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Abstract

Extraction of particles from cryo-electron microscopy (cryo-EM) micrographs is a crucial step 

in processing single-particle datasets. Although algorithms have been developed for automatic 

particle picking, these algorithms generally rely on two-dimensional templates for particle 

identification, which may exhibit biases that can propagate artifacts through the reconstruction 

pipeline. Manual picking is viewed as a gold-standard solution for particle selection, but it is too 

time-consuming to perform on data sets of thousands of images. In recent years, crowdsourcing 

has proven effective at leveraging the open web to manually curate datasets. In particular, citizen 

science projects such as Galaxy Zoo have shown the power of appealing to users’ scientific 

interests to process enormous amounts of data. To this end, we explored the possible applications 

of crowdsourcing in cryo-EM particle picking, presenting a variety of novel experiments including 

the production of a fully annotated particle set from untrained citizen scientists. We show the 

possibilities and limitations of crowdsourcing particle selection tasks, and explore further options 

for crowdsourcing cryo-EM data processing.
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1. Introduction

In the past several years cryo-electron microscopy (cryo-EM) has become a powerful tool 

for elucidating the structures of macro-molecular complexes to near-atomic resolution, and 

has been effectively used to solve structures of membrane-bound and non-rigid proteins that 

are difficult to crystallize. Handling low signal-to-noise ratio cryo-EM data necessitates 

processing large amounts of data, involving thousands of individual micrographs each 

containing hundreds of particles. A crucial, early step in cryo-EM processing is the 

selection of individual protein particles from EM micrographs to be used in generating a 3D 

reconstruction. In the past, particles were hand-picked by a researcher after data collection, 

but since cryo-EM datasets can now consist of thousands of micrographs and hundreds of 
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thousands of particles, manual picking has become viewed as an unnecessarily banal and 

time-consuming task for cryo-EM researchers (Scheres, 2015).

As a result, many algorithms have been developed to automate particle picking and 

reduce the time required for this crucial step in EM processing. Popular methods either 

identify features common to particles, such as particle size with DoG Picker, or use 

supplied templates to identify similar-looking subsections of a micrograph (Voss et al., 

2009). Automatic methods are limited, however, in their ability to distinguish noise and 

contaminants from legitimate particles, and will sometimes misplace the center of particles 

in cases where they are closely packed. Inaccuracies in the collection of particle data can 

disrupt processing; in the challenging reconstruction of the HIV-1 envelope glycoprotein 

complex by Liao et al., Henderson noted that a lack of validation of the particle set picked 

via a template method begat a set of particles containing significant white noise, which 

nonetheless sufficiently matched the templates provided (Liao et al., 2013; Henderson, 

2013). Indeed, manual selection by a trained microscopist is still viewed as an ideal strategy 

in many cases, especially when templates are not available or the protein particles are 

ill-defined in the micrographs. Implementing manual selection necessitates an immense 

amount of time and effort for this single processing step; as an example, Fan et al. manually 

boxed out 156,805 particles from 3743 micrographs when determining the structure of 

the InsP3R ion channel. The time needed to produce a manually-picked set precludes its 

adoption as a regular procedure for particle picking, and a method that reduced the temporal 

investment could prove valuable for researchers. In addition, scientists seeking particular 

idealized structures can consciously or subconsciously impart their own biases into manual 

picking, preferring certain angular views of the particle or omitting subsets of particles that 

do not exhibit anticipated features (Cheng et al., 2015).

This work examines an increasingly popular method of data processing, crowdsourcing. A 

term coined in 2006, crowdsourcing opens a task normally assigned to a specific worker to 

a wider, more generalized userbase (Good and Su, 2013). In recent years, crowdsourcing 

initiatives have come to rely on the ability of the internet to quickly disseminate data and 

recruit users to perform the necessary processing.

There are many approaches to crowdsourcing, including scientific games (e.g., Foldit, 

Eterna) and paid microtask services (e.g., Amazon Mechanical Turk, Crowdflower). 

Particularly intriguing is the emergence of ‘citizen science’ projects, which rely on 

community engagement and scientific intrigue to attract users to an otherwise menial task. 

Citizen science has proven extremely successful, with the project ‘Galaxy Zoo’ classifying 

over 1 million images from more than 100,000 users over nine months (Lintott et al., 2008). 

