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Abstract

Visualizing and modulating molecular and cellular processes occurring deep within living 

organisms is fundamental to our study of basic biology and disease. Currently, the most 

sophisticated tools available to dynamically monitor and control cellular events rely on light-

responsive proteins, which are difficult to use outside of optically transparent model systems, 

cultured cells, or surgically accessed regions owing to strong scattering of light by biological 

tissue. In contrast, ultrasound is a widely used medical imaging and therapeutic modality that 

enables the observation and perturbation of internal anatomy and physiology but has historically 

had limited ability to monitor and control specific cellular processes. Recent advances are 

beginning to address this limitation through the development of biomolecular tools that allow 

ultrasound to connect directly to cellular functions such as gene expression. Driven by the 

discovery and engineering of new contrast agents, reporter genes, and bioswitches, the nascent 

field of biomolecular ultrasound carries a wave of exciting opportunities.
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1. INTRODUCTION

Studying biological function within the context of living organisms and the development of 

biomolecular and cellular therapy requires methods to image and control the function of 

specific molecules and cells in vivo. However, most popular methods for achieving 

spatiotemporally precise interactions with biological substances, such as fluorescent imaging 
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and optogenetics, have limited utility in deep tissues owing to the strong scattering of visible 

light. Unlike photons, which are scattered within approximately one millimeter of tissue, 

ultrasound waves easily penetrate several centimeters deep while retaining spatial and 

temporal coherence. This capability has made ultrasound one of the world’s leading 

modalities for medical imaging of anatomy, physiology, and noninvasive therapy. However, 

historically ultrasound has played a relatively small role in molecular and cell biology owing 

to a lack of effective methods to couple sound waves to specific processes such as gene 

expression and cellular signaling.

Recent advances are changing this picture by enabling ultrasound to image and control the 

function of specific biomolecules and cells and drive biomolecular transport across cellular 

and tissue barriers. These emerging capabilities for biomolecular ultrasound are the focus of 

this review. We start with a brief primer on ultrasound physics and technology. We then 

describe the development of genetically encodable acoustic biomolecules, which could serve 

as the ultrasound equivalents of fluorescent proteins for noninvasive molecular and cellular 

imaging. Next, we discuss proteins and genetic circuits allowing focused ultrasound (FUS) 

to remotely control gene expression and other aspects of cellular signaling through 

sonogenetic strategies analogous to optogenetics and chemogenetics. Finally, we discuss the 

role of ultrasound in enhancing the transport of biomolecules across cell membranes and 

tissue boundaries. We aim to convey both the exhilarating recent developments underlying 

the emergence of biomolecular ultrasound and the exciting opportunities this nascent field 

holds for creative biomolecular and ultrasound engineers.

2. BRIEF BACKGROUND ON BIOMEDICAL ULTRASOUND

2.1. Wave Behavior and Tissue Interactions

Ultrasound is defined by sound wave frequencies above those audible to humans (>20,000 

Hz). Generated by transducers coupled to a transmission medium such as biological tissue, 

ultrasound waves travel through the medium and interact with its components to form 

images or provide momentum and energy for perturbation. In biological tissues, as in 

liquids, compression waves are dominant and are used for most modes of imaging and 

control. In tissue, sound waves travel at ~1,540 m/s and are reflected and scattered wherever 

they experience a change in acoustic impedance, which is a function of the local density and 

compressibility (1) (Figure 1a). The relative homogeneity of the speed of sound in soft 

tissues results in sound waves remaining coherent as they traverse the tissue, enabling simple 

image reconstruction without major aberrations (2). By comparison, visible light is strongly 

scattered in tissues, making it challenging for it to retain a ballistic path at depths greater 

than a few hundred microns (Figure 1b).

Ultrasound reflection at tissue interfaces is highly directional and reveals anatomical 

contours. Soft tissues have similar acoustic impedance values, resulting in relatively low 

contrast between them; air and bones have much lower and higher acoustic impedances, 

respectively, resulting in strong reflections (2). When the ultrasound wave encounters a 

target smaller than approximately one-tenth of the wavelength, it is scattered 

omnidirectionally (3). Biological tissues include a wide range of such scatterers in the form 

of fibers, cells, and organelles. The echo from a single scatterer is usually very weak. When 
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several very close scatterers are imaged, the result is a dominant spatially coherent 

interference pattern called speckle (2). The amplitude of the ultrasound wave decreases 

exponentially as a function of depth. Part of the energy of the ultrasonic wave is absorbed in 

the tissue and dissipated as heat. Attenuation refers to both absorption and any reduction in 

wave amplitude owing to reflection or scattering. Each tissue is characterized by a different 

attenuation coefficient value, which increases nonlinearly with frequency (2). As they pass 

through a medium, ultrasound waves also deposit momentum into that medium, resulting in 

mechanical forces known as acoustic radiation forces (ARF). Appreciable at higher 

ultrasound intensities and pulse durations, these forces, as well as localized heating, can be 

used to perturb and manipulate tissues and other materials.

