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Abstract

Purpose: To investigate the performance of proximity sensor-based wear-time detection using 

the GT9X under laboratory and free-living settings.

Methods: Fifty-two volunteers (23.2±3.8 y; 23.2±3.7 kg/m2) participated in either a laboratory or 

a free-living protocol. Participants in the lab wore and removed a wrist-worn GT9X on 3–5 

occasions during a 3-hour directly-observed activity protocol. The 2-day free-living protocol used 

an independent temperature sensor and self-report as the reference to determine if a wrist and hip-

worn GT9X accurately determines wear (i.e., sensitivity) and non-wear (i.e., specificity). Free-

living estimates of wear/non-wear were also compared to the Troiano 2007 and Choi 2012 wear/

non-wear algorithms.

Results: In lab, sensitivity and specificity of the wrist-worn GT9X in detecting total minutes of 

wear-on and off was 93% and 49%, respectively. The GT9X detected wear-off more often than 

wear-on, but with a greater margin of error (4.8±11.6 vs. 1.4±1.4 min). In the free-living protocol, 

wrist and hip-worn GT9X’s yielded sensitivity and specificity of 72 and 90% and 84 and 92%, 

respectively. GT9X estimations had inferior sensitivity but superior specificity to Troiano 2007 

and Choi 2012 algorithms.

Conclusions: Due to inaccuracies, it may not be advisable to singularly use the current 

proximity-sensor-based wear-time detection method to detect wear-time.
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Introduction

Assessing human behaviors [e.g., physical activity (PA)] using accelerometers is 

increasingly common in research (Freedson, Bowles, Troiano, & Haskell, 2012; Montoye, 

Moore, Bowles, Korycinski, & Pfeiffer, 2016). However, accelerometers continuously detect 

and record data even when it is not worn. Studies including population level investigations 

[e.g., NHANES (National Health and Nutrition Examination Survey Data, 2016) and the 

Women’s Health Study (Lee & Shiroma, 2014)] using ActiGraph monitors (ActiGraph 

Corp, LLC, Pensacola, FL.), have relied on activity-count-based algorithms [e.g., Troiano 

2007 (Troiano et al., 2008) and Choi 2012 (Choi, Liu, Matthews, & Buchowski, 2011)] or 

self-report logs to determine monitor wear-time. ActiGraph activity-count-based wear-time 

detection techniques are prone to errors because they rely solely on summarized motion 

signals to distinguish between wear-time inactivity and true non-wear. Continuous zero 

activity counts during monitor non-wear may not be discernible from similar values during 

wear-time inactivity (i.e., sitting still or sleeping) (Mâsse et al., 2005). Similarly, relying 

solely on activity counts to discern wear-time will yield errors during non-wear when a 

sensor records motion artifacts (e.g., vibrations). Current motion-based algorithms may also 

be sensitive to: (i) monitor location, and (ii) algorithm-specific thresholds of zero activity 

counts to define a period of non-wear (Choi et al., 2011; Choi, Ward, Schnelle, & 

Buchowski, 2012; Hutto et al., 2013; Mâsse et al., 2005; Troiano et al., 2008).

To improve wear-time sensing, ActiGraph’s GT9X uses a capacitive proximity sensor that 

detects skin contact. This sensor combined with a motion data threshold is used to 

distinguish between wear and non-wear. To our knowledge, proximity sensor-based wear-

time sensing using the GT9X has not been validated. This study determined the accuracy of 

wear-time sensing using the GT9X under controlled laboratory, and uncontrolled free-living 

conditions. The study also validated the activity count-based Troiano 2007 and Choi 2012 

wear-time detection algorithms and compared these estimates to wear-time detected by the 

GT9X sensors.

Methods

Fifty-two volunteers (33 males and 19 females) participated in this study (mean ± SD: age= 

23.2 ± 3.8 years, BMI= 23.2 ± 3.7 kg/m2). Twenty-six participants each participated in the 

lab-based and free-living protocols. All volunteers provided written informed consent 

approved by the Northeastern University Institutional Review Board.