In this paper, we present and analyze the results from a citizen science project ‘Microscopy 

Masters’, which focused on crowdsourcing particle picking from single-particle cryo-EM 

micrographs. We examine the efficacy of crowdsourcing particle picking to lightly trained 

workers when compared to trained electron microscopists, and show that particle sets 

derived through crowdsourcing can yield robust and reliable 2D class averages and 3D 

reconstructions. The method presented here is shown as not only a viable time-saving option 

for datasets that confound automatic pickers, but also shows promise for future applications 

of crowdsourcing to cryo-EM data processing.
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2. Results

2.1. Production of gold standard

A ‘gold standard’ or ‘ground truth’ for evaluating annotated subjects is crucial for beginning 

any classification study. In the case of algorithmic particle picking, evaluation is typically 

performed relative to a set of manually picked micrographs. Although manually picked 

datasets are available from previous studies examining particle picking, they generally 

contain a small number of images and are only annotated by a single individual (Scheres, 

2015). In order to create a richer gold standard for evaluating our crowdsourcing protocol, 

micrographs were chosen from a single-particle cryo-EM dataset of the 26S proteasome 

lid complex (Dambacher et al., 2016). Out of the 3,446 micrographs used in the published 

refinement, 190 were marked by at least two randomly-assigned cryo-EM experts, with a 

total of nine contributing participants.

In addition, intra-expert agreement was measured by requiring each expert to mark five 

randomly chosen images twice. The complete union of all marks by all experts totaled to 

13,028 particles and was used as the ground truth for all following accuracy measurements 

in this paper.

Agreement between two annotations was calculated using the Jaccard index, defined as the 

proportion of the size of the intersection of the particles picked in two annotations to the 

size of the union. Intra-expert agreement was found to be surprisingly low and only slightly 

higher than inter-expert agreement, intra-agreement between all experts averaged 0.56 and 

inter-agreement averaged 0.45. This indicates that less than three quarters of particles picked 

by a single individual are picked again on reannotation by the same annotator on the same 

image. Among those annotators who completed all assigned micrographs, agreement was 

consistently higher among intra-expert comparisons (Table 1).

2.2. Initial testing

A chief concern for crowdsourcing, especially citizen science, is building a reliable userbase, 

either through accessing pre-existing groups of users or attracting users through social media 

and community engagement. Since we desired to annotate a large, fully manually-picked 

particle set, we hosted our experiment on an established crowdsourcing platform, Panoptes, 

a Zooniverse-run initiative for citizen science projects.

Initial testing for the crowdsourcing system was performed by paid workers recruited 

through Amazon Mechanical Turk (AMT). Workers were recruited, trained, and paid 

through AMT, while Panoptes hosted the particle selection tasks and stored the results (Fig. 

1).

Testing produced 16,562 particles chosen by 42 unique workers using the same set of 

190 images in the gold standard. Based off of feedback from AMT workers, additional 

instructions, shown in (Fig. S2), were added to the picking interface.

Importantly, this initial testing was used to determine the optimal number of people to assign 

to each image, as well as to establish a voting mechanism. To this end, at least 10 workers 
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annotated each micrograph and accuracy statistics were derived for randomized subsets of 

those workers using various voting thresholds (Fig. 2a). Limited returns after five annotators 

at union led to the choosing of this threshold as optimal; in all subsequent experiments, each 

image was shown to five annotators and the “crowd” output was defined as the union of 

users’ annotations.

2.3. Zooniverse

After testing in Amazon Mechanical Turk, the project, dubbed Microscopy Masters, was 

launched on Panoptes in March 2016. A total dataset of 209,696 particle picks was 

produced over a year from 3,446 micrographs, with 2,108 unique volunteers. The parameters 

established in our initial testing were utilized, with each image being classified by five 

different users and the ‘voting threshold’ set to one, meaning the total union of all 

classifications performed on an image were used to generate the final data set of picks. 

For individual users, we observed a marked decrease in F-score and recall in the Zooniverse 

set, as shown in Fig. 2, which we attributed to differing incentives between paid testing on 

AMT and unpaid volunteers on Zooniverse. In particular, the number of particles selected 

in each image by Zooniverse volunteers is highly variable; a peak at zero in the distribution 

of particles picked per-user per-image resulted in a corresponding peak at zero for recall 

and F-score, as well as a peak at one for precision (Fig. 2b). Association of low recall and 

low-cardinality annotations implied a body of “low-effort” annotations, where a user did 

not fully complete the image before submission. Aggregation of the five user annotations 

per image mitigated the low individual accuracy, yielding an average aggregate F-score 

comparable to that of the AMT-annotated data, as shown in (Fig. 2d).

