

Metabolomic profiles associated with bone
mineral density in US Caucasian women
Qi Zhao1†, Hui Shen2†, Kuan-Jui Su2, Ji-Gang Zhang2, Qing Tian2, Lan-Juan Zhao2, Chuan Qiu2, Qiang Zhang2,
Timothy J. Garrett3, Jiawang Liu4,5 and Hong-Wen Deng2,6,7*

Abstract

Background: Individuals’ peak bone mineral density (BMD) achieved and maintained at ages 20–40 years is the
most powerful predictor of low bone mass and osteoporotic fractures later in life. The aim of this study was to
identify metabolomic factors associated with peak BMD variation in US Caucasian women.

Methods: A total of 136 women aged 20–40 years, including 65 subjects with low and 71 with high hip BMD, were
enrolled. The serum metabolites were assessed using a liquid chromatography-mass spectrometry (LC-MS) method.
The partial least-squares discriminant analysis (PLS-DA) method and logistic regression models were used,
respectively, to examine the associations of metabolomic profiles and individual metabolites with BMD.

Results: The low and high BMD groups could be differentiated by the detected serum metabolites using PLS-DA
(P permutation = 0.008). A total of 14 metabolites, including seven amino acids and amino acid derivatives, five lipids
(including three bile acids), and two organic acids, were significantly associated with the risk for low BMD. Most of
these metabolites are novel in that they have never been linked with BMD in humans earlier. The prediction model
including the newly identified metabolites significantly improved the classification of the groups with low and high BMD.
The area under the receiver operating characteristic curve without and with metabolites were 0.88 (95% CI: 0.83–0.94)
and 0.97 (95% CI: 0.94–0.99), respectively (P for the difference = 0.0004).

Conclusion: Metabolomic profiling may improve the risk prediction of osteoporosis among Caucasian women. Our
findings also suggest the potential importance of the metabolism of amino acids and bile acids in bone health.
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Background
Osteoporosis is the most common metabolic bone disease,
mainly characterized by low bone mineral density (BMD)
and deteriorated bone quality/strength, with subsequent in-
creased risk of low trauma osteoporotic fractures. Osteo-
porosis afflicts over 200 million people worldwide [1]. It
has become a serious public health concern due to its
climbing prevalence with the population aging and high
morbidity, mortality, and health expenditures caused by
osteoporotic fractures [2, 3]. Osteoporosis is a multifactorial

disorder with several established risk factors, such as aging,
rheumatoid arthritis, use of oral glucocorticoids, and meno-
pause in women [4]. Although recent genetic research,
mainly genome, transcriptome, epigenome, and even prote-
ome, has greatly enhanced our knowledge in the etiology of
osteoporosis, biological mechanisms underlying the de-
velopment of osteoporosis are still far from being fully
understood. Also, the medications for osteoporosis and
the prediction tools for osteoporotic fractures remain
very limited [5, 6]. Therefore, novel biomarkers for a
better understanding of pathogenesis and more power-
ful prediction/diagnosis/prognosis tools for osteopor-
osis are still much needed.
Metabolomics is an emerging approach to systematic-

ally profile small molecules in biofluids, cells, and tissues
[7]. Because metabolites represent the downstream ex-
pression of genome, transcriptome, and proteome, their
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study is hence most powerful to reveal inherent omics
variation closest to the disease risk/phenotype [7]. Meta-
bolomics studies have much improved our understand-
ing of some human disorders, such as coronary heart
disease, type 2 diabetes, obesity, rheumatic disease, and
breast cancer. However, the existing metabolomics studies
of osteoporosis in humans are limited to East Asian and
European populations, mainly including postmenopausal
women [8–11]. A Mendelian randomization study used
the genome-phenotype association data from the US
population and metabolomics-phenotype association data
from the UK and indirectly identified some metabolites
associated with BMD [12]. Although promising findings
were obtained from these studies, it is still unclear if the
findings could be generalized to other race/ethnicity pop-
ulations since metabolomic profiles have strong genetic
determination and are significantly influenced by age and
menopause status [13, 14].
It has been established that peak BMD achieved and