2.2. Ultrasound Imaging

Ultrasound imaging is the most prescribed diagnostic modality in clinical practice (4). 

Typical equipment involves an ultrasound scanner and an ultrasound probe made of a linear 

array of transducer elements (i.e., 128 to 256 ultrasound transmitting/receiving elements) 

(5). Numerous ultrasound imaging modes have been translated to clinical practice; several of 

these modes are relevant to biomolecular ultrasound.

2.2.1. B-mode imaging—Ultrasound scanners are primarily used to produce real-time 2D 

images of underlying tissue (Figure 1d). These grayscale images are referred to as B-mode 

images (where B stands for brightness) and are acquired through transmission into a tissue 

of short ultrasound pulses and recording of backscattered echoes. The location of a 

scattering or reflecting source is reconstructed from the arrival time of its signal at each 

array element in a process known as beamforming. The position of a point in the 

reconstructed B-mode image depends on the time of flight of the echo and the position of 

the transmitting probe element. The in-depth or axial resolution of B-mode images depends 

on the wavelength (λ = ctissue/fUS, where c is the speed of sound in tissue and f is the 

ultrasound wave frequency) and the number of cycles of vibration of the transmitted pulse. 

The axial resolution typically ranges from 500 μm (medical imaging) down to 50 μm 

(ultrasound biomicroscopy) (6). Because both attenuation and resolution increase with 

frequency, there is an inherent tradeoff between resolution and imaging depth (Figure 1c). 

The lateral resolution of B-mode images depends on the transmitted ultrasound beam width 

and is typically a few hundred microns. The transverse resolution or image thickness is 

usually on the order of a millimeter. B-mode imaging is used to image every organ of the 

body with the exception of bones or air-filled organs such as the lungs.

2.2.2. Doppler imaging—Ultrasound Doppler imaging detects the motion of red blood 

cells (RBCs) and, therefore, blood flow (7). RBCs scatter weak ultrasound echoes, which 

can be captured with modern ultrasound probes. At a given depth in tissue, the temporal 

shifts observed in consecutive RBC echoes allow detection of the displacement of RBCs and 

derivation of a Doppler signal proportional to RBC velocity. One can generate vascular 

images displaying either the velocity (color Doppler) or the energy of RBC echoes (power 

Doppler) (8).

Maresca et al. Page 3

Annu Rev Chem Biomol Eng. Author manuscript; available in PMC 2019 June 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2.2.3. Contrast imaging—Contrast-enhanced ultrasound relies on the administration of 

contrast agents to label specific aspects of anatomy or physiology. The conventional contrast 

agents used for this purpose are microbubbles: synthetic, micron-sized bubbles of gas 

stabilized by a lipid or protein shell (9–12). When injected into the blood stream, 

microbubbles produce strong scattering as they resonate at ultrasound imaging frequencies 

(1–20 MHz). Dedicated ultrasound contrast modes have been developed to benefit from that 

resonant behavior, such as amplitude modulation (13) or phase inversion (14), allowing the 

detection of microbubbles in vivo with higher specificity. Microbubbles can also be used to 

enhance Doppler imaging.

2.2.4. Ultrafast imaging—Conventional B-mode imaging uses a series of focused 

transmissions along an ultrasound array to form an image, such that the acquisition of a 10-

cm-deep image with a 128-element probe takes at least 128 * 10 cm * 2/1,540 m/s ~ 17 ms, 

resulting in a frame rate of 59 Hz. A major recent advance, known as ultrafast ultrasound, 

uses single–plane wave transmissions, rather than focused line transmissions, to form 

images, resulting in a two-orders-of-magnitude acceleration in frame rate (15). The 

equivalent temporal resolution for a 10-cm image is 10 cm * 2/1,540 m/s ~ 130 μs, or 7,700 

frames per second. This advance was made possible by improvements in computer hardware 

allowing flexible software beamforming. This technology was initially developed for shear 

wave elastography and later applied to Doppler imaging.

2.2.5. Functional ultrasound imaging—Ultrafast Doppler imaging has raised the 

sensitivity of conventional Doppler imaging by a factor of 30, leading to high-resolution, 

high–signal-to-noise ratio maps of the brain vasculature in rodents (16). The sequential 

acquisition of vascular maps of the brain with ultrafast Doppler has enabled the detection of 

neural activity through neurovascular coupling (17). Research efforts are ongoing to turn 

functional ultrasound imaging of the brain into a full-fledged neuroscience modality that 

complements functional magnetic resonance imaging (MRI) with improved spatiotemporal 

resolution, portability, and cost.

2.2.6. Ultrasound localization microscopy—Superresolution ultrasound imaging, also 

based on ultrafast ultrasound, was recently introduced using microbubbles as blinking 

sources. It was used to generate sub–10 μm–resolution images of the brain or tumors at the 

organ scale (Figure 1d) (18, 19).

