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Summary

Congenital aniridia manifests as total or partial absence of the iris caused most commonly by 

mutations in PAX6, FOXC1, PITX2, and CYP1B1. Recently two new genes, FOXD3 and 

TRIM44, have also been implicated in isolated studies. We discuss the genotype-phenotype 

correlations for the main implicated genes. Classic aniridia is a panocular condition, which 

includes aniridia, cataract, corneal pannus, foveal, and optic nerve hypoplasia associated with 

mutations in the PAX6 gene. Classical aniridia is due to PAX6 mutations, while other genes 

contribute to aniridia-like phenotypes. We review the challenges involved in the management of 

aniridia, and discuss various surgical interventions. The clinical importance of defining the 

genotype in cases of congenital aniridia has become acutely apparent with the advent of possible 

therapies for classical aniridia, which are discussed.
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Aniridia is an ocular disorder in which there is total or partial hypoplasia of the iris tissue. It 

was first described by Barrata in 1818 [1]. In this review, we discuss the etiology, 

presentation, complications, management and possible future developments of this disorder.

Etiology

Aniridia may be congenital or acquired. Acquired aniridia is almost always secondary to 

trauma and usually unilateral [2]. Congenital aniridia is described as partial or total absence 

of iris, but gonioscopy almost always reveals an iris stump [3]. For congenital partial or total 

aniridia, mutations in the following genes have been reported; PAX6, FOXC1, PITX2, 

CYP1B1, FOXD3 and TRIM44 (Table 1).
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PAX6

This gene encodes a paired domain DNA-binding transcription factor that has been shown to 

be critical in eye formation and important for neural, pancreas and olfactory system 

development [4]. In humans, the gene is located on chromosome 11p13, the transcript 

encompasses 14 exons over 27.4 kb of genomic DNA, and the coding region starts from 

exon 4. It has two major isoforms, which are canonical Pax6 and Pax6(5a) [5], that have 

been shown to activate different targets [6, 7], and a paired-less form that may regulate 

amacrine populations in the retina [8, 9]. Apart from expression in the developing and 

mature eye (Figure 1), Pax6 is also expressed in the developing forebrain, gut, pineal gland, 

β-cells of the pancreas and olfactory epithelium [4].

Since PAX6 is expressed in the cornea, lens, iris and retina, it is not surprising that 

heterozygous mutations result in a panocular condition affecting the cornea, lens, iris, retina 

and optic nerve (see later). Haploinsufficiency of the protein arising from deleterious 

mutations results in aniridia (Table 1). The PAX6 mutation database currently reports 376 

novel mutations [10], with heterozygous mutations primarily resulting in aniridia in about 

90% of cases [11], where intragenic mutations account for two-third of cases and 

chromosomal rearrangements for one-third of cases. Ninety-four percent of all intragenic 

point mutations leads to either a premature termination codon (PTC), C-terminal extensions 

(CTE), or amino acid substitutions [12]. The importance of this will become critically clear 

when we discuss future developments. In a fraction of classical aniridia patients, the 

mutation is located outside the PAX6 structural gene and, in particular, in its transcriptional 

control regions [13, 14].

Two-thirds of all aniridic cases due to PAX6 mutation are familial displaying autosomal 

dominant inheritance and the remaining are sporadic [11]. Sporadic mutations arise from de 

novo gene mutations or deletions. Sporadic deletions of PAX6 contiguous with WT1 (about 

700 kb apart) often lead to Wilms Tumor, aniridia, genitourinary anomalies, and mental 

retardation (WAGR) syndrome [15], which Wilms’ tumor, aniridia, genitourinary anomalies, 

and intellectual disability (replacing the former term mental retardation). Wilms’ tumor 

develops through somatic loss of both WT1 alleles in the kidney, or more rarely the gonad; 

therefore, the extent of the WAGR phenotype is dependent on the length of the deletion.

FOXC1

This gene product is a member of the forkhead domain/winged helix (FHD) class of 

transcription factors that play essential roles in embryonic development, such as cellular 

differentiation and proliferation [16]. In humans, the gene is located on chromosome 6p25, 

contains 1 exon and spans 3.9 kb of genomic DNA. In the developing eye, FoxC1 is 

expressed in the periocular mesenchyme, with later expression in the corneal stroma, sclera, 

conjunctival epithelium, and trabecular meshwork (Figure 1) [17]. Extra-ocular expression 

includes the heart, kidney, peripheral blood leukocytes, and prostate.