maintained at ages 20–40 years is the most powerful risk
factor for low bone mass and osteoporotic fractures later
in life [15, 16]. A 10% increase in peak BMD would delay
the onset of osteoporosis by 13 years [15]. In compari-
son, a 10% increase in the age of menopause, or a 10%
reduction in the age-related bone loss would only delay
the onset of osteoporosis by 2 years [15]. In this study,
we compared the serum metabolomic profiles of young
Caucasian women with low and high peak BMD levels
with the aim to identify potential early metabolic risk
factors/profiles for osteoporosis risk. Identification of
such early metabolic risk factors/profiles may effectively
and efficiently enable early prevention and intervention
for the risk of osteoporosis later in life. To our know-
ledge, this is the first such metabolomics study (with
direct measures of serum metabolites) regarding the
osteoporosis phenotype among the US populations.

Methods
Study subjects
All the study subjects were from the ongoing Louisiana
Osteoporosis Study (LOS) (initiated in 2011), which aims
to build a large sample pool and database (with more
than 20,000 subjects of various ethnicities in US) for
investigating genetic, various omic, and environmental
factors for osteoporosis and related health conditions
and diseases in Southern Louisiana. The inclusion and
exclusion criteria have been described in our previous
studies [17, 18]. We used a discordant phenotype design
and selected 65 Caucasian women (aged 20–40 years)
with low hip BMDs and 71 age-matched Caucasian
women with high hip BMDs, respectively, from the bot-
tom and top 20% of the hip BMD Z-score distribution in
Caucasian females aged 20–40 years in the LOS. Individ-
uals who were pregnant, had a bilateral oophorectomy,

or had any chronic conditions (such as diabetes mellitus,
renal failure, liver failure, lung disease, gastrointestinal
disease, and inherited bone disease) were excluded from
the current study [18].

Clinical measurements
All participants completed an interviewer-assisted com-
prehensive questionnaire to collect demographic informa-
tion, lifestyle (including smoking, drinking, and physical
activity), dietary factors (including dairy consumption),
reproductive and medical history [17]. In particular, the
information on the average number of times of exercise
per week and dairy consumption (including milk, yogurt,
and cheese) per day were collected using the question-
naire. The serving seizes used were 8 oz for milk and
yogurt and 1.5 oz for cheese [19]. Weight was measured
in light indoor clothing using a calibrated balanced beam
scale, and height was measured using a calibrated stadi-
ometer without shoes. Body mass index (BMI) was calcu-
lated as weight (in kilogram) divided by height squared (in
centimeters). Waist circumference was measured in the
standing position at the midpoint between the lower
margin of the least palpable rib and the top of the iliac
crest using a stretch-resistant tape. The hip BMD, the
combined BMD of the femoral neck, trochanter, and
intertrochanteric region, was measured by a dual-energy
X-ray absorptiometry machine (Hologic Inc., Bedford,
MA) by trained and certified research staff. The ma-
chine was calibrated daily, and software and hardware
were kept up-to-date during the data collection process.
More details on data quality control including the usual
covariation for repeated measures have been reported
previously [17].

Metabolomics analysis
The liquid chromatography-mass spectrometry (LC-MS)
based metabolomics platform, developed by Dr. Garrett’s
lab in the Southeast Center for Integrated Metabolomics
at University of Florida was used to perform the
metabolomic analysis of the study. The laboratory pro-
tocols have been previously described [20]. Briefly, fro-
zen serum samples (− 80 °C) were thawed at room
temperature. Each serum sample (100 μL) was mixed with
20 μL internal standard mix [consisting of myo-inositol
(1,2,3,4,5,6-d6), leucine-

13C6, creatine-d3 H2O (methyl-d3),
D-leucine-d10, L-tryptophan-2,3,3-d3, citric acid 13C6,
L-tyrosine ring-13C6, L-tryptophan