To obtain 3D information, linear array transducers are typically translated in the transverse 

direction, acquiring multiple 2D planes. In the future, all the imaging modes described above 

could be translated into 3D with the use of dedicated ultrasound probes made of 2D arrays 

of transducers.

2.3. Focused Ultrasound Actuation

Thanks to the low attenuation of soft tissues, energy can be deposited at a specific location 

deep within the body using FUS (Figure 1e). Ultrasound can be applied based on known 

anatomical targeting or used under real-time guidance from magnetic resonance imaging 

(20), allowing accurate localization of the target site and monitoring effects on the tissue. 
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Ultrasound can be focused using either a curved single-element transducer or electronically 

focused multielement phased arrays, which in addition to steering the beam can correct for 

wave-front aberrations caused by acoustically mismatched tissues, such as the human skull 

(21).

There are three basic modes of ultrasound energy delivery (Figure 2): heat generation, 

exertion of ARF, and acoustic cavitation (22). Heating occurs owing to viscous dissipation 

as molecules move back and forth at the ultrasound focus, increasing with greater acoustic 

frequency and intensity. Reaching substantial temperature elevations typically requires pulse 

durations on the order of seconds. ARF in traveling ultrasound waves arises from the loss of 

momentum as sound waves become attenuated or reflected; by conservation, this momentum 

is transferred to particles in the medium. This effect scales with attenuation and usually 

requires pulses on the order of milliseconds for target tissues to reach their maximal elastic 

response to ARF. In addition to traveling waves, ARF can also arise in standing ultrasound 

waves owing to the presence of pressure nodes and antinodes, attracting or repelling 

particles based on their material properties (23). Finally, cavitation arises through the 

interaction of ultrasound with bubbles, which may arise spontaneously in the medium or 

become nucleated at material interfaces or are introduced as external cavitation agents (24). 

Cavitation can be stable, with gas bubbles periodically oscillating around their initial radius 

at the frequency of the acoustic wave, or inertial, in which rapid growth of the bubble 

followed by violent collapse releases large forces and fluid jets into surrounding media. 

Stable cavitation occurs preferentially at the resonance frequency of each bubble, with 

inertial cavitation becoming more likely with increases in the ratio between the peak 

negative pressure and the square root of the frequency—a ratio termed the mechanical index, 

with units of MPa MHz −½ (1).

Each of these modes has been exploited for therapeutic purposes, such as thermal tissue 

ablation (25–28), local drug delivery (29–31), and thrombolysis (32), and has the potential to 

interact with biomolecules. Not covered in this review, unfocused ultrasound in the 20–100-

kHz range is also widely used in laboratory and industrial processes to disrupt material 

structures, accelerate chemical processes, and clean surfaces. Most of these effects are 

thought to be mediated by cavitation (33).

2.4. Comparison of Ultrasound with Other Modalities for Imaging and Control

In comparison with other modalities for imaging and control of biological function, 

ultrasound provides exceptionally high temporal resolution with scalable, frequency-

dependent spatial resolution and penetration depth. In addition, it offers a relatively wide 

variety of physical interactions for potential biomolecular coupling. Many of these unique 

advantages stem from fortuitous physical parameters. The density and compressibility of 

tissue lead to ultrasound wavelengths in the mid-micron range, whereas the relative 

homogeneity of tissue on this size scale leads to low scattering, enabling sound waves to 

penetrate deeply and be treated as coherent on their way in and out of the body. These 

characteristics also make it intrinsically straightforward to do things with ultrasound that 

may be harder with other modalities, such as pulse and wave-front shaping and 

superresolved signal reconstruction. In addition, the ability of ultrasound to deposit focused 
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momentum and energy in media allows it to interact with appropriate molecules, cells, and 

tissues through thermal and mechanical mechanisms.

However, ultrasound does have some limitations compared with other methods. For instance, 

its ability to penetrate bony enclosures and air-filled compartments is limited compared with 

magnetic resonance and radioactive techniques. Furthermore, although the spatial precision 

of ultrasound can be scaled with frequency, achieving a (nonsuper-)spatial resolution 

approaching optical imaging (~1 μm) would require using a frequency (1.5 GHz) (34) that is 

readily attenuated within less than 1 mm of tissue, obviating a key advantage of ultrasound 

compared with optical methods. Most importantly for the purpose of this review, ultrasound 

currently has far fewer biomolecular tools to connect it to cellular and molecular function. 

However, as addressed in the following sections, new tools are starting to emerge to address 

this gap.