Mutations in this gene typically produce ocular phenotypes, but may manifest extra-ocular 

phenotypes such as malar hypoplasia, hypodontia, umbilical hernia and intracranial 

anomalies, such as cerebellar vermis hypoplasia or Dandy-Walker syndrome. Similar to 
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PAX6, haploinsufficiency in FOXC1 adversely affects development of the ocular anterior 

segment leading to the distinct Axenfeld-Rieger syndrome (ARS; see later). The type of 

FOXC1 mutations that gives rise to ARS includes missense mutations in the FHD, 

frameshift and nonsense mutations, and whole gene deletions/duplications. More than 50 

mutations in FOXC1 have been found to cause ARS [18]. Mutations in the FOXC1 gene 

have also been identified in another eye disorder called iridogoniodysgenesis type 1, where 

the anterior segment of the eye is primarily involved, and is associated with 

underdevelopment of the iris and an elevated risk of glaucoma.

A number of mutations or deletions of FOXC1 that results in aniridia, usually with severe 

glaucoma, have been reported (Table 1). The first is a case of total aniridia and subtle iris 

hypoplasia in a month-old female and her mother, respectively, due to a heterozygous 

p.Met161Lys FOXC1 missense mutation. The second a case of aniridia from a heterozygous 

p.Trp152Gly missense mutation in a newborn male, and the third a case of total aniridia 

from homozygosity for a missense mutation, p.Pro297Ser, in a female patient. The fourth 

reports acquired peripheral circumferential iris degeneration from a heterozygous deletion, 

p.Tyr81_Pro95del, in a month old female. The fifth describes a newborn female and 6-day 

old male with a deletion of 1.5Mb at 6p25.3p25.2 and duplication of 46XY, dup(6)

(25.1p25.3), respectively, that both encompass FOXC1 leading to total aniridia-like 

symptoms in both patients.

PITX2

This gene belongs to the bicoid class of homeodomain proteins known as RIEG/PITX and 

its function includes development of the eye anterior segment [19], tooth development, left-

right determination, early morphogenesis and arrhythmogenesis during cardiac development 

[20], and myogenesis [21]. The gene in humans is located at chromosome 4q25, and the 

coding region contains three exons spanning 5.68 kb of genomic DNA. It is expressed 

mainly in the neural crest tissue; therefore, it is present in the anterior segment of the 

developing eye (Figure 1), the developing extraocular muscles, branchial arches, developing 

teeth, and the maxillary, and mandibular epithelium. Its expression also extends to the 

umbilicus, limb buds, heart, gut, and anterior pituitary gland.

PITX2 was the first ARS gene to be identified [22]. Mutations in PITX2 and FOXC1 
account for approximately 40% of ARS occurrences, where PITX2 mutants usually present 

with ocular, dental, and umbilical anomalies and FOXC1 mutants associate with isolated 

ocular or ocular, heart, and/or hearing defects. PITX2 mutations tend to group in the 

homeodomain and C-terminal region, and result in complete or partial loss of function. 

Gain-of-function mutations, deletions of coding exons/upstream-regulatory regions, and 

chromosomal translocations have been reported, but are rare.

A report describes iris hypoplasia in a father with classical symptoms of ARS from a 

heterozygous FOXC1 frameshift mutation p.Ala204ArgfsX111, and his wife with isolated 

bilateral posterior embryotoxon and iris heterochromia from a heterozygous missense 

mutation in the critical OAR domain (homologous to drosophila otp, aristaless, and murine 

rax) known to interact with FOXC1 [23, 24]. Their female daughter had a severe anterior 

segment disorder of extruding lenses, thin cornea and severe iris hypoplasia. One other 
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report describes a case of severe iris hypoplasia in an individual without foveal hypoplasia 

due to a mutation in PITX2 described as a IVS 2 (−1), G→C mutation (Table 1).

CYP1B1

This gene encodes the enzyme cytochrome P450, family 1, subfamily B, polypeptide 1 - a 

member of the cytochrome P450 superfamily that participates in oxidative biochemical 

reactions important to many processes in the body. It resides on chromosome 2p22 in 

humans and consists of three exons spanning 8.5 kb of genomic DNA, with the coding 

region starting from the second exon [25]. It is expressed in numerous fetal and adult tissues, 

including the parenchymal and stromal tissues of the brain, breast, cervix, kidney, lymph 

nodes, prostate, uterus, ovary, heart, placenta, lung and skeletal muscle. It is also detected in 

ocular tissues. Human CYP1B1 is more highly expressed in the fetus than the adult. It is 

expressed in the fetal ciliary epithelium at 26 days post‐conception before anterior chamber 

development [26]. Ocular expression is also observed in the fetal corneal epithelium, 

keratocytes and iris stromal cells but not in adult eyes. It is observed in the non‐pigmented 

ciliary epithelium, iris pigmented epithelium and iris dilator muscle both in fetuses and 

adults. Its expression could not be detected in fetal or adult trabecular meshwork.