13C11, L-phenylalanine
ring-13C6, N-Boc-L-tert-leucine, N-Boc-L-aspartic acid,
propionic acid 13C3, succinic acid-2,2,3,3-d4, salicylic acid
d6, caffeine-d3 (1-methyl-d3), and octanoic acid 13C8]
followed by vortex mixing for 20 s. Next, 800 μL of aceto-
nitrile:acetone:methanol (8:1:1, v: v: v) was added and
centrifuged at 20,000×g for 10 min at < 10 °C to remove
proteins. The supernatant (250 μL) was transferred to a
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new 1 mL Eppendorf tube and dried under a gentle
stream of nitrogen (Organomation Associates, Berlin,
MA, USA). The dried sample was reconstituted in
100 μL of 0.1% formic acid in water containing injec-
tion standards mixture (consisting of Boc-L-tyrosine,
N(alpha)-Boc-L-tryptophan, and Boc-D-phenylalanine)
and placed in an ice bath for 10–15 min followed by
centrifugation at 20,000×g for 5 min at < 10 °C to remove
any debris.
A Thermo Q-Exactive High-Resolution Mass Spec-

trometer (Thermo Fisher Scientific, Fremont, CA)
coupled with a Dionex UHPLC (Dionex Corporation,
Sunnyvale, CA) was used to conduct the metabolo-
mic analysis. All samples were analyzed in both posi-
tive and negative ion modes with heated electrospray
ionization. The mass resolution was 35,000 at m/z
200 with a mass accuracy of less than 5 ppm in
positive mode and less than 10 ppm in negative
mode. Separation was achieved on an ACE C18-PFP
column (100 × 2.1 mm, 2 μm) with 0.1% formic acid
in water as mobile phase A and acetonitrile as mo-
bile phase B with a column temperature of 25 °C.
The flow rate was 350 μL/min with a total run time
of 20 min.
Alignment and feature finding was performed using

the open source software MZmine [21]. Metabolite
identification was performed by searching an internal
retention time library of over 600 compounds. To
provide more confident and reproducible study findings,
we used a relatively strict criterion, level 1 identification
(the most stringent) according to the guidelines of the
Metabolomics Standards Initiative (http://www.metabolo-
mics-msi.org), to define the metabolites with known iden-
tities in this study. For the level 1 identification, two
orthogonal techniques are required for identification of a
metabolite. In our experiments, we used retention time of
the authentic standard and mass accuracy of 5 ppm or less
for positive ions and 10 ppm or less for negative ions to
ensure correct reporting of the metabolites. Peaks in the
MS were quantified using integrated peak height. Raw
area counts for each metabolite in every sample was first
normalized to the sum of all injection internal standards
to correct for subtle injection differences, and then
normalized to the total signal of each sample. The
batch correction was performed using well-established
Bayes method for microarray data by continually run-
ning the neat and pooled quality control samples.
Metabolites with missing rates > 20% or coefficients
of variation > 20% were excluded from further ana-
lyses. Imputation of missing data was performed using
the R package ‘missForest’ [22]. The relative abun-
dance data of metabolites were further log trans-
formed and autoscaled to have zero mean and unit
variance (z scores) using the R package ‘specmine’.