Experimental Protocol

ActiGraph GT9X wear-time sensing—The GT9X monitor (3.5 × 3.5 × 1 cm; 14 g) has 

a polycarbonate enclosure (thickness= 1.2 mm; dielectric constant= 2.9) and the capacitive 

proximity sensor (32 × 11.5 mm) is located inside and next to the backside of the device 
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(opposite display screen). The proximity sensor is manufactured ‘in-house’ and is a single 

electrode connected in a circuit with two port pins, which alternate between driving a 192 

kHz signal and sensing a change in that signal. This alternating signal duty cycle charges the 

electrode and forms a 0.022μF capacitor with a sensitivity of 4.2 nF (personal 

communication with Doug Cross, Director of Engineering, ActiGraph). The charge in the 

capacitor varies with the type of material (e.g., air, human body) in close proximity or in 

contact with the sensor. Each time the GT9X is initialized, the GT9X is calibrated to 

establish a reference signal of this capacitor in free air. Through in-house experimentation, 

ActiGraph determined that a charge differential of 43 nF from the free air reference is 

indicative of skin-contact. I.e., a charging time differential of 52 microseconds. However, 

wear-time sensing using the GT9X is deliberately biased towards positive wear detection 

when motion is detected by the 8 g GT9X accelerometer. When this sensor detects an 

acceleration of at least 0.04 g lasting at least 0.125 s, the differential threshold of the 

proximity sensor that returns positive skin contact is halved. Reliance on motion was 

introduced in the firmware update 1.4.0. for the GT9X. The 6 monitors used in this study 

had firmware 1.5.0. or higher. The microcontroller in the GT9X measures differences in 

charging time at the end of a whole round minute, once every 60 seconds. Thus, the 

resolution of distinguishing between wear and non-wear using the proximity sensor-based 

method is 1-min. For optimal wear-time detection, ActiGraph recommends that the casing 

holding the GT9X be worn in contact with the skin.

Lab Protocol—This protocol aimed to examine if the GT9X detects instances (i.e., exact 

minute) when the device was removed and worn again. I.e., to validate the operational 

principle of the proximity-sensing technology used to detect skin-contact, which is primarily 

used to distinguish wear from non-wear. The device was inserted into the plastic 

compartment of the ‘Link Watch Band’ (Link Watch Band) and worn snugly on the 

participant’s non-dominant wrist. The lab-protocol to test wear-time sensing using the GT9X 

was part of an ongoing study to calibrate body-worn sensors. The protocol consisted of a 3-

hour simulated routine consisting of ambulatory and free-living PA and sedentary behaviors. 

During the lab-protocol, a researcher removed the GT9X on 3 to 5 random occasions. The 

researcher carried the sensor in his/her pocket during periods of non-wear. A second 

researcher recorded the exact minute the sensor was removed and worn again using a custom 

time-stamp annotation software on a handheld tablet that was synced to the GT9X. These 

direct observations were used as the criterion to evaluate the GT9X in detecting actual wear-

time.

Free-Living Protocol—The free-living protocol compared wear-time detected by the 

GT9X and two popular count-based algorithms (i.e., Troiano 2007 and Choi 2012) to a 

reference measure derived using a combination of an independent temperature sensor 

(Dwyer Series BDL Button Data Logger, Dwyer Instruments Inc.) and self-reported monitor 

wear-on/off time. Participants wore one GT9X on the dorsal aspect of the non-dominant 

wrist and another on the anterior axillary line above the iliac crest for approximately 2 days. 

We examined performance on the hip as it is the preferred wear-location in most studies. 

The hip-elastic belt was inserted through the GT9X ‘Link Holster’ (Link Wrist Holster) such 

that the belt lay over the face of the device and the Link Holster was in direct contact with 

Arguello et al. Page 3

J Sports Sci. Author manuscript; available in PMC 2019 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the skin. Location of wear (left vs. right) was counterbalanced among participants. 

Participants were: (i) instructed to use the display on the GT9X to self-report monitor wear-

on/off times, and (ii) made aware of the need to immediately and accurately record on/off 

time, and its impact on study findings.