Mutations in CYP1B1 occur in 87% of familial and 27% of sporadic cases of primary 

congenital glaucoma (PCG) worldwide [27]. It is not well understood how defects in the 

CYP1B1 enzyme cause signs and symptoms of glaucoma. Cases of bilateral congenital 

glaucoma with aniridia due to mutations in CYP1B1 have been previously reported (Table 

1). The first was a 4-year old boy presented with bilateral buphthalmos, abnormal 

discoloration, central corneal scarring and absent iris. The optic nerve was cupped and pale 

in the right eye and retinal detachment was observed in the left eye; both due to uncontrolled 

glaucoma. An autozygosity scan using autoSNPa and sequencing revealed homozygosity for 

a previously reported CYP1B1 mutation, p.Arg145ProfsX4. The second study involved 67 

families with 46 having primary PCG. All had bilateral buphthalmos with corneal scarring, 

and eight additionally had mild ectropion uveae with partial aniridia. Genetic testing 

revealed that two of these eight had the same homozygous mutations in CYP1B1, 

specifically p.Asn252Lys. The third case involved three sisters with PCG, where two of 

them also had bilateral aniridia. Genetic screening showed a novel homozygous mutation in 

CYP1B1, p.Ser485Phe, for these two sisters.

FOXD3

This gene expresses another member of the family of transcription factors characterized by a 

forkhead/winged helix domain (FHD), but has an important role in the induction, 

development and migration of neural crest cells [28], formation of melanocytes, 

maintenance of stem cells, their ability to self-renew without differentiating, and as a marker 

for embryonic stem cells [29]. It is located on chromosome 1p31.3 in humans, and is 

encoded by 1 exon spanning 2 kb of genomic DNA. The gene is primarily expressed in 

neural crest cells.

In humans, mutations in this gene are usually associated with vitiligo, an autoimmune skin 

condition characterized by progressive patchy depigmentation [30]. In a different study 
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where 310 probands were screened for mutations in FOXD3, in addition to Pax6 and others 

described in this section, four mutations in conserved regions of FOXD3 segregated with 

aniridia or Peters’ anomaly (Table 1) [28]. These mutations are p.Thr16Met (heterozygous), 

p.Pro120Leu, p.Asn173His, and p.Arg273_Gly276dup, where the p.Asn173His mutation 

disrupts the highly conserved helix 2 of the DNA-binding domain.

TRIM44

This gene translates a tripartite motif-containing protein family member thought to function 

as a ubiquitin E3 ligase, where ubiquitination can result in either degradation or change the 

activity of target proteins. In humans it is located on chromosome 11p13, downstream of the 

loci for PAX6, and is encoded by 5 exons spanning 155 kb genomic DNA. Little is known 

about its normal expression pattern.

A recent study revealed four heterozygous missense mutations in all seven affected 

individuals of a four generation Chinese pedigree with aniridia [31]. Two of the mutations 

were in PAX6, but were found not to affect its regulation. Two of the mutations were in 

PAX6, but were found not to affect its regulation. The two mutations in TRIM44 were 

shown to suppress endogenous PAX6 expression when transfected into human lens epithelial 

cells due to overexpression of TRIM44 protein product, which the authors speculated 

mediates degradation of PAX6 through recruitment of other TRIM E3 ligases, resulting in an 

aniridia phenotype.

Clinical manifestations and management

Aniridia can be categorized into two groups: classic aniridia, which is associated with 

mutations in PAX6 [32], and aniridia-like, which is associated with mutations in genes other 

than PAX6 [33].

Classic aniridia

Ocular findings for this condition include partial or near total absence of iris, cataract, 

aniridia-associated keratopathy (ARK), glaucoma, foveal hypoplasia, optic disk hypoplasia 

and nystagmus making it truly panocular (Table 2).

ARK

The cornea is clear at birth but invariably has a degree of peripheral pannus (Figure 2) that 

stains with fluorescein. Over the next two decades these patients develop keratopathy [34, 

35], which is not surprising as the PAX6 gene is responsible for embryonic and postnatal 

development of the cornea (Figure 1). A prior study showed defective cell adhesions, altered 

cell-to-cell junctions, and wider intercellular spaces due to defective desmosomes in the 

corneal epithelium [36].