Average agreement between the voted crowd annotations and individual expert annotations 

was found to be slightly less than inter-expert agreement, with the mean for inter-expert 

agreement at 0.45 and mean between the crowd and experts at 0.40 (Fig. 3).

2.4. Reconstruction

Refinement of the proteasome lid complex structure was performed using the crowdsourced 

dataset collected through Zooniverse, as well as the dataset used in Dambacher et al., which 

was picked using a template-based method (Dambacher et al., 2016). Since the resolution 

of a refined single-particle reconstruction generally correlates with the number of particles 

in the dataset, a reconstruction was also generated using a random subset of the template­

picked particles with the same cardinality as the crowdsourced data, called the ‘normalized 

template’ set (Cheng, 2015). Particle stacks were extracted from the micrographs, and 2D 

reference-free classification was performed. “Junk” classes containing false particle picks 

or damaged/aggregated particles were manually selected and removed, following the same 

selection criteria used previously (Dambacher et al., 2016). A subset of homogeneous 

“high resolution” particles were identified through 3D classifications which were refined 

to yield the final reconstruction (Fig. 4). The number of particles remaining after each 

filtering step, as well as the final resolution estimates, indicate the template sets produced 

reconstructions with more internal structural consistency (Table 2). In each reconstruction, 

Fourier shell correlation (FSC) curves calculated from two independently determined half­

maps indicated no irregularities in any of the particle sets (Fig. 5). Resolution, measured at 
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the standard FSC value of 0.143, was found to be higher for the refinement produced from 

the automatically picked datasets, with the Zooniverse-produced refinement’s resolution at 

4.1 Å and the template-picked refinement’s resolution at 3.8 Å. The refinement produced 

from the normalized template set was 4.0 Å, predictably lower than the template refinement 

and slightly higher than the crowdsourced refinement. As a further measure of resolution 

consistency, ten atomic models were independently built into the reconstructions (Herzik 

et al.). The root-mean-square deviation (RMSD) of each residue’s Cρ position in the ten 

reconstructions was used as a measure of the local quality of the refinements, with a higher 

RMSD indicating a less convergent refinement (Fig. 6). While the distribution of RMSD 

values from the crowd set were significantly higher than the template-picked structures (p < 

0.01 as assessed by a two-sample Kolmogorov-Simrnov test), the overall magnitude of the 

difference was relatively small. The normalized and full template reconstructions had 67.3% 

and 69.6% of residues with high convergence, respectively, while the crowd-produced 

reconstruction had 63.7% of residues with high convergence.

3. Discussion

Our study has demonstrated the utility of crowdsourcing particle picking for single-particle 

cryo-EM to users with little to no experience in cryo-EM. Volunteer particle pickers 

created a sizeable, usable dataset through a popular citizen science site that produced 

a 3D reconstruction of comparable quality to the reconstruction generated from template­

picked particles. The particles chosen by citizen scientists also compared favorably to 

those produced in paid scenarios, suggesting the use of a citizen science framework as 

a low-cost, low-effort alternative to producing high-quality datasets without the potential 

biases associated with template picking or manual selection by a single person.

Many automatic picking algorithms still rely on some amount of manual picking, since 

popular template-driven algorithms generally use 2D class averages generated from 

manually-picked particles as templates. The demonstrated lack of consistency of scientists 

trained in single-particle cryo-EM when manually picking calls into question the acceptance 

of manually-picked data as the ground truth when assessing particle-picking protocols. 

More generally, the noisy nature of micrographs can make it difficult for the human eye to 

reliably distinguish the multitude of patterns needed to create a robust single-particle dataset, 

particularly for smaller-sized complexes.

Key to the acceptance of manual selection as an optimal particle-picking method is the 

superior quality of resultant reconstructions. In our trials, reconstructions produced from the 

full and normalized template sets, as well as the manually picked set, showed no marked 

differences in resolution. Far more particles were filtered from the manually picked set 

through classification, likely a result of the template consistently picking particles with 

similar features, which results in better clustering of 2D classes. However, since manual 

picking does not rely on templates, 2D views of protein particles not present in the templates 

could be recovered from micrographs.