The BDL is a small (17.1 mm diameter, 6.4 mm height) lightweight (4 g) sensor that records 

kinetic temperature between −30 to 70 0C with an accuracy of ± 1 0C, each minute. The 

BDL was secured to the wrist and hip straps such that it was in direct contact with the skin 

on the ventral and medial sides of the wrist and hip GT9X monitors, respectively. To detect 

points in time (i.e., minute) when the GT9X was removed (‘wear-off’) from the wrist/hip 

and worn again (‘wear-on’), temperature readings were plotted versus time and overlaid with 

self-reported wear periods graphed as fixed square-waves. The objective temperature sensor 

was considered as the primary indicator for when the GT9X was worn and removed, while 

the over-lapping self-report was used to verify the occurrence of a non-wear bout. Wear-on 

was the minute when skin surface-temperature began to rise rapidly (i.e., increasing slope) 

towards normal values (i.e., 32–37 0C) (Benedict, Miles, & Johnson, 1919; Bierman, 1936) 

verified by self-report. Similarly, wear-off was the time-point when temperature readings 

began to drop rapidly (i.e., decreasing slope) from normal skin surface-temperature verified 

by participant self-report. This visualization method showed a clear temperature differential 

of approximately 10 0C between wear-on (32–37 0C) and off (20–25 0C).

During the lab and free-living protocols, the wrist and hip devices were worn snugly to 

maximally maintain contact with the skin. To increase periods of non-wear in the free-living 

protocol, participants were instructed to remove the wrist and hip monitors during lunchtime 

each day, during water-based activites, and during sleep each night. This yielded at least two 

occasions/day of monitor removal followed by once again wearing the GT9X.

Free-living snug vs. loose wear sub-study

Given that the GT9X relies greatly on its proximity sensor to determine wear-time, a 

potential source of error over extended periods is a participant’s personal preference in 

wearing the sensor strap. If an individual is uncomfortable with a snug strap, he/she may 

loosen it, which may result in periods of poor-to-no contact between the device and the skin. 

To determine if strap tightness affects the accuracy of proximity sensor-based wear-time 

sensing, 8 participants from the free-living sample completed an additional 24-hr free-living 

protocol. Participants continuously wore a GT9X on each wrist except when showering. One 

strap was worn such that the device was snug and could not move on the wrist (tight 

condition). The second was worn such that it was loose enough to move only on the dorsal 

aspect of the wrist (loose condition). If a device was removed and worn again during the 

protocol, the participant wore the strap using the same buckle-tongue adjustment used prior 

to device removal. The reference for this sub-study was derived using the temperature sensor 

and self-report method described earlier.

Data Analyses

Monitor outputs were processed using ActiLife software (v6.13.4; ActiGraph Corp., LLC) to 

create 60 s epoch files. ActiLife provides a visual display of minute-by-minute activity 
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counts summarized into periods of wear and non-wear and a time-stamped spreadsheet of 

the same. Free-living data from each sensor was also processed to provide outputs of wear/

non-wear detection using the Troiano 2007 and Choi 2012 algorithms. ActiLife enables 

automated analyses using the default parameters of these two algorithms with the option of 

using either vertical axis or triaxial vector magnitude activity counts. We used vector 

magnitude activity counts because it yields improved wear/non-wear detection (Choi et al., 

2012). Statistical analyses were conducted using SAS 9.4 (SAS Institute Inc. NC, USA). 

Level of significance (where applicable) was set at p< 0.05.

Controlled Lab Protocol—To determine if GT9X proximity sensor-based wear-time 

estimation correctly identifies instances of wear-on and off, we quantified the total number 

and proportion of directly-observed true instances (exact minute) identified by the sensor. 

Early detections by the GT9X were those wear-on/off instances detected before the directly-

observed instance. Delayed detections were those detected after a directly-observed instance. 

Durations of early and delayed detections were quantified as the absolute error in minutes 

between the instance detected by the GT9X and the corresponding true instance. Analyses 

on estimating durations (in min) of wear and non-wear included sensitivity (proportion of 

wear-time minutes correctly identified as such), specificity (proportion of non-wear-time 

minutes correctly identified as such), positive predictive value (PPV, wear detection 

precision), negative predictive value (NPV, non-wear detection precision) and overall 

accuracy [(true wear + true non-wear)/total minutes]. We did not compare the performance 

of the GT9X against the Troiano 2007 and Choi 2012 algorithms because most wear and 

non-wear periods in the lab-protocol were too short to exceed the activity count algorithmic 

threshold that classifies a bout of time as non-wear (Choi et al., 2012; Troiano et al., 2008).

Free-Living Protocol—Similar to the lab-protocol, we computed the sensitivity, 

specificity, PPV, NPV and overall accuracy in detecting durations of wear and non-wear by 

the GT9X at the wrist and hip. Similar metrics were also computed for wear and non-wear 

detection by Troiano 2007 and Choi 2012 algorithms. Additionally, we computed the bias 

(total duration of wear and non-wear misclassification error) and precision (95% CI of the 

error) for these methods.