An in vivo study of the central cornea with a confocal microscopy revealed that the 

morphology of the epithelium varies according to the severity of the disease. In most 

advanced cases, goblet cells were present together with total loss of corneal epithelium, 

while milder cases showed an intact epithelium [37]. At the early stage of keratopathy, 
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studies have shown an increased central corneal thickness, focal opacities at the level of the 

basal epithelium, and decreased sensitivity of the cornea [38]. Absence of the limbal stem 

cell niche and conjunctivalisation of the limbal region leads to limbal stem cell deficiency 

(LSCD) that clearly has a role in ARK. Meibomian gland dysfunction in form of stenosed or 

atrophic glands was also seen, which leads to defective lipid layer formation resulting in 

evaporative dry eye that exacerbates the demise of the ocular surface [39].

Clinically, patients present in early adulthood with symptoms of blurry vision, redness, dry 

eye, and over the years with gradual opacification of the cornea from the periphery to the 

center [40]. These changes lead to progressive loss of vision. Keratopathy has been graded 

on basis of symptoms and signs like photophobia, erosions, and vascular pannus in three 

stages (Table 3) [41]. Recently, evaluation of the limbal palisades using confocal microscopy 

has allowed correlation between ARK and palisade integrity [42].

Management of ARK depends on the severity of the presenting symptoms and signs. After 

having established that evaporative dry eye can exacerbate the unhealthy ocular surface, 

lubricants and anti-inflammatory drops may delay the progression of ARK. In mild to 

moderate cases of ARK, autologous serum facilitated in maintaining tear film stability and 

decreasing the frequency of corneal erosion [43]. However, as the disease progresses most 

patients require surgical interventions. Penetrating keratoplasty (PK) has not been very 

successful, because of high rate of opacification of the graft [44]. Since LSTD is the main 

cause of keratopathy, kerato-limbal allograft (KLAL) has shown success in maintaining a 

stable ocular surface for at least a year [44]. Secondary PK or keratoprosthesis on these eyes 

that have undergone KLAL, with continuation of the ocular and systemic 

immunosuppression, demonstrated better outcomes, but long-term stability and maintenance 

of the corneal clarity was inconsistent [44]. Another study reported a 5-year follow-up in 

cases of aniridia. The interesting finding in this cohort was that they had subtle iris defects, 

minimal foveal hypoplasia, and absence of nystagmus. This aniridia variant showed good 

success with KLAL alone; however, no palisade evaluation was undertaken [45]. Since the 

ocular surface in advanced cases of ARK is very poor, there is a corresponding increase in 

rate of rejection of any transplant procedures. A study done on ocular surface stem cell 

transplantation (OSST) looked at the causes of rejection; 158 patients had undergone OSST 

with mean follow-up of five years and mean age of 41.7yrs [46]. Aniridia was present in 

46% of the patients and the commonest procedure performed was KLAL (80%). All the 

patients were administered topical and systemic immunosuppressive therapy. Rejection 

occurred in 31.1% of the patients and the mean time to rejection was 19.3 months. They 

observed that the etiology did not play a major role in rejection; the important factors for 

rejection were young age and noncompliance with systemic immunosuppression. These 

patients needed regular follow-up examinations, as future rejections could not be ruled out.

In recent years, keratoprosthesis has been performed as a primary procedure in cases where 

there is low probability of transplant success. Outcomes were studied in 26 eyes with 

aniridia that underwent type one Boston keratoprosthesis, of which 19 eyes had this as the 

primary procedure for corneal pathology [47]. The mean age was 56 yrs (SD; 11yrs), and the 

mean follow-up time was 28.7 months. The common complication that occurred in these 

eyes was the emergence of a retro-prosthetic membrane, where nine of them required 
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neodymium-doped–yttrium aluminum garnet (Nd:YAG) laser membranotomy. They 

observed visual acuity (>20/200) was maintained in the primary procedure group better than 

the secondary group. They also had 77% (20/26 eyes) retention rate, while 6 eyes needed 

replacement of the keratoprosthesis. Glaucoma was diagnosed in 21 eyes before 

keratoprosthesis surgery and 5 eyes had undergone glaucoma surgery. Post-keratoprosthesis, 