Manual picking through crowdsourcing approaches can produce a dataset of comparable 

quality to both manual picking by trained experts and computational particle picking 
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methods, but the question remains as to whether manually picked data produces significantly 

better reconstructions.

Volunteer particle pickers produced a large body of “low-effort” annotations when they 

were asked to work for no pay. The deleterious effects of these annotations are successfully 

mitigated by using the union of particles from five separate annotations for each image. 

Since the low-accuracy annotations generally are those with little to no marks, the increased 

accuracy from combining all annotations can be inferred to come from users who contribute 

particles that generally agree with experts’ picks. However, relying upon a fraction of 

annotations is not ideal, and future attempts to crowdsource particle picking should focus on 

creating incentive structures that encourage a higher proportion of high-quality annotations. 

In fact, the lower resolution of the crowdsourced reconstruction is likely largely due to the 

lower amount of particles in the crowdsourced dataset. If more annotations per image were 

properly completed, the number of particles, and possibly the resolution, would increase.

A further limitation to crowdsourcing is the time needed to produce a manually picked 

dataset, with our project running over the course of a year before completion. The challenge 

to increasing user engagement and reducing the time needed to annotate a cryo-EM dataset 

is that particle picking competes with other citizen science projects such as wildlife 

photography, historical text annotation, and telescope imagery. Engaging users through 

gamification, more frequent updates to the user community, and providing users with 

information and statistics on their particle selections, such as feedback on gold standard 

images and creating 2D class averages as they pick, are possibilities that were considered 

when building this project. Implementing these would have required a platform and userbase 

separate from Zooniverse due to the current limitations of the platform, and so they were 

not pursued over the course of this experiment. However, the Zooniverse team is consistently 

implementing new features, and future iterations of the site could allow for more direct 

contact with users. Producing a fully crowdsourced particle set might be most effective for 

proteins where the particles are particularly difficult to identify with template pickers or 

other automatic methods.

As mentioned previously, automated template particle pickers generally require some initial 

manual selection of particles from micrographs in order to ‘seed’ the algorithm with 2D 

templates of the desired protein particle. In order to explore the potential for crowd-sourcing 

in accomplishing the preliminary manual task of generating such “seed” datasets of particle 

picks, three datasets were presented to untrained workers with the intent of creating 

templates suitable for automated particle picking programs. A small number of micrographs 

from datasets of the HIV-1 envelope trimer, and TRPV2 ion channel were presented to 

Zooniverse and AMT users (Lee et al., 2016; Zubcevic and Herzik, 2016).

It took two days for the users to complete the desired one hundred HIV-1 trimer annotations, 

and eight days for the desired one hundred classifications, the discrepancy likely caused by 

stagnation in the userbase of Microscopy Masters. On AMT, users completed the TRPV2 

ion channel tasks in under an hour, while the HIV trimer tasks, which offered much less 

pay, took around two weeks. The same classification aggregation criteria used in the full 

reconstruction were applied to the sprint datasets, yielding sets of 1863 and 3298 particles 
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for the HIV-1 trimer and TRPV2 datasets, respectively. Reference-free 2D classification of 

the manually selected datasets yielded averages that were suitable for use as templates (Fig. 

S4). Assuming an engaged group of users can be accessed, either through a paid system 

or by cultivating a dedicated community, the relatively short turnaround time of creating 

templates via this method demonstrates its usefulness for cryo-EM researchers.

Another possible application for crowdsourcing can be found in cellular tomography, which 

requires manual curation in order to identify and link sub-cellular structures in multiple 

frames. Even newer machine-learning algorithms for automated segmentation require that a 

user initially identify features manually within tomograms (Chen et al.).

The results outlined in this manuscript showcase crowdsourcing as a useful, new option for 

microscopists whose data resist selection by automated method, but although the untrained 

workers demonstrated an ability to produce particle sets of acceptable quality, there is work 

to be done in creating viable incentive structures and encouraging user engagement. Despite 

the difficulties in producing a fully crowdsourced dataset, the body of work presented here is 

an encouraging first step in the novel application of crowdsourcing processing for cryo-EM 

data.