Statistical analysis
The characteristics of study subjects were compared be-
tween the low and high BMD groups using the t-test for
continuous variables and the χ2 test for discontinuous
variables. To examine the ability of detected metabolites
in classifying the low and high BMD groups, we con-
ducted the partial least squares discriminant analysis
(PLS-DA) which is a multivariate analysis method and
widely used in metabolomics studies [8, 23–25]. PLS-DA
is a classification method based on PLS regression, a
maximum covariance model of the relationship between
X (metabolites) and Y (BMD groups). It provides a vari-
able importance in projection (VIP) value for each X
which is calculated as weighted sum of the squared cor-
relation between the PLS-DA components and Y and it
summarizes the contribution of each X to the model
[24]. Logistic regression models were also used to exam-
ine the associations between individual metabolites and
BMD status with the adjustment for potential confound-
ing factors. Since BMI and waist circumference were
highly correlated, we only included BMI in the regres-
sion models to avoid the problems caused by collinear-
ity. The other covariates included age, age2, BMI,
current smoking, alcohol drinking, physical activity, and
diary consumption. The odds ratios (ORs) associated
with one standard deviation increase in the relative
abundance of metabolites were calculated. For individual
metabolite tests, the false discovery rate (FDR) method
was used to adjust for multiple testing. The selection of
cutoffs for the VIP score and FDR usually vary by studies,
mostly dependent on specific study goals and data struc-
ture. In this study, we aimed to select reasonable and
comparable numbers of metabolites by these two methods
to generate a comprehensive list of BMD-associated me-
tabolites for future replication. In addition, the metabolites
which could be identified by both methods might have
priorities for further investigation. Because of these con-
siderations, any metabolites with a VIP score ≥ 2.0 in
PLS-DA or a false discovery rate (FDR) ≤ 0.2 in the indi-
vidual metabolite analysis were considered differential me-
tabolites for BMD. To examine the combined effects of
differential metabolites on BMD, we constructed multi-
marker metabolite scores based on identified metabolites
by calculating the sum of their z scores (relative abun-
dance) multiplied by the regression coefficients from the
logistic regression models. We calculated three metabolite
scores using the significant metabolites identified in the
PLS-DA, individual metabolite analysis (logistic regres-
sions), and the two methods, respectively. Areas under the
receiver-operating characteristic (ROC) curve (AUC) was
used to evaluate the performance of the multimarker me-
tabolite scores in discriminating the individuals with low
BMD from those with high BMD. All the data analyses
were conducted using R packages, including ‘mixOmics’,
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‘pROC’, and ‘missForest’. To understand biological func-
tions of significant BMD-related metabolites, a pathway
analysis was conducted using the methods implemented
in the web server MetaboAnalyst 3.0 [26].

Results
Table 1 shows the characteristics of the study subjects in
the low and high peak BMD groups. The subjects with
low BMD (range: 0.61–0.85 g/cm2) had a significantly
lower level of total hip BMD compared to those with
high BMD (range: 0.97–1.37 g/cm2) (P value < 0.001).
The two BMD groups were of a similar age and had no
difference in smoking, alcohol drinking, physical activity
and dairy intake. However, the subjects with low BMD
had significantly lower levels of weight, BMI, and waist
circumference compared to those with high BMD.
We identified a total of 192 metabolites with known

identities (level 1 identification) and passed quality con-
trol using the LC-MS metabolomics platform. In the
PLS-DA model, the 192 metabolites could significantly
classify the low and high BMD groups (P value for 2000
random permutations = 0.008) (Fig. 1). A total of eight
metabolites had VIP values > 2.0 and were considered
differential for the low and high BMD groups (Table 2).
In the individual metabolite analysis, ten metabolites

were significantly (FDR q-values ≤0.2) associated with
BMD after adjusting for the multiple testing (Table 2).
Seven of them (taurine, L-glutamic acid, formylkynurenine,
ursodeoxycholic acid (UDCA), tauroursodeoxycholic acid
(T-UDCA), succinate, and N-acetylneuraminate) were as-
sociated with increased risk for low BMD (ORs > 1.00),
and the others (L-cysteine, stachydrine, and isovalerylcarni-
tine) were associated with decreased risk for low BMD
(ORs < 1.00). Four metabolites (taurine, stachydrine, isova-
lerylcarnitine, and N-acetylneuraminate) were significantly

associated with BMD in both the PLS-DA model and indi-
vidual metabolite analyses (Table 2).
We generated three multimarker metabolite scores

using the metabolites identified in the PLS-DA model
(PLS-DA-derived score) and in the individual metabolite
analysis (individual analysis-derived score) as well as those
combined from the two methods (both methods-derived
score). All the three metabolite scores were significantly
associated with increased risk for low BMD in the
logistic regression models with the adjustment for co-
variates (all P values < 0.0001 for the three metabolite
scores). We further assessed the extra prediction
values of these metabolite scores above and over trad-
itional risk factors (age, BMI, current smoking, alco-
hol drinking, physical activity, and dairy intake) in
discriminating the subjects with low BMD from those
with high BMD (Fig. 2). The AUC of the ROC curves
from the predictive models with metabolite scores
were significantly increased compared with the model
including traditional risk factors only, indicating the
improved classification of individuals with low and
high BMD (Table 3). For example, the AUC of the
ROC curve increased about 0.08 by adding the both
methods-derived score into the model including
traditional risk factors.
Table 4 shows the seven significant pathways identified

in the pathway analysis. The BMD-associated metabolites
identified in the current study are mainly involved in the
metabolic pathways of amino acids (e.g., the pathways of
alanine, aspartate and glutamate metabolism and glycine,
serine and threonine metabolism) and lipids (e.g., the
pathway of primary bile acid biosynthesis). The amino
acids including L-glutamic acid, γ-aminobutanoate
(GABA), taurine, L-cysteine, and threonine, and the
lipid cholic acid are the major metabolites which
match these significant pathways.