To compare the performance of snug and loose wrist-worn devices in detecting wear-time, 

we computed total wear-time and bouts detected during each condition and compared these 

to actual wear-time and bouts using the non-parametric Kruskal-Wallis H Test with Dunn’s 

multiple comparisons tests.

Results

Lab-Based Protocol

There were a total of 162 directly observed instances for wear-on and off (5.2 ± 1.8 per 

subject). In all, the wrist-worn GT9X wear-time sensor recorded a total of 136 (84.0%) 

instances when the device was put on or removed. However, among these, wear-on was 

accurate for only 11 (16.2%) instances and wear-off for one instance. Among the 55 

inaccurate detections of wear-on, 13 instances (19.1% of total wear-on detections) were 

early detections, while the remaining 42 instances (64.7% of total wear-on detections) were 
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recorded after a delay. The mean duration of early and delayed detection for wear-on was 

10.4 ± 6.5 min (95% CI: 13.9 to 6.9 min) and 1.4 ± 1.4 min (95% CI: 1.0 to 1.8 min), 

respectively. Among the 67 inaccurate detections of wear-off, 4 instances (5.9% of total 

wear-off detections) were early detections, while the remaining 63 instances (92.6% of total 

wear-off detections) were recorded after a delay. The mean duration of early and delayed 

detection for wear-off was 6.3 ± 5.7 min (95% CI: 11.9 to 0.6 min) and 4.8 ± 11.6 min (95% 

CI: 1.9 to 7.6 min), respectively.

The wrist-worn ActiGraph GT9X had a sensitivity of 93.3% ± 9.2% (95% CI: 89.7%, 

96.8%), specificity of 48.6% ± 34.3% (95% CI: 35.4%, 61.8%), PPV of 74.6% ± 17.3% 

(95% CI: 67.9%, 81.2%), NPV of 68.4% ± 36.4% (95% CI: 54.4%, 82.4%), and overall 

accuracy of 75.7% ± 15.7% (95% CI: 69.6%, 81.7%). The mean duration for true wear and 

non-wear bouts were 16.2 ± 8.3 min and 15.0 ± 11.9 min, respectively. In comparison, the 

wrist-worn GT9X estimated wear and non-wear bouts with a mean duration of 27.1 ± 23.9 

and 12.9 ± 9.4 min, respectively.

Free Living Protocol

Table 1 contains sensitivity, specificity, PPV, NPV, and overall accuracy of wear/non-wear 

classification performance of the wrist and hip-worn GT9X proximity sensor-based 

estimation and the Troiano 2007 and Choi 2012 algorithms. The mean durations for total 

true wear and non-wear in the free-living protocol for both wrist and hip-worn devices were 

22.5 ± 4.8 and 13.8 ± 3.2 hours, respectively. The wrist-worn GT9X proximity sensor-based 

method detected 17.6 ± 8.9 and 18.7 ± 7.3 hours of wear and non-wear, respectively. 

Conversely, the Troiano 2007 and Choi 2012 wear-time algorithms detected 23.1 ± 6.3 and 

13.2 ± 4.0 hours and 23.3 ± 6.1 hours and 13.0 ± 4.1 hours of wear and non-wear for the 

wrist worn GT9X, respectively. Similarly, the hip-worn GT9X proximity sensor-based 

estimation method detected 20.0 ± 6.4 and 16.2 ± 6.1 hours of wear and non-wear, while the 

Troiano 2007 and Choi 2012 algorithms detected 22.5 ± 6.7 and 13.8 ± 4.6 hours, and 23.1 

± 6.7 and 13.2 ± 4.7 hours of wear and non-wear, respectively.

Snug vs. loose sub-study

There were no statistically significant differences among actual wear-time (23.9 ± 2.6 hours) 

and the snug (23.3 ± 2.3 hours) and loose (23.0 ± 1.8 hours) conditions [χ2 (2) = 2.545, p = 

0.280]. The loosely worn GT9X underestimated actual wear-time by 51.3 ± 37.0 min (95% 

CI 78.7, 23.8 min), and the snugly worn GT9X underestimated actual wear-time by 37.6 

± 61.6 min (95% CI 83.2, 8.0 min) per 24-hour measurement period. However, there were 

statistically significant differences [χ2 (2) = 10.085, p = 0.0065] among the total actual wear 

bouts and bouts detected by the snug and loose conditions. Dunn’s multiple comparisons 

tests showed that compared to the reference, the loose condition yielded a significantly 

higher number of wear bouts [7.0 ± 5.4 bouts (95% CI: 3.3, 10.7 bouts), p= 0.006]. 