23 eyes were diagnosed with glaucoma. Three of them underwent implant surgery. Four eyes 

developed phthisis due to severe hypotony, choroidal detachment, retinal detachment, and 

unspecified infection. Similar complications have been reported previously [48]. Eyes that 

underwent multiple intraocular surgeries developed a progressive fibrosis in the form of a 

membrane called anterior fibrosis syndrome [49]. The fibrous membrane grew from the 

rudimentary iris stump and extended anteriorly, thereby pushing the intraocular lens 

implants forward. This, in turn, caused endothelial touch and posteriorly extended to cover 

the ciliary body leading to hypotony. Histopathologically, this membrane showed a mixture 

of hypo cellular fibrous tissue, consisting of immature collagen fibers with mature collagen 

fibers with absence of glial tissue, corneal epithelium and endothelium and lens tissue. All 

the eyes in this study had undergone cataract extraction with iris diaphragm implants, except 

for one case that had an acrylic sulcus implant. All of the eyes had additional corneal or 

glaucoma procedures, with an average of total three intraocular surgeries. Close and long-

term monitoring of patients with aniridia who have undergone ocular surgeries is necessary 

to detect rejections or complications.

Glaucoma

Glaucoma in aniridia occurs in early adulthood, but may also occur in infants and toddlers 

[50]. The incidence ranges from 6% to 75% [1]. The angle in subjects with aniridia was 

studied by performing serial gonioscopies over a span of 18 years, where it was observed 

that all cases always had an iris stump [3]. The trabecular meshwork and ciliary processes 

were visible posterior to the stump. It was noted that patients who developed glaucoma had 

irregular strands arising from the iris stroma and attaching it to the angle wall. These 

attachments became thicker and moved forward, causing obscuration of the trabecular 

meshwork, scleral spur and the ciliary body. Consequently, the iris stump tilted and the angle 

gradually closed. A study of the angle using an ultrasound biomicroscope showed that along 

with iris hypoplasia, the ciliary body was also hypoplastic [51]. There was anterior 

inclination of the ciliary body and an anteriorly placed lens. Initial management is usually 

with medical therapy, as most of them require surgery at a later stage.

Prophylactic goniosurgery in aniridic patients has been reported [52], with an 89% success 

rate without topical drops [53]. The mean follow-up in the last report was 9.5 yrs. 

Trabeculotomy as an initial procedure has been advocated for patients with high intraocular 

pressure (IOP) [54], with a 83% success rate in patients who underwent the surgery as the 

initial procedure. The average age in this study was 4.5yrs and the follow-up was 11.6yrs. A 

recent study with Ahmed valve implant as the primary procedure showed good IOP control 

when assessed at a mean period of 37.4 months post surgery [55]. A different study 

documented high IOP and greater number of surgical interventions as the cause of poor 

visual outcome in aniridic glaucoma eyes, with the probability of blindness estimated to be 

69.8% at the end of five years [56]. To address the difficulty in treating aniridic glaucoma, 
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perhaps a future study showing prophylactic goniosurgey performed at an early age and then 

comparing various other management options to control increases in IOP may aid in a better 

understanding of the long-term management of glaucoma.

Cataract

Cataracts are seen in 50 to 85 % of aniridic patients [57]. They are detected at infancy, but 

become visually significant in the first decade or early adulthood. The morphology of the 

lens opacities seen are anterior polar, posterior polar and subcapsular cataracts (Figure 3) 

[58, 59].

Cataract surgery in patients with aniridia comes with unique challenges. Preoperative 

intraocular lens power calculation can be difficult due to the unstable ocular surface, 

nystagmus and polar cataracts. Incision size and length need careful consideration to avoid 

causing or exacerbating LSCD in these patients [60]. Study of the lens capsule showed there 

was 50% reduction in thickness of the capsule in young patients when compared to normal 

controls [61]. Due to a hypoplastic iris resulting in absence of a sulcus in aniridia, in-the bag 

implantation is the only option in these cases. If the anterior capsule is unstable, posterior 

capsule optic capture must be performed. Iris reconstruction in aniridia can be a challenging 

task. Outcomes of black iris diaphragm lens in congenital aniridia cases have been studied, 

where it was found that glaucoma was the most common complication in these eyes who 

required further surgeries for control of IOP [62]. There are a few case reports on the use of 

iris implant devices, most of them for traumatic aniridia. Further investigation into the long-

term use and safety of such devices is necessary.

Retina

The fovea and optic disc show varying degrees of hypoplasia. Most of the studies show the 

presence of foveal hypoplasia to be as high as 90% in these eyes [63]. Clinically, there is 

absence of the macular reflex and foveal pit, and presence of abnormal retinal vessels 

crossing the fovea (Figure 4) [12]. The presence of foveal hypoplasia has been shown by 

measuring increased thickness of fovea and central macula by Optical Coherence 

Tomography (OCT) (Figure 5) [64]. A few case reports have shown retinal detachments, 

exudative retinopathy, and chorioretinal degeneration in these patients [34, 58, 65]. 