Table 1 Characteristics of the study participants

Low BMDa (n = 65) High BMDa (n = 71) P value

Age, years 31.2 (4.9) 31.8 (5.3) 0.52

Weight, kg 58.4 (7.1) 81.3 (24.1) < 0.001

Height, cm 163.5 (6.5) 165.6 (6.2) 0.05

BMI, kg/m2 21.9 (2.5) 29.7 (8.6) < 0.001

Waist circumference, cm 71.1 (9.7) 84.6 (18.0) < 0.001

Current smoking, % 32.3 38.0 0.61

Alcohol drinking, g/day 39.1 (62.1) 34.0 (41.8) 0.58

Physical activity, times/week 3.2 (2.2) 3.1 (2.1) 0.81

Dairy intake, servings/day 1.5 (1.4) 1.6 (1.1) 0.91

Total hip BMD, g/cm2 0.77 (0.06) 1.11 (0.08) < 0.001

Hip BMD Z-score −1.25 (0.58) 1.63 (0.63) < 0.001

BMD bone mineral density, BMI body mass index
aMeans (standard deviation) for continuous variables and percentages for discontinuous variables
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Discussion
This, to the best of our knowledge, is the first metabolo-
mics study of BMD conducted directly in Caucasian
women of the US. We demonstrated that metabolomic
profiles substantially varied among individuals with dif-
ferent risk for osteoporosis. Our study also identified
novel metabolites significantly associated with BMD.

These novel metabolic markers are promising to im-
prove the risk prediction for osteoporosis. They also
highlight the importance of the metabolism of amino
acids and bile acids in bone health.
In the present study, we reported for the first time that

five amino acids in serum, namely, GABA, threonine,
cysteine, taurine, and glutamic acid, were significantly

Fig. 1 The classification of the low and high BMD groups using PLS-DA. PLS-DA partial least-squares discriminant analysis

Table 2 The differential metabolites between low and high BMD groups

Metabolite Class m/z RT VIP score OR (95%CI)a P value

γ-Aminobutanoate Amino Acid 104.0711 0.81 2.31 0.65 (0.37–1.06) 0.0965

Threonine Amino Acid 120.0654 1.01 2.44 0.54 (0.31–0.91) 0.0256

L-Cysteine Amino Acid 122.0267 0.76 1.77 0.44 (0.22–0.79) 0.0115b

Taurine Amino Acid 124.0072 0.72 2.51 1.99 (1.21–3.44) 0.0086b

L-Glutamic acid Amino Acid 146.0458 0.76 1.63 2.18 (1.3–3.94) 0.0055b

Stachydrine Amino Acid Derivative 144.1017 1.23 2.92 0.5 (0.29–0.84) 0.0104b

Formylkynurenine Amino Acid Derivative 237.0865 10.71 1.90 2.51 (1.35–5.16) 0.0065b