Conversely, the reference measure was not significantly different from bouts detected during 

the snug condition [0.5 ± 0.8 bouts (95% CI: 0,1 bouts), p= 0.625].

Arguello et al. Page 6

J Sports Sci. Author manuscript; available in PMC 2019 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Discussion

Accuracy of GT9X Wear-time sensing

Proximity sensor-based wear-time estimation using the GT9X primarily relies on 

determining physical contact/proximity between the device and human skin. Wear detection 

thresholds for the proximity sensor is secondarily modified based on movement detected by 

the GT9X accelerometer (i.e., a raw acceleration threshold). The lab-protocol empirically 

examined the operational principle of the primary technology (proximity sensor) used to 

detect skin contact. The 2-day and the 24-hour snug vs. loose experimental protocols 

examined how operational accuracy translates to practical free-living applications.

The GT9X performed unsatisfactorily in detecting exact instances of wear-on and off 

conditions in the lab-protocol. This may be attributable to inadequacies of ActiGraph’s 

parameters for the proximity sensor-based method to detect ‘true’ skin contact. Factors such 

as temperature and humidity may alter the characteristics of the copper-based electrode in 

the proximity sensor and cause a drift in the sensor’s baseline reference values, and thereby 

the signal-to-contact thresholds to detect skin proximity. To counter such drift, the GT9X 

firmware is coded to enable the device microcontroller to adjust the stored reference value 

by a small amount every time a measurement returns a non-wear-detection (personal 

communication with Doug Cross, Director of Engineering, ActiGraph). This adjustment lies 

within a hard coded capacitance range between 1000 nF to 3370 nF (determined by 

ActiGraph as the capacitance range of the human body). Adjustments will occur until a 

positive wear-detection is found or the abovementioned capacitance limits are reached. Early 

and late detections may occur if the device is worn and removed frequently (e.g., lab-

protocol) because the drift-logic in the GT9X firmware may adjust the reference value in the 

wrong direction. Since proximity sensor measurements are made only once a minute, the 

adjustment period may last several minutes before the firmware identifies the correct 

direction in which the adjustment must be made. A factor that may have further confused the 

drift-logic in the firmware may be the placement of the GT9X in the pocket of the research 

assistant where human skin is separated from the sensor by a layer of clothing. Subsequent 

researcher movement when conducting the protocol may have influenced the proximity of 

the device to the layer of clothing that is flush with the skin. However, the likelihood of this 

is low because (i) the sensitivity of the proximity sensor is insufficient to detect the 

proximity of the skin through clothing and (ii) we independently tested and confirmed the 

inability of the proximity sensor to determine skin-contact over clothing.

The above-mentioned technical shortcomings did not impact the sensitivity of the GT9X 

proximity sensor-based method in the lab-protocol. This may be due to a much higher 

proportion of delayed instance detection with a smaller margin of error (1.4 ± 1.4 min) than 

early detections (78% vs. 22%), which allowed most true wear-time minutes to be captured 

as such by the GT9X. Conversely, poor specificity (49%) in the lab-protocol may be 

attributable to a high proportion of instances (93%) being detected late, with a large margin 

of error (4.8 ± 11.6 min). Although a delay may have been present in the free-living 

protocol, it is likely that it did not impact free-living specificity to the same extent because 

the delay is proportionally smaller to the total wear-off duration (average bout= 4.9 ± 4.5 
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hours) itself. Proximity-based wear-time estimation also seemed to yield slightly improved 

performance on the hip as compared to the wrist. This may be due to a potentially higher 

frequency of sensor displacement at the wrist (even when snug) during daily activities.

Poor wear-time detection may arise from various physiological and environmental factors 

that alter the capacitance of the proximity sensor electrode in the GT9X. The most common 

source of error is a lack of sustained physical contact between the skin and the device. While 

we found that the GT9X underestimates actual wear-time in both snug and loose conditions, 

the loose condition produced larger total wear-time duration detection error and a higher 

number of bouts for wear-time. Thus, the resulting partial or complete absence of skin 

contact in the loose condition was sufficient to impair the detection of true monitor wear.