Electroretinogram (ERG) shows a decrease in amplitude of all the waveforms, suggesting 

abnormality in all retinal layers [66]. Optic nerve hypoplasia is seen in 10 to 30% of these 

cases [40, 67]. There has been no proven correlation between the optic nerve and foveal 

hypoplasia, but most cases show nystagmus. Incidence of nystagmus is as high as 90%, 

where the majority of these eyes show horizontal pendular nystagmus [1, 63]. Vertical 

nystagmus as a phenotype variant with foveal hypoplasia, presenile cataract and intact irides 

has been recently described [68].

Other ocular manifestations

Other ocular manifestations are not typical of classic aniridia, and may include 

blepheroptosis, which has been reported in association with familial cases of classic aniridia 

[69]. Surgical management of ptosis in this subset of patients needs a careful approach 
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according to guidelines in a report recently published for ptosis surgery in aniridic patients 

[70].

Systemic associations with classic aniridia

Patients with PAX6 mutations may have systemic abnormalities along with aniridia, which 

may not manifest in infancy. WAGR syndrome may also be present.

WAGR

Children with WAGR present early in life. Classical WAGR in older children can be 

diagnosed by aniridia and one of following findings: genital anomalies, Wilms’ tumor, and 

intellectual disability [71]. WAGR without aniridia is rare. A study done on the Dutch 

population has reported that patients with sporadic aniridia had 67 times higher risk of 

developing Wilms’ tumor (confidence interval 8.1–241) when compared to the normal 

population [72]. Intellectual disability is the most common neurological manifestation. The 

other neurological abnormalities may be olfactory problems, hypertonia, and corpus 

callosum agenesis. Genitourinary findings are cryptorchidism, ambiguous genitalia, and 

streak ovaries [71]. Obesity has also been observed in most of these patients [50, 71]. 

Therefore, when an infant presents with sporadic aniridia and genitourinary abnormalities, a 

molecular diagnosis must be made to exclude the deletion encompassing the WT1 gene, so 

appropriate risk management can be put in place for management of potential of Wilms’ 

tumor.

Clinical correlations with PAX6 mutation types in classic aniridia:

When analyzing the PAX6 mutation database (http://lsdb.hgu.mrc.ac.uk/home.php?

select_db=PAX6), categorizing a type of mutation to a particular phenotype cannot be easily 

made. For example, when considering missense type of mutations in PAX6, a p.Ser43Pro 

missense mutation leads to total aniridia, a p.Ser121Pro missense causes partial aniridia, and 

a recently reported p.Pro76Arg missense mutation leads to intact irides. Though some 

reports have shown certain phenotype frequencies with a particular type of mutation [58], no 

definitive conclusion can be derived until further functional studies on the protein have been 

conducted. An exception to this is in the cases of PTC and 3’-UTR type of mutations, where 

the majority of occurrences lead to total aniridia.

Pax6 unrelated aniridia

There are differences in phenotypes between classic aniridia and aniridia-like associated 

with other etiologies (Table 4). The latter occurs in 10% of cases [73]. Therefore, if an infant 

presents with an absence of iris, the differences in the clinical features associated with each 

of the etiologies would help distinguish between classic aniridia from PAX6 mutations to the 

other types of aniridia-like from other etiologies. Aniridia has been previously reported in 

association with other conditions as described below.

Gillespie syndrome

Children present with partial aniridia, cerebellar ataxia, and psychomotor delay. It has been 

reported to have an autosomal-recessive inheritance, though no gene has been consistently 
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identified for reported cases of the disorder. Ocular findings show some amount of iris 

present with absent pupillary zone and there have been reports of presence of a persistent 

pupillary membrane along with the above findings, diagnosis of the syndrome remains 

clinical [74]. Complete absence of iris has been reported with Brachmann-de Lange 

syndrome and Omenn syndrome [75, 76].

Duane’s syndrome, megalocornea are other reported associations with aniridia. These have 

been single case reports without detail genetic screening [77, 78].

Future

Apart from the genes listed in the etiology section, a putative causal gene that can be added 

to this list is Notch1 [79]. This gene encodes the Notch1 receptor as part of the Notch 

pathway, and in humans resides on chromosome 9q34.3. The Notch pathway is a highly 

conserved signaling cascade involved in numerous differentiation processes during 

embryonic and postnatal development, in addition to maintenance of adult organs capable of 

self-renewing. It has been shown to be required for melanocyte development, and therefore 

pigment formation in the skin.