Isovalerylcarnitine Lipid 246.1695 8.19 2.30 0.48 (0.26–0.82) 0.0105b

Ursodeoxycholic acid Lipid 357.278 11.53 1.30 2.69 (1.48–5.41) 0.0025b

LysoPE (16:0) Lipid 452.2782 13.42 2.08 1.48 (0.93–2.45) 0.1036

Cholic acid Lipid 453.2858 11.21 2.20 0.62 (0.36–1.00) 0.0557

Tauroursodeoxycholic acid Lipid 498.2894 9.99 1.65 2.18 (1.3–3.88) 0.0049b

Succinate Organic Acid 117.0202 2.23 1.75 2.09 (1.23–3.73) 0.0085b

N-Acetylneuraminic acid Organic Acid 308.0989 0.79 2.40 2.15 (1.25–3.98) 0.0092b

CI Confidence interval, RT Retention time, VIP Variable importance in projection
aAssociated with one unit increase in the metabolite
bFDR q values ≤0.2
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associated with BMD in young and middle-aged Cauca-
sian women. Although in vitro studies have suggested
that amino acids might be involved in BMD regulation,
it was only until recently that dietary amino acids intake
measured by a food frequency questionnaire was re-
ported to be associated with BMD in women and in-
creased intake of alanine and glycine might be beneficial
for bone health [27]. Also, recent metabolomics studies
reported that the amino acids including glutamine [8],
tryptophan [9], and cystine [10] were associated with

BMD in postmenopausal women of East Asian. Of these
identified BMD-related amino acids in our study, GABA
[28], cysteine [29], taurine [30], and glutamic acid [31]
have shown some evidence for their potential roles in
bone metabolism by in vitro and/or in vivo studies.
Both GABA and glutamate (the anion of glutamic acid)

are important neurotransmitters in the central nervous
system. However, several lines of evidence show bone cells
also express GABA and glutamate receptors and their sig-
naling regulates bone remodeling outside the central ner-
vous system. An in vitro study found that osteoblasts
express the GABAB receptor, which negatively regulates
osteoblastogenesis through down-regulation of the bone
morphogenetic protein-2 expression [28]. However, an-
other study showed that GABA upregulated bone forma-
tion genes through activating the GABAB receptor to
stimulate osteoblastogenesis in rats [32]. In our study,
GABA exhibited a protective effect on BMD with a higher
level of GABA associated with a greater level of BMD.
Glutamate signaling has been demonstrated to mediate
the functional adaptation of the skeleton of mechan-
ical loading [33]. The major type of glutamate recep-
tor, N-methyl-D-aspartame-type glutamate receptor, is
widely expressed in osteoblasts, osteocytes, and osteo-
clasts [31]. Existing evidence supports that glutamate
signaling regulates both bone formation and resorp-
tion [31]. Our study is in line with a previous metabo-
lomics study which reported that increased glutamine,
which can be converted to glutamate in the body, was
significantly associated with decreased BMD among
Taiwanese women [8].
Cysteine is a non-essential amino acid and is well

known to be involved in oxidation-reduction reactions.
It is an important source of sulfur in human metabolism.
In ovariectomized (OVX) mice, cysteine administration
improved BMD and other menopausal symptoms [29].
N-acetyl cysteine, a derivative of cysteine, can function
as an osteogenesis-enhancing molecule to accelerate
bone regeneration by activating differentiation of osteo-
genic lineages [34]. Taken together with our study find-
ings, current evidence may suggest that cysteine is a
protective factor for osteoporosis.

Fig. 2 ROC curves of predictive models. ROC receiver operating
characteristic. Model 1: traditional risk factors including age, age2, body
mass index, current smoking, alcohol drinking, physical activity, and
dairy intake; Model 2: Model 1 + the PLS-DA-derived score generated
using γ-aminobutanoate, threonine, taurine, stachydrine,
isovalerylcarnitine, lysoPE (16:0), cholic acid, and N-acetylneuraminate;
Model 3: Model 1 + individual analysis-derived score generated using
L-cysteine, taurine, stachydrine, L-glutamic acid, formylkynurenine,
isovalerylcarnitine, ursodeoxycholic acid, tauroursodeoxycholic acid,
succinate, and N-acetylneuraminate. Model 4: Model 1 + both
methods-derived score generated using all the metabolites identified
by the PLS-DA method and individual metabolite analysis

Table 3 The AUC and comparisons of AUC of the ROC curves from different predictive models

Predictive models AUC of the ROC curve (95% CI) Difference of AUC (95% CI) P value for difference

Model 1: traditional risk factorsa 0.88 (0.83–0.94) Reference –

Model 2: Model 1 + PLS-DA-derived scoreb 0.95 (0.92–0.98) 0.07 (0.02–0.11) 0.002

Model 3: Model 1 + Individual analysis-derived scorec 0.95 (0.92–0.98) 0.07 (0.03–0.11) 0.002