4. Methods and materials

4.1. Equations and definitions

In this subsection the various accuracy measures used in this manuscript will be formally 

defined. Precision and recall are used as measures of the true negative and true positive rates, 

respectively. Precision (P) is defined as 1 – False Positive Rate, more formally:

P = 1 − FP
FP + TP = TP

FP + TP (1)

where FP is the number of false positives and TP is the number of true positives. Recall (R) 

is the measured power of the classification, given as:

R = TP
TP + FN (2)

where FN is the number of false negatives. F-score (F) takes both precision and recall into 

account for a general measure of the accuracy of a classification versus a gold standard, it is 

defined as:

2 ∗ P ∗ R
P + R (3)

The agreement, or Jaccard index, is used as a measure of consensus between two groups. It 

is defined as the ratio of the size of the intersection to the size of the union of two separate 

classifications. Given two sets of points S1 and S2, this is shown as
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agreement = S1 ∩ S2
S1 ∪ S2

(4)

In the above equation we also define ∣*∣, the cardinality, of a set. Set cardinality is simply the 

number of members in a given set.

4.2. Gold standard production

The gold standard was generated in a single, pizza-fueled afternoon with resident electron 

microscopy researchers at The Scripps Research Institute. Each researcher was randomly 

assigned forty-five images out of a 190 micrograph subset from the 26S Proteasome lid 

complex dataset from Dambacher et al. (2016). Additionally, each expert marked five 

images twice in order to study consistency of experts’ particle picking, making a total of 

fifty annotations for each expert. The union of these repeated images’ picks were used for 

the gold standard of a particular expert on the respective image, and the union of all experts’ 

picks was used as the gold standard for our entire study. The platform used by the experts 

was identical to that used by the AMT workers, although some features such as the pop-up 

tutorial and additional screen for marking unusable images implemented in the Microscopy 

Masters project were absent for the experts.

4.3. Project hosting on Zooniverse

Initiation of our crowdsourcing project coincided with the launch of the Panoptes system 

on a popular crowdsourcing consortium called Zooniverse, creators of the successful Galaxy 

Zoo. Panoptes offered a customizable interface for allowing the Zooniverse userbase to 

actively work on projects outside of the usual Zooniverse scope. Since the Zooniverse 

userbase numbers in the millions, its use offered access to a much larger group of users than 

could have been achieved on an independent platform.

4.4. Initial user testing

In order to create a usable, easily understandable interface, the Panoptes workflow was 

initially tested on Amazon Mechanical Turk (AMT). Workers recruited via AMT were 

sent to single images on Panoptes and given a code unique to each image to verify that 

they completed the task. Before being allowed to work, completion of a short tutorial and 

mutiple-choice quiz was required, with a minimum allowable score of 5/7 questions correct. 

Initially, instructions beyond initial quizzing and explanation were minimal, but this led to 

complaints from the userbase that it was too difficult to complete the task without any easily 

accessible instructions. Workers were paid variable amounts from ten cents to 25 cents per 

image, they generally averaged 20 s per image. Total cost for all rounds of user testing is 

included in Table S1. Predictably, lower payments resulted in a lower rate of participation; 

10 cent payments took one week to complete at five annotations per image over 200 images, 

while 25 cent payments with the same amount of required work took 3 days. Text for the 

tutorials and help text were tweaked using feedback from the AMT workers before a full 

launch on Panoptes.
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4.5. Microscopy masters

Initial testing was followed by a beta release of Microscopy Masters to select members 

of the Zooniverse community. Following feedback from the beta test, an additional screen 

allowing users to mark images as poor quality was placed before the picking interface. Some 

features were added to the interface during the middle of production; two versions were 

implemented over the course of the project. When compared to gold standard, the differing 

versions showed no marked dissimilarity in terms of F-score.

4.6. Voting protocol

Although the ‘voting threshold’ for points was set to one, meaning that a point only needed 

to be selected once for it to be included in the final set, an algorithm needed to be designed 

to combine picks from separate annotators. Two points in two separate annotations of the 

same image were combined into a vote if:

1. They were within 20 pixels of one another

2. They were mutual nearest neighbors, i.e., each point was the other’s nearest 

neighbor in the second annotation

If two points were combined, their averaged coordinates were used as a new particle.

4.7. 26S Proteasome lid complex dataset

A single-particle cyro-EM dataset for the ovine 26S proteasome lid complex was chosen 

as the primary test case for crowdsourced particle picking. The globular nature of the lid 

complex can confound often-used template pickers, making it an ideal choice to test the 

limitations of automatic picking procedures. Dambacher et al. imaged the dataset on a Krios 

Titan cryo-EM microscope, technical details are detailed in their text (Dambacher et al., 

2016).