3. BIOMOLECULAR CONTRAST AGENTS AND REPORTER GENES FOR 

ULTRASOUND

3.1. Gas Vesicles

For several decades, micron-sized synthetic bubbles have been used as ultrasound contrast 

agents, leading to important preclinical and clinical applications (9–11). Although these 

bubbles can be functionalized to recognize and bind to specific targets in the bloodstream, 

their size and limited in vivo stability make it challenging to use them for molecular imaging 

of extravascular targets and monitoring of dynamic cellular processes. In 2014, a unique 

class of gas-filled proteins called gas vesicles were introduced as the first biomolecular 

contrast agents for ultrasound, paving the way for more direct visualization of cellular and 

molecular function using sound waves (35).

3.1.1. Basic biology and history of gas vesicles as ultrasound reporters—Gas 

vesicles (GVs) were initially identified in 1965 as components of gas vacuoles found in 

cyanobacteria (36), themselves first observed in 1895 as intracellular bodies whose native 

function is to regulate cellular buoyancy for optimal access to light and nutrients (37). GVs 

of different shapes and sizes have been identified in a variety of bacteria and archaea and 

have been studied by pioneering biology groups to determine their basic genetic, structural, 

physical, and biochemical properties (38, 39). GVs are cylindrical or spindle-shaped protein 

nanostructures, with lengths ranging from 100 nm to 2 μm and widths of 45–200 nm (Figure 

3a,b). GVs comprise a 2-nm-thick amphiphilic shell that allows gas from the surrounding 

media to freely permeate in and out of their hollow interior, while excluding the aqueous 

phase. This amphiphilicity is accomplished by the primary structural constituent of GVs, a 

~7.5-kDa protein called GvpA, which is predicted to fold into a beta sheet structure with 

hydrophobic and hydrophilic faces (40) (Figure 3c). In addition to GvpA, a cluster of 7–13 

other genes is needed to enable GV production (Figure 3d), encoding minor structural 

proteins and assembly factors such as chaperones and nucleators (38, 39).

GVs are a remarkable product of evolution. First, whereas nanoscale bubbles are highly 

unstable owing to their high Laplace pressure, GVs are fundamentally physically stable and 
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in equilibrium with their surroundings; gas dissolved in surrounding media equilibrates with 

the contents of GVs on a microsecond timescale (41). Second, despite having a ratio of 

~75:1 between their diameter and shell thickness, GVs can withstand pressures of up to 1.3 

MPa before collapsing (38). Third, the entire GV structure, with a molecular weight in the 

range of ~50–350 MDa, is self-assembled mostly from a single 7.5-kDa protein repeated in 

its shell in a highly ordered arrangement.

The first demonstration of GVs as acoustic biomolecules, published in 2014, showed that 

GVs from Anabaena flos-aquae (Ana) and Halobacterium salinarum NRC-1 (Halo) could 

produce ultrasound contrast in their purified form, inside cells, and after injection in vivo 

(Figure 3e), opening the door to their development as biomolecular reporters for ultrasound 

and as targeted nanoscale agents for molecular imaging (35). The GVs were detectable at 

concentrations below 12 pM (corresponding to ~3.5 μg/ml or 0.005% volume fraction) (35, 

42). This initial study provided a glimpse of the potential of GVs to serve as background-

subtracted imaging agents based on their ability to collapse at specific acoustic pressures, the 

ability to distinguish multiple GV types for multiplexing, and their production of nonlinear 

acoustic signals. Since then, considerable progress has been made in understanding and 

engineering the acoustic properties of GVs, enhancing the ability of ultrasound to detect 

them, and developing them as acoustic reporter genes (42–46).

3.1.2. Understanding and engineering the acoustic and targeting properties of 
gas vesicles—From the perspective of biomolecular engineering, the genetic encodability 

of GVs raises the possibility of tuning the properties of these acoustic contrast agents at the 

level of their DNA sequence and constituent proteins. The outer shell of GVs is composed 

almost entirely of GV proteins A and C (GvpA and GvpC). GvpA is a ~7.5-kDa amphiphilic 

protein that composes the primary GV shell material, whereas GvpC forms the outer 

scaffold that influences shape and structural integrity (Figure 3d) (38, 39).

In 2016, a versatile molecular engineering platform based on GvpC was established to 

modify the mechanical, acoustic, surface, and targeting properties of purified Ana GVs (43). 

This platform was based on removing the wild-type GvpC bound to Ana GV shells and 

replacing it with genetically engineered versions of this protein. This is done conveniently 

by treating Ana GVs with 6-M urea to remove its native GvpC and incubating the stripped 

GVs with new GvpC proteins expressed recombinantly in Escherichia coli (Figure 3f). 
Unbound molecules are removed by repeated separation of GVs via centrifugally assisted 

flotation. This modular approach allows the testing and use of many different GvpC variants 

on the same stripped GV backbone (Figure 3g).