A recent report investigating the development of the anterior pigmented epithelium of the 

ciliary body indicated that the Notch pathway could play a role in iris development [79]. The 

notable findings were that loss of canonical Notch signaling, through Notch 2 or RBJ 

absence, results in normal iris development and absence of the ciliary body, while Notch1 

gain-of-function result in aniridia with ciliary body hyperplasia, the latter causing glaucoma-

like disease.

Treatment for aniridia has taken a dramatic step forward recently through a study examining 

aminoglycosides that suppress expression of premature stop codons (PTCs) in PAX6 and 

allow transcriptional read-through, therefore producing a functional protein. It has been 

determined that 72% of all PAX6-associated aniridia are caused by missense mutations, such 

as nonsense, splice-site, and frameshift mutations that result in PTCs [12]. However, some 

missense mutations cause a change of amino acid and not a PTC. A recent study has 

developed a postnatal nonsense mutation suppression approach for in-frame PTCs associated 

with aniridia [80]. In this approach, an aminoglycoside, named ataluren, promotes read-

through of PTCs, because during mRNA translation a near-cognate aminoacyl tRNA is 

inserted into the position of the PTC. A functional PAX6 protein is therefore produced. This 

approach was tested on the malformation defects exhibited by the Pax6-deficient mouse 

model of aniridia. They found that ataluren promotes dose-dependent read-through of all 

three nonsense codons, with the highest read through at UGA, followed by UAG and then 

UAA. Read-through efficiencies were influenced by the nature of the nucleotide following 

the nonsense codon, where a pyrimidine (in particular cytosine, C) would increase efficiency 

of read-through. They demonstrated that the mammalian eye retains marked developmental 

plasticity into the postnatal period and molecular remodeling by reversing corneal, lens, and 

retinal malformation defects and restoring electrical and behavioral responses of the retina.
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Expert commentary

Currently, our understanding of the mechanism of aniridia is rudimentary. Increased 

awareness of total/partial iris defects (total/partial aniridia) needs to be implemented so 

appropriate genetic testing can be done to find a molecular diagnosis rather than a clinical 

one. Improved genotype–phenotype correlation will likely allow reclassification of 

congenital aniridia according to the responsible gene. Mutation detection for PAX6 is 43.3% 

[81]. Even when other genes that cause aniridia like phenotype are considered, current 

genetic testing is not capable of finding all gene mutations. At present, treatment of aniridia-

related glaucoma maybe hindered by inappropriate diagnosis, for example, while goniotomy 

is considered for PAX6-related aniridic glaucoma, goniotomy for FOXC1/PITX2-related 

glaucoma with aniridia would likely fail.

Five-year view

The classification of aniridia is likely to move to a molecular genetic one in the near future 

given our increased understanding of both causative mutations in different genes and the 

extraocular association of such mutations.

The role of other genes on 11p13, example TRIM44, on PAX6 expression will also help 

understand a molecular diagnosis. This will impact accurate genetic counseling and better 

therapeutic interventions. Specifically for PAX6-related aniridia, advances in stem cell 

research with early intervention may help delay the process of keratopathy, and a better 

understanding of iris development may allow therapies for iris growth.
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Key issues

• Two types of aniridia: classic aniridia associated with mutations in PAX6 and 

aniridia-like associated with mutations in genes other than PAX6, such as 

FOXC1, PITX2, and CYP1BI.

• Classic aniridia is a panocular disorder with iris hypoplasia, aniridia-

associated keratopathy, cataract, foveal and optic nerve hypoplasia and 

nystagmus. FOXC1 aniridia-like presents usually with dental anomalies, and 

PITX2 aniridia-like presents with heart and umbilical hernias and CYP1B1 

has no systemic manifestations but presents with glaucoma at birth.

• Sporadic cases of aniridia need to be screened for WAGR syndrome and need 

continuous monitoring for a defined period.

• All types of management in aniridic cases have better outcomes if diagnosed 

early.