Study findings indicate a need for additional human testing to refine the existing parameters 

for the GT9X proximity sensor-based method to distinguish between wear and non-wear in 

free-living studies. Additionally, inaccuracies may be attenuated through periodic on-chip 

calibration of the proximity sensor during periods of non-wear to reset drifting baseline 

values. Figure 1 depicts the individual ‘best’ and ‘worst’ performances when the GT9X is 

worn loosely as compared to the corresponding snug and reference measures.

Free-living GT9X proximity sensor-based wear-time vs. activity count algorithms

In the 2-day protocol, performance of GT9X wear-time sensing was inferior to the Troiano 

2007 and Choi 2012 algorithms. Sensitivity of GT9X wear-time sensing was lower than the 

Troiano 2007 and Choi 2012 algorithms by approximately 8 to 22% at both the hip and wrist 

sites. Proximity sensor-based wear-time estimation by the GT9X overestimated the total 

number of bouts of true wear-time by 7.2 ± 10.0 bouts (~2 times the reference) on the hip 

and 14.5 ± 18.7 bouts (~4 times the reference) on the wrist, and overestimated non-wear by 

7.9 ± 10.2 bouts (~2 times the reference) on the hip and15.3 ± 18.8 bouts (~3 times the 

reference) on the wrist. In comparison, the Troiano 2007 algorithms detected 90.0% ± 30% 

of wear bouts on the hip and 84.4% ± 24.8% on the wrist, and 49.4% ± 24.2% of non-wear 

bouts on the hip and 49.2% ± 21.3% on the wrist. Similarly, the Choi 2012 algorithm 

detected 71.5% ± 27.5% of wear bouts on the hip and 70.1% ± 23.9% on the wrist, and 

43.4% ± 21.5% of non-wear bouts on the hip and 44.1% ± 19.4% on the wrist. The 

overestimation of the GT9X compared to the underestimation of Troiano 2007 and Choi 

2012 algorithms may be due to small periods of false positive non-wear being detected by 

the proximity sensor-based method in the absence of necessary skin contact. This factor will 

not affect count-based wear-time detection methodologies.

Interestingly, the GT9X proximity sensor-based estimation misclassified a substantial 

portion of wear-time as non-wear, which ranged from 9.7% to 17.8%, but misclassified non-

wear as wear-time by only 3.2% to 3.7%. Contrarily, Troiano 2007 and Choi 2012 

algorithms misclassified a greater amount of non-wear as wear-time ranging from 5.1% to 

5.8% and 5.8% to 6.6%, respectively, but still had lower misclassification of wear-time as 

non-wear [Troiano 2007: 1.3% to 5.5%; Choi 2012: 1.1% to 4.8%].

Arguello et al. Page 8

J Sports Sci. Author manuscript; available in PMC 2019 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Conclusions

While promising, capacitive proximity sensing in the GT9X needs to be significantly 

improved to detect true non-wear and wear-time. Given our findings, it may not be advisable 

to singularly use the GT9X proximity sensor-based method to distinguish between monitor 

wear and non-wear. Underestimating true wear-time may not only result in incorrect 

estimates of PA and sedentary behavior, but may also lead to the exclusion of subjects from 

data analyses when applying monitor wear-time inclusion criteria (e.g. valid day > 10 hrs/

day) for capturing habitual PA behavior (Mathews, 2005; Matthews et al., 2001; Troiano et 

al., 2008).

Limitations of the GT9X capacitive proximity sensing technology may warrant 

supplemental measures to identify true wear-time. For example, since this method relies 

greatly on the proximity of the sensor electrode to the skin, vibrations/movements (e.g., snug 

vs. loose wear), or when using ActiGraph’s hip-clip that requires an additional layer 

(clothing/belt) between the GT9X case and the skin may impair accuracy. Complex sensor 

data-fusion methods that integrate raw acceleration with capacitive proximity sensing may 

yield improved estimates of wear-time. This may require increasing the frequency of 

measurement of the proximity sensor from once a minute to every 15 or 30 seconds and 

access to proximity sensor raw data. The latter will allow researchers to rigorously test and 

refine the sensor’s threshold that discriminates non-wear from wear. Future iterations of the 