Based on GvpC’s large influence on GV shell mechanics (38), engineering this protein 

enables modulation of the way GVs respond to and scatter ultrasound (43). For example, it 

allows tuning of the pressure at which GVs collapse and thereby lose their ultrasound 

contrast, enabling multiplexed imaging through serial collapse (Figure 3h). The direct 

relationship established between hydrostatic and acoustic GV collapse pressures provides a 

convenient method to evaluate GV modifications to generate tuned variants (43). In addition 

to mechanical tuning, GvpC can be used as a genetic handle for GV functionalization to 

achieve cell-specific molecular targeting, tuning of GV uptake by macrophages, and 
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multimodal imaging with ultrasound and fluorescence (Figure 3g). GvpC functionalization 

is achieved by direct fusion of the relevant peptides, or via a bio-orthogonal covalent 

attachment using the SpyTag-SpyCatcher protein assembly system. Genetic fusion to GvpC 

has also been used to develop GVs as antigen display particles (47).

Although initial engineering efforts have primarily focused on substituting one component 

of GVs purified from native hosts with genetically engineered versions, an alternative 

strategy would be to engineer GVs entirely at the level of their DNA sequence and express 

these modified gene clusters in native or heterologous hosts. Natural GVs come in a variety 

of shapes, sizes, and collapse pressures depending on their microbial origin (38, 39). A 

rational genetic engineering approach combining elements from different native GV gene 

clusters, or making functionally conservative mutations in certain GV genes, could be used 

to engineer hybrid or mutant GVs that display unique mechanical and acoustic phenotypes. 

Such mutations have been shown in basic studies to produce a variety of GV shape 

phenotypes (48–50). This aspect is further explored in the context of developing acoustic 

reporter genes, as elaborated in a later section.

3.1.3. Gas vesicle mechanics and pulse sequences for imaging them—Among 

the most useful properties of GVs for ultrasound imaging is their nonlinear mechanical 

response to ultrasound. This response was originally observed as backscattering at 

harmonics of the excitation frequency and was understood in subsequent studies as the 

product of nonlinear buckling deformations of the GV shell (44, 45) (Figure 3i). In these 

studies, finite element modeling of two types of single GVs predicted the existence of a 

pressure-dependent buckling behavior of the GV shell at the applied acoustic frequency, 

with these step changes in GV volume resulting in harmonic scattering (Figure 3j). This 

buckling takes place only above a threshold pressure specific to each GV type, which can be 

tuned through genetic engineering (45). Remarkably, these buckling deformations are fully 

reversible when they take place at megahertz frequencies, allowing GVs to respond to 

thousands of ultrasound cycles every second. This reversibility is aided by the inability of 

GV-contained gas to exit the shell on a sub-microsecond timescale, so that it becomes 

compressed after buckling and resists the total collapse of GVs (44). Pressures that produce 

buckling under ultrasound tend to collapse GVs irreversibly when applied hydrostatically, as 

this quasistatic compression allows gas molecules to exit the GV during pressurization, with 

the shell carrying the full compressive load by itself.

The specific nondestructive detection of GVs in vivo against anatomical background is key 

to ensuring the success of GVs as ultrasound reporters. Toward this end, an imaging 

approach was recently developed to take advantage of GVs’ nonlinear buckling behavior. 

This technique uses an amplitude modulation (AM) sequence that detects differential 

backscattering generated by two consecutive transmissions of different amplitudes, with the 

stronger and weaker pulses above and below the buckling threshold, respectively (45). AM 

produced greater GV contrast specificity and was used to distinguish engineered GVs from 

linear scatterers in vitro (Figure 3k) and in vivo.

Mechanical modeling of GVs also yielded an estimate of the scattering cross section of 

single GVs (44). For Halo GVs, this cross section was similar to that of a RBC at 20 MHz, 
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despite the GV being 4,500 times smaller (volumes of 20 aL for a GV and 90 pL for a 

RBC).

3.1.4. Development of acoustic reporter genes—The discovery of GVs as acoustic 

biomolecules raises the potential of their development as acoustic reporter genes (ARGs), 

which could do for ultrasound what green fluorescent protein (GFP) and its derivatives have 

done for optical imaging. Development of ARGs requires functional heterologous 

expression of GV operons, which was initially pursued in commensal and therapeutic 

microbes as a means to image their location and function inside mammalian hosts—an 

important capability for basic microbiome research and biomedical synthetic biology. In the 

first study to introduce ARGs, E. coli and Salmonella typhimurium cells were genetically 

engineered to produce ultrasound image contrast (46) (Figure 4a). This development 

required engineering a hybrid GV gene cluster with components from two organisms. This 

was necessitated by the observations that the transfer of GV gene clusters from organisms 

producing known echogenic GVs (Ana and Halo) did not result in GV production in E. coli. 
At the same time, the expression of a known E. coli–compatible GV gene cluster from 

Bacillus megaterium (51) produced small GVs conferring little to no ultrasound contrast to 

their host cells. The solution was to combine the structural proteins GvpA and GvpC from 

Ana with the assembly factors from B. megaterium. This resulted in cells with strong 

ultrasound contrast corresponding to their expression of this hybrid operon, which was 

named ARG1 (Figure 4a).