4.8. Reconstruction pipeline

Cryo-EM processing was performed in Relion v1.4 (Scheres, 2012). Processing followed 

the methods previously described (Dambacher et al., 2016) in order to produce comparable 

reconstructions. CTF parameters were estimated using CTFFIND3 (Mindell and Grigorieff, 

2003). Particles were extracted from respective particle coordinate files with a box size 

of 256 pixels. Choosing of class averages was performed through random selection by 

Gabriel Lander; classes from separate reconstructions were anonymously mixed treated as 

a single dataset. Particles from chosen classes were passed on to the subsequent step. Final 

refinement was performed with the same initial model used in Dambacher et al. using 

default parameters in RELION.

4.9. Initial template construction

Images for the initial template construction were initially processed in a manner similar to 

that of the large 26S proteasome lid project. Five classifications were requested for the HIV 

trimer set on both platforms as an initial test, this was increased to fifteen classifications 

for TRPV2 on zooniverse in order to attract more users for annotation. Costs for the AMT 

experiments are summarized in Table S1. In an attempt to make the task more visually 
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engaging, micrographs were colored with various contrasting colors as well as offering the 

traditional black and white. No marked decrease in quality was associated with the color 

changes. Upon release of the new datasets, Microscopy Masters users were notified of 

additional datasets via an emailed newsletter.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Screencap of picking interface hosted on Zooniverse.
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Fig. 2. 
(a) Number of annotators vs performance, grouped by voting threshold. The top line 

represents union, while the bottom rung represents consensus, (b) Histogram showing 

distribuion of number of particles picked per person per Image for both AMT and 

Zoonlverse. Note peak at zero for Zooniverse, comprising ‘low-effort’ annotations. Recall 

(c) and F-score (d) of Individual classifications from Zoonlverse and AMT workers 

compared to gold standard. High numbers of low-quality, low-effort annotations from 

Zoonlverse workers result In peaks at 0 for recall and F-score.
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Fig. 3. 
Violin plots of agreement, measured as the Jaccard index, for inter-expert, intra-expert, and 

crowd-expert comparisons. Standard deviations (σ) and number of comparisons (n) for each 

distribution are as follows: Inter-Expert: σ = 0.18, n = 227; Intra-Expert: σ = 0.13, n = 90; 

Zooniverse-Expert: σ = 0.18, n = 382.
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Fig. 4. 
Reconstruction using crowdsourced, template-picked, and ‘normalized’ template-picked 

particle sets. (A) Micrographs from 26S are run through template and crowdsourcing 

particle picking procedures. (B) Particles are then extracted and run through 2D template­

free class averaging. (C) Top 8 2D classes from each particle set. Classes chosen to continue 

through processing marked in red. (D) All 3D classes from 3D classification of particles 

chosen in step (C), with similar marking. (E) Final refinements for each particle set.
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Fig. 5. 
FSC curves for all reconstructions. Horizontal dash line at y = .143 represents value for 

resolution estimation. Vertical lines’ colors correspond to FSC curves and the x-intercepts 

represent each curve’s resolution.
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Fig. 6. 
RMSD histograms of Cρ positions in the tenfold ensemble analysis. Blue, gray and red 

bars denote residues of low (<1), medium(>1, <3, and high (>3) convergence, respectively. 

The black line marks the mean of the distribution, (a) Ensemble based off refinement 

from Zooniverse volunteers, (b) Ensemble from automated template-based method data, (c) 

Ensemble from normalized automated template-based method data.
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Table 1

Intra-expert and inter-expert agreement calculated using Jaccard index for experts who created the gold 

dataset. Of the nine experts who participated, one did not complete all assigned micrographs and so was not 

included in this table.

User Inter Intra

Expert 1 0.45 0.64

Expert 2 0.42 0.46

Expert 3 0.54 0.65

Expert 4 0.40 0.51

Expert 5 0.44 0.64

Expert 6 0.44 0.58

Expert 7 0.45 0.61

Expert 8 0.48 0.51
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Table 2

Number of particles left after each filtering step during single-particle reconstruction.

Step Template Normalized Crowd

Initial 249,657 209,696 209,696

2D filtering 184,200 138,928 120,058

3D filtering 119,603 62,676 44,516
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