Model 4: Model 1 + Both methods-derived scored 0.97 (0.94–0.99) 0.08 (0.04–0.13) 0.0004

AUC Area under the curve, CI Confidence interval, PLS-DA Partial least squares-discriminant analysis, ROC Receiver operating characteristic
aIncluding age, age2, body mass index, current smoking, alcohol drinking, physical activity, and dairy intake
bGenerated using γ-aminobutanoate, threonine, taurine, stachydrine, isovalerylcarnitine, lysoPE (16:0), cholic acid, and N-acetylneuraminate
cGenerated using L-cysteine, taurine, stachydrine, L-glutamic acid, formylkynurenine, isovalerylcarnitine, ursodeoxycholic acid, tauroursodeoxycholic acid,
succinate, and N-acetylneuraminate
dGenerated using all the metabolites identified by the PLS-DA method and individual metabolite analysis
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Taurine supplementation has been linked with in-
creased femur BMD in OVX rats [30]. However, another
study did not observe any difference in femur bone min-
eral content between two groups of OVX rats fed with
calcium deficient diet with or without taurine supple-
mentation [35]. This finding might suggest that the
effect of taurine on BMD might be dependent on the
calcium levels. We found that serum levels of taurine were
negatively associated with BMD levels in pre-menopausal
women. Therefore, the current findings of the role of tau-
rine in BMD are very preliminary. Future investigations
may include examining the effect of taurine on BMD
among pre−/peri−/post-menopausal women and its po-
tential interaction with calcium levels.
There is very limited knowledge about the roles of the

amino acid threonine and the two amino acid deriva-
tives, stachydrine and formylkynurenine, in bone metab-
olism. A human study among individuals with spinal
cord injury reported that a higher intake of threonine
was related to a lower BMD of lumbar vertebrae [36].
However, we found that the serum threonine level was
positively associated with BMD among young women.
Stachydrine is a derivative of proline, which has shown a
beneficial effect on enhancing BMD through increasing
serum estradiol and alkaline phosphatase levels and de-
creasing serum luteinizing hormone in OVX mice [37].
Formylkynurenine is a metabolite of the essential amino
acid tryptophan. The kynurenine pathway of the trypto-
phan metabolism pathway might regulate osteoblasto-
genesis because oxidation products, such as kynurenine,
stopped the proliferation of bone marrow mesenchymal
stem cells and inhibited osteoblastic proliferation and
differentiation [38]. Further studies are warranted to in-
vestigate the mechanisms of these amino acid and amino
acid derivatives in bone metabolism.
Some existing evidence indicates the involvement of

bile acids in bone metabolism. It is well known that bile
acids are critical for the intestinal absorption of lipids
and lipid-soluble substances, such as vitamin D. A re-
cent study showed that two types of bile acids had op-
posite effects on intestinal calcium absorption. Sodium
deoxycholate decreased the intestinal Ca2+ absorption,

while lithocholic acid stimulates the Ca2+ absorption. An
in vitro study indicated that UCDA, a secondary bile acid
which is a metabolic byproduct of intestinal bacteria,
could increase differentiation and mineralization of osteo-
blastic cells [39]. In addition, abnormal bile acid turnover
has been linked with osteoporosis in postmenopausal
women [40]. Our study found that three bile acids (cholic
acid, UDCA, and T-UDCA) in human serum were as-
sociated with BMD, further supporting the potentially
important role of bile acids in bone health.
In addition to bile acids, another two lipids, isovaleryl-

carnitine and lysoPE (16:0), were also associated with
BMD in our study. Few studies have directly investigated
the role of these two lipids in bone metabolism. LysoPE
(16:0) is a lysophospholipid (LPL), some subspecies of
which have been implicated in cell signaling in bone. For
example, lysophosphatidic acid (LPA) is a potent bioactive
LPL that mediates osteoblast-osteoclast signaling [41].
The LPA receptor type 1 (PLA1) gene knockout mice had
a low bone mass and antagonists of the PLA1 also
inhibited osteoclast differentiation [42]. However, a recent
study did not observe any beneficial effect for preventing
bone loss by pharmacological inhibition of the LPA recep-
tor in mice [43]. The knowledge obtained from these stud-
ies are very limited and clarification of the roles of these
lipids in bone metabolism are still much needed.
We also identified two organic acids, succinate and