On average, cells transformed to express ARG1 produced 100 GVs per cell, accounting for 

approximately 10% of their intracellular volume (Figure 4b). Placed downstream from a 

chemically inducible promoter, these cells produced ultrasound contrast corresponding to 

the expected transfer function of the inducer (Figure 4c,d). By using appropriate promoters, 

ARGs were adapted to a range of microbes, such as probiotic bacterial strain E. coli Nissle 

1917 (EcN) and the medically relevant attenuated S. typhimurium strain ELH1301. The 

spatial distribution of EcN-expressing ARGs could be imaged with ultrasound in the mouse 

colon (Figure 4e); their spatial arrangement was more clearly delineated compared with the 

diffuse optical signals generated by EcN cells expressing a bioluminescent reporter.

An important aspect of reporter genes is the ability to multiplex different colors of the 

reporter (e.g., blue and green fluorescent protein) to visualize multiple cell types or 

molecular signals. Following the strategy used with purified GVs, genetic modification of 

GvpC in the ARG1 cluster resulted in intracellular GVs with different acoustic collapse 

pressures, allowing duplex imaging (46). Future genetic engineering of ARGs will also 

benefit from high-throughput screening to develop variants with new acoustic or 

biochemical properties. Toward this end, bacterial colonies containing ARG plasmids can be 

imaged with ultrasound directly on agar plates, allowing rapid detection of different ARG 

phenotypes.

Beyond the development of ARGs for microbial imaging, there is a strong impetus to 

develop ARGs for mammalian cells, as this would allow the imaging of mammalian gene 

expression and tracking of the location and function of cellular therapeutics. Toward this 

end, a major effort is under way to transfer the genetic machinery encoding GVs from 
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prokaryotes to eukaryotes. This effort represents a significant synthetic biology challenge 

owing to the large number of genes involved in the operon, the importance of their 

stoichiometry, and the requirement that the proteins they encode find each other and self-

assemble inside the cell.

3.2. Alternative Biomolecular Reporters for Ultrasound

In addition to GVs, other possibilities could be explored as potential sources of biomolecular 

and genetically encodable ultrasound contrast. One possible reporter gene mechanism 

involves local accumulation of synthetic microbubble contrast agents in tissues expressing a 

biorthogonal binding group. Turnbull and colleagues (52) pioneered this approach by 

transfecting cells with an engineered transmembrane protein displaying an extracellular 

peptide substrate for biotinylation, together with an endoplasmic reticulum–targeted biotin 

ligase enzyme. This resulted in the display of biotin on the surface of cells. Transgenic mice 

expressing this construct under the control of a vascular promoter displayed biotin on their 

vascular endothelium, leading to accumulation of intravenous avidin-functionalized 

microbubbles, which were visualized with ultrasound.

Another possibility involves local generation of bubbles with gas-producing enzymes. 

Mattrey and collaborators (53, 54) showed that 200–500-nm silica nanoparticles loaded with 

catalase, which produces water and molecular oxygen from H2O2, can generate ultrasound-

visible bubbles in peroxide-rich media and tissues. Although free bubbles generated via this 

mechanism are physically unstable, they had apparent lifetimes of several minutes in tissue, 

allowing imaging. This constitutes an example of an active molecular sensor (of peroxide) 

for ultrasound and raises the possibility that a gas-producing enzyme such as catalase could 

serve as a reporter gene. However, this possibility entails questions about the availability of 

reactants, the kinetics of gas formation and dissolution, and the potential impact of the 

enzymatic activity and free bubble formation on the cell. Finally, although they are outside 

the scope of this review, emerging synthetic technologies, such as perfluorocarbon 

nanodroplets that become converted to microscale bubbles after exposure to ultrasound (55), 

could be used as synthetic labels for cells or as extravasating targeted contrast agents.

4. SONOGENETIC ACTUATION OF CELLULAR SIGNALING

FUS has a long history of use as a therapeutic modality, with current applications primarily 

focused on localized ablation of deep tissue targets (25–28). However, ultrasound’s ability to 

be focused and deliver energy to a site of interest with millimeter precision could also be 

used to provide an input signal for biomolecular and cellular signaling. For example, 

ultrasound’s ability to controllably elevate temperature by several degrees Celsius under 

image guidance could provide a safe, rapid, reversible signal for biomolecular actuation. In 

addition, its ability to apply mechanical forces to tissues and scattering objects could be 

harnessed to control mechanical signaling. Coupled to appropriate genetically encoded 

molecular constructs, this would provide sonogenetic control of cellular function, analogous 

to optogenetic and chemogenetic techniques, which use optical and chemical inputs. 