• Most interventions in aniridia management are surgical in nature

• Prolonged monitoring and close compliance need to be adhered for good 

outcome of management.
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Figure 1. Expression pattern of Pax6, FoxC1 and Pitx2 in the early and late eye
The expression patterns for Pax6, FoxC1, and Pitx2 are presented based on studies in mice 

and humans [82–87]. Early expression is shown at embryonic day 11.5 (E11.5), which 

represents day 33 in human development, and late expression is shown at E18.5, which is 

close to prenatal in humans. For Pax6, early expression is seen in the lens vesicle (lv), optic 

cup (oc), and presumptive cornea (pc) [86]. Expression later in the prenatal is restricted to 

the ganglion cell layer and inner and outer portions of the inner nuclear layer of the retina 

(r), where the latter points to expression specifically in the amacrine and horizontal cells 
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[85]. At this stage, Pax6 is also expressed in the epithelia of the cornea (c), conjunctiva (cj), 

lens (l), ciliary body (cb), iris (i) and trabecular meshwork (TM). For both FoxC1 and Pitx2, 

expression in the early eye is seen in the neural crest cells of the periocular mesenchyme that 

surrounds the oc, in the intracellular space between the lv and pc, and the intracellular space 

between the inner oc and lv [84]. In the prenatal eye, FoxC1 expression is reduced to the 

conjunctival epithelium, sclera and trabecular meshwork [82] and Pitx2 expression is 

reduced to the iris [83], and according to a study of expression in human eyes is expressed in 

the corneal epithelium, the ciliary body non-pigmented layer and the nuclear layers of the 

retina [87]. Pitx2 is present in the corneal stroma but FoxC1 is much reduced in this layer 

[82, 83].
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Figure 2. Aniridia showing absence of iris and peripheral pannus
Eye of 20-year-old female showing corneal and limbal changes. Indicated are presence of 

pannus and absence of a well demarcated limbus (white arrows), in addition to absence of 

the iris (small black arrows).
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Figure 3. Anterior polar cataract and subcapsular lens opacities
3-year-old male showing lens changes. Subcapsular opacity (small black arrow), anterior 

polar lens opacity (long black arrow) and absence of the iris (white arrow) are shown.
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Figure 4. Foveal hypoplasia in aniridia
Fundus photo of a 16-year-old boy. Note the blood vessels crossing the fovea (white arrow) 

and optic disc hypoplasia (black arrow).
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Figure 5. OCT of thickened fovea and absence of pit
OCT images of the same eye (Figure 4) showing absence of a foveal pit and a thickened 

fovea (black arrow).

Samant et al. Page 23

Expert Rev Ophthalmol. Author manuscript; available in PMC 2018 August 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Samant et al. Page 24

Table 1.

Etiology of partial and total aniridia

Phenotype: Partial aniridia

Etiology: PAX6 [73] [69]
     FOXC1 [88]
     PITX2 [89]
     CYP1B1 [32]

Phenotype: Total aniridia (iris stump on gonioscopy)

Etiology: PAX6 [81]
     FOXC1 [33]
     CYP1B1 [90]
     FOXD3 [28]
     TRIM44 [31]

*
numbered references for FOXC1 and CYP1B1 match to case orders in the text
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Table 2.

Features of classic aniridia

Condition Previous studies [35] Schanilec et al., 2014 [35] Chang et al., 2014 [63] Singh et al., 2014 [91]

Nystagmus 81.8–95% 76% 68% N/A

Cataract 50–80% 56% 53% 40.3%

Glaucoma 6–75% 64% 20 OH**** 36.3%

ARK 20–64% 48% 69% 59.9%

Dry eye 94% 1% N/A N/A

FH 10.7–54.5% 20% 91% 87.7%

ONH 10.7–75% 20% N/A N/A

ARK: aniridia-associated keratopathy; FH: foveal hypoplasia; ONH: optic nerve hypoplasia; OH: ocular hypertension
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Table 3.

Staging of aniridia-related keratopathy

Stage Erosion/ulcer Pannus Signs & symptoms Others

1 2 recurring erosions/ulcer in 
6 months

<1mm from limbal arch Slight epiphora and photophobia Small disorder in 
absorption of 
fluorescein

2 > 3 recurring erosions/ulcer 
in 6 months

≥ peripheral half of the cornea +/− 
sub epithelial fibrosis

Constant red eye, epiphora, 
photophobia

Permanent instability 
of tear film

3 Permanent signs of corneal 
erosions

Central cornea involved Constant red eye, epiphora, 
photophobia and loss of vision

Permanent instability 
of tear film
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Table 4.

Classic and aniridia-like phenotypes

Aniridic genes PAX6 (C) FOXC1(AL) CYP1B1 (AL) PITX2 (AL)

Keratopathy ✓ - - -

Iris abnormality ✓ ✓ ✓ ✓

Glaucoma at birth - - ✓ -

Cataract at birth - - - -

Foveal hypoplasia ✓ - - -

Nystagmus ✓ - - -

Optic disc Hypoplasia - Cupping -

Posterior embryotoxon - ✓ - -

Systemic anomalies Kidney, brain Facial, dental - Cardiac, umblical hernia

AL: aniridia-like; C: classic aniridia
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