N-acetylneuraminic acid, associated with BMD in our
study. Succinate is a component of the citric acid cycle,
playing an important role in mitochondrial function. Mito-
chondrial dysfunction has been linked with age-related
diseases, including osteoporosis [44]. The major mecha-
nisms include mtDNA damage and mitochondrial-derived
reactive oxygen species [44]. N-acetylneuraminic acid is the
predominant sialic acid found in mammalian cells. Incon-
sistent findings have been reported regarding the associ-
ation between sialic acid and osteoporosis. Quelch et al.
observed a lower level of sialic acid in osteoporotic bone
compared to controls [45]. However, another study con-
ducted by Mbuyi-Muamba et al. reported an opposite asso-
ciation [46]. Therefore, the links between these two organic
acids and osteoporosis need further investigations.

Table 4 Pathway analysis results using the BMD-associated metabolites

Pathways Matched Metabolites Impact P value

Alanine, aspartate and glutamate metabolism L-Glutamic acid, γ-Aminobutanoate, Succinate 0.2792 0.0001

Butanoate metabolism L-Glutamic acid, γ-Aminobutanoate, Succinate 0.02841 0.0006

Taurine and hypotaurine metabolism Taurine, L-Cysteine 0.33094 0.003

Aminoacyl-tRNA biosynthesis L-Cysteine, L-Glutamic acid, Threonine 0.05634 0.004

Glutathione metabolism L-Cysteine, L-Glutamic acid 0.01095 0.01

Primary bile acid biosynthesis Taurine, Cholic acid 0.00849 0.02

Glycine, serine and threonine metabolism Threonine, L-Cysteine 0.09661 0.02
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The present study has several important advantages.
First, to our knowledge, this is the first such direct meta-
bolomics study about osteoporosis in US Caucasian
women. Second, the non-hypothesis-driven untargeted
metabolomics approach enabled the study to discover
novel metabolites and pathways potentially involved in
bone metabolism. Third, we used a discordant pheno-
type design to maximize the statistical power of identify-
ing metabolites which could distinguish individuals with
different risk for osteoporosis. Fourth, multiple variables
were adjusted in both individual metabolite and multi-
variate analyses. Finally, the identification of some me-
tabolites (such as GABA, glutamic acid, and bile acids)
with functional evidence in bone regulation by previous in
vivo studies, even human studies (such as glutamic acid)
enhances the confidence that our findings may present in-
teresting and true metabolites associated with BMD.
However, our study does have some limitations. Although
the extremely discordant phenotype study design greatly
improved the study power, the relatively small sample size
might limit the study to detect metabolites with minor
effects on BMD. The causal relationship between identified
metabolites and BMD could not be inferred because of the
cross-sectional study design. In addition, the lack of repli-
cation samples from the population with same/similar
genetic and environmental background is another limita-
tion which is not negligible but very common for current
metabolomics studies. Finally, only metabolites assessed by
the LC-MS which had verified chemical identities (level 1
identification) were included in the study, which might
have missed some significant metabolites without known
identities. However, the metabolites with confident
identities will facilitate the interpretation of study find-
ings, such as the pathway analysis, and the potential
replication in future studies in different populations.
They can also be used to direct functional studies and
even translational studies.

Conclusions
Our study findings suggest that metabolomic changes re-
lated to an increased risk for osteoporosis might occur and
develop in early life, even before menopausal ages. We have
identified novel metabolites in human serum which were
significantly associated with the osteoporosis risk among
the US Caucasian women. These metabolites highlight the
importance of amino acids and bile acids in bone health,
providing novel insights into the potential mechanisms of
the development of osteoporosis. They also provide poten-
tial early biological markers for the risk classification of
osteoporosis among healthy women at a relatively young
age. Further replications of the study findings among the
same and even different populations as well as biological
functional studies of the identified metabolites are war-
ranted in the future.
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