Specific examples would be the excitability of specific neurons, the proliferation of 

microbes in the gut, or the release of cell-expressing therapeutic payloads.
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4.1. Thermally Mediated Ultrasonic Control

A wide array of thermal bioswitches have the potential to translate elevations in temperature 

into biochemical reactions that control cellular signaling and/or the expression of specific 

genes. These switches include heat shock promoters (56), temperature-sensitive ion channels 

(57), riboswitches (58), and heat-responsive transcription repressors (59, 60).

Pioneering studies on temperature-mediated responses to ultrasound have focused on the 

mammalian heat shock promoter HSP70, whose induction upon FUS has been linked to 

several genetic outputs, including the expression of reporter genes (61), suicide genes (62), 

and cytokines (63). HSP70 is a good starting point for thermal control because it is tightly 

repressed in the off state and rapidly inducible after only a few minutes of stimulation at 

43°C, with the potential to reach several thousand-fold induction (64, 65). However, HSP70 

can also respond to other stress stimuli, such as hypoxia, glucose starvation, and viral 

infection (66), which renders controlling gene expression solely via changes in temperature 

more challenging. Moreover, thermal induction of HSPs is transient and varies among cell 

types; therefore, it is ineffective in some cell types, such as neurons (67, 68). Finally, in 

bacteria, heat shock promoters have a fairly modest dynamic range and also respond 

pleiotropically (69, 70).

Recently, a new class of tunable, orthogonal temperature-dependent transcriptional 

repressors was engineered to enable the next generation of sonogenetic thermal bioswitches 

(71) (Figure 5a). These switches use engineered versions of the orthogonal bacterial 

transcriptional repressors TlpA and TcI, which have sharp transition temperatures (3–4°C) 

and more than 300-fold induction. These switches were engineered using directed evolution 

to have tunable set-points within the biomedically relevant temperature range of 32–46°C. 

They have been integrated into thermal logic circuits to perform complex functions, such as 

multiplexing and bandpass activation, and provide precise control over the spatiotemporal 

profile and dose of gene expression. Spatially precise activation of these circuits with FUS 

was demonstrated in bacterial culture phantoms and inside mammalian hosts with a brief 

thermal pulse (71). Unlike other bioswitches, these proteins respond solely to temperature 

elevations, with a sharp transition that can be tuned for specific applications. Combining 

these molecular devices with synthetic biology circuits may advance the use of FUS beyond 

simple transient switches to more complex functions, such as sustained, multiplexed, and 

on-off switching.

Nontranscriptional responses to ultrasound based on temperature may also be possible. For 

example, magnetic and optical hyperthermia have been used in conjunction with 

temperature-sensitive ion channels (72–76). Unfortunately, most temperature-sensitive 

channels also respond to other inputs and depend on cellular states such as membrane 

potential and pH. RNA thermometers could provide thermal responses at the translational 

level, but these switches typically suffer from a broad thermal transition, with relatively 

small fold changes and leaky expression at baseline (58).
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4.2. Mechanical Actuation of Receptors

As a complement to thermal approaches, ARFs applied to cells could be used to actuate 

mechanical signaling. For example, ultrasound amplified by microbubbles can be used to 

control mechanosensitive signaling elements, such as ion channels. This concept was first 

demonstrated in vitro, where ultrasound triggered the opening of the E. coli–derived 

mechanosensitive ion channel MscL heterologously expressed in mammalian cells (77) 

(Figure 5b). Subsequently, the endogenous mechanosensitive channel Trp4 was stimulated in 

the worm Caenorhabditis elegans, in a study that also introduced the term sonogenetics (78). 

More recently, the Piezo1 mechanosensitive ion channel was expressed in HEK293T and 

immune cells and perturbed using a microbubble-mediated acoustic mechanism for remote-

controlled gene activation (79). Whereas the kinetics typically associated with thermal 

actuation are on the order of seconds, mechanical actuation can operate on millisecond 

timescales, potentially enabling control of cell signaling with higher temporal precision. 

However, techniques that require microbubbles are limited in their mammalian applications 

owing to the difficulty of delivering bubbles out of the blood stream. Several recent studies 

have reported effects on mechanosensitive ion channels in vitro in the absence of 

microbubbles (80, 81); however, the potential involvement of fluid streaming in these 

phenomena may make them less likely to be applicable in vivo.

4.3. Ultrasonic Neuromodulation

Another emerging use of ultrasound in biophysical systems is the excitation or inhibition of 

neural activity. Compared with established neuromodulation techniques, such as transcranial 

magnetic stimulation, transcranial electrical stimulation, deep brain stimulation, infrared 

stimulation, and optogenetics, ultrasonic neuromodulation (UNM) offers unique advantages 

as a noninvasive technique that can be focused deeply and precisely inside the brain. The 

concept and modern use of UNM were advanced by Fry and colleagues (82) in the 1950s 

and Tyler and colleagues (83, 84) in 2008, respectively, followed by studies in multiple labs 

demonstrating the effects of ultrasound on movement behavior and neural signaling. UNM is 

typically performed with relatively low frequencies (0.25~0.7 MHz) to facilitate 

transmission through the skull and low intensities (<100 W cm–2 averaged over the pulse 

train) to minimize the possibility of side effects, such as cavitation and heating (85, 86). 