GT9X could leverage the display screen to include active wear-time sensing by soliciting 

feedback from study participants in real-time, thereby eliminating some ambiguity in 

detecting wear-time. Alternatively, incorporating additional sensors such as temperature or 

non-touch proximity sensors (e.g., optical sensors) may yield improved estimates of wear-

time

Strengths and limitations

To our knowledge, this study is the first to (i) validate the proximity sensor-based wear-time 

estimation using the GT9X and (ii) comprehensively validate the Troiano 2007 and Choi 

2012 wear-time algorithms in free-living against a refined reference measure that uses an 

objective physiological sensor supplemented with self-report. Previous free-living validation 

of Troiano 2007 and Choi 2012 wear/non-wear motion algorithms relied on a diary-record 

as a reference (Choi et al., 2012). Another strength is that the study examined wear-time in 

different scenarios including wear sites and conditions. Weaknesses include a short free-

living sample of 2 days and the absence of a hip-worn-device in the lab-protocol.
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Figure 1. 
Individual worst and best performance of the wrist-worn GT9X proximity sensor-based 

method in detecting wear vs. non-wear during the loose condition. Loose wear may result in 

a high number of false-positive, wear-off detections that result in an increase in wear-on and 

wear-off bouts and misclassifications of wear-time minutes.
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Table 1.

Mean, standard deviations, 95% confidence intervals of the performance of the GT9X proximity sensor-based 

estimation and the Troiano 2007 and Choi 2012 algorithms in detecting wear-time at the wrist and hip.

1A Sensitivity Specificity PPV NPV Accuracy

GT9X
71.6 ± 28.4% 90.2 ± 19.6% 93.1 ± 8.1% 70.8 ± 23.6% 78.5 ± 17.5%

[60.3, 83.0%] [82.3, 98.0%] [89.8, 96.3%] [61.4, 80.3%] [71.5, 85.5%]

Troiano
2007

92.9 ± 13.7% 86.0 ± 8.2% 91.4 ± 5.2% 91.7 ± 12.2% 90.5 ± 7.9%

[87.5, 98.4%] [82.7, 89.3%] [89.3, 93.5%] [86.8, 96.6%] [87.3, 93.6%]

Choi 2012
93.3 ± 13.5% 84.0 ± 8.3% 90.1 ± 5.7% 92.2 ± 12.6% 89.9 ± 8.0%

[87.9, 98.7%] [80.7, 87.3%] [87.8, 92.4%] [87.2, 97.2%] [86.7, 93.1%]

1B Sensitivity Specificity PPV NPV Accuracy

GT9X
84.43 ± 22.5% 92.1 ±14.7% 94.0 ± 9.8% 82.8 ± 21.5% 87.1 ± 16.4%

[75.4, 93.4%] [86.2, 97.9%] [90.1, 97.9%] [74.1, 91.4%] [80.6, 93.7%]

Troiano
2007

90.9 ± 18.2% 86.2 ± 7.4% 90.8 ± 6.0% 90.1 ±14.5% 89.3 ± 10.6%

[83.6, 98.2%] [83.2, 89.2%] [88.4, 93.2%] [84.2, 95.9%] [85.0, 93.5%]

Choi 2012
92.2 ± 17.9% 83.5 ± 7.9% 89.6 ± 5.9% 91.9 ± 14.2% 89.2 ± 10.4%

[85.1, 99.4%] [80.4, 86.8%] [87.2, 91.9%] [86.2, 97.6%] [85.0, 93.4%]

Table 1A and B. Mean, standard deviations, 95% confidence intervals of the performance of the GT9X proximity-sensor-based sensing and the 
Troiano 2007 and Choi 2012 algorithms in detecting wear-time at the wrist and hip, respectively. PPV= positive predictive value; NPV= negative 
predictive value.

J Sports Sci. Author manuscript; available in PMC 2019 July 01.


	Abstract
	Introduction
	Methods
	Experimental Protocol
	ActiGraph GT9X wear-time sensing
	Lab Protocol
	Free-Living Protocol

	Free-living snug vs. loose wear sub-study
	Data Analyses
	Controlled Lab Protocol
	Free-Living Protocol


	Results
	Lab-Based Protocol
	Free Living Protocol
	Snug vs. loose sub-study

	Discussion
	Accuracy of GT9X Wear-time sensing
	Free-living GT9X proximity sensor-based wear-time vs. activity count algorithms

	Conclusions
	Strengths and limitations

	References
	Figure 1.
	Table 1.