Parameters leading to motor and sensory responses have been examined in species ranging 

from mice (87–90) to humans (91, 92).

A major issue facing the UNM field is lack of knowledge about the biomolecular, cellular, 

and neural circuit mechanisms underpinning this technique. For example, there is 

contradictory evidence about whether the motor responses elicited by UNM are the result of 

direct modulation of the motor cortex or a by-product of sensory activation. Recently, two 

independent groups have demonstrated that UNM can produce off-target sensory responses 

in mice (93) and guinea pigs (94) owing to indirect effects on the auditory system. Although 

the frequencies used in UNM are inaudible, they may produce mechanical vibrations or 

shear waves in the brain and skull that can be transmitted to the ears. Deafening of the 

animals confirmed that this effect is likely responsible for some of the motor behaviors 

attributed in the literature to direct UNM stimulation. These findings are consistent with 
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historical reports of somatosensory and auditory percepts owing to ultrasound in humans 

(95, 96).

At the same time, several studies with in vitro preparations have reported the ability of UNM 

to directly stimulate or inhibit neurons. In an early study, Tyler et al. (83) found that 

ultrasound is capable of opening voltage-gated ion channels to evoke action potentials in 

brain slices, and it was hypothesized that the mechanical effect of ultrasound might change 

the viscoelastic properties of the cell membrane and kinetics of membrane-bound proteins 

(80, 97, 98). In a theoretical study, Shoham and colleagues (99) suggested that UNM is 

mediated by the nucleation and cavitation of bubbles inside the lipid bilayer. However, this 

mechanism has not been confirmed experimentally, and detailed biophysical studies are 

needed to fully elucidate how ultrasound affects neuronal excitability. Once a mechanistic 

understanding is obtained, the UNM strategy could be optimally tuned for direct, spatially 

selective control of human brain function, and neurons could be genetically modified to 

strengthen their response to ultrasound for sonogenetic applications.

5. ULTRASOUND-ASSISTED BIOMOLECULAR TRANSPORT

A final mechanism by which ultrasound can interact with biomolecules is by enhancing their 

transport through cellular and tissue barriers. This mechanism typically relies on the 

cavitational behavior of microbubbles to translate applied ultrasound fields into local strain 

on a scale much smaller than the ultrasound wavelength.

5.1. Cellular Sonoporation

Sonoporation is the process of creating pores in cell membranes using ultrasound to 

facilitate the transport of molecules into or out of the cell (Figure 6a). Both stable and 

inertial cavitation have been used for this purpose. Stably vibrating bubbles can potentially 

create pores by pushing or pulling on the membranes of adjacent cells (100). In addition, 

stable cavitation creates acoustic microstreaming that can assist in propelling drugs into cells 

(100). Meanwhile, inertial cavitation results in the implosion of the microbubble and the 

formation of jets, leading to membrane disruption (101). By focusing the ultrasound beam at 

the desired location, these mechanisms can improve the delivery of molecules such as drugs 

(102) and genes (103) into target cells.

5.2. Vascular Barrier Opening

Delivering biomolecules and other substances to the central nervous system poses a 

particular challenge owing to the blood-brain barrier (BBB), an endothelial tissue with 

specialized tight junctions, which limits the physical transport of molecules from the blood 

into the brain. Additionally, vascular cells in the BBB are less permeable owing to their 

reduced number of fenestrations, less-efficient pinocytosis, and expression of efflux pumps. 

While the BBB protects the brain from unwanted metabolites and pathogens, its 

consequence for neuroscience and neuropsychiatric medicine is that only small, lipophilic 

molecules are typically capable of entering the brain from the bloodstream, limiting the tools 

available for research and therapy. Work over the past two decades has demonstrated that 

FUS applied transcranially after an intravenous administration of microbubbles results in 
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temporary blood-brain barrier opening (BBBO) at the ultrasound focus, allowing localized 

trans-BBB delivery of intravascularly injected molecules within the first 6–24 h after 

insonation (Figure 6b) (30, 104). This effect is mediated by stable cavitation exerting 

pressure on the endothelial wall (105, 106) and has been shown to enable targeted delivery 

of small molecules (30), proteins (107), and viruses (108).

The efficiency of molecule delivery depends on several factors, including the ultrasound 

pressure and size of the molecule. The ultrasound pressure necessary to open the BBB 

increases proportionally to the ultrasound frequency (109), with higher frequencies (above 

~1.5 Mhz) and pressures carrying greater risk of skull heating. Most studies avoid crossing 

the inertial cavitation threshold of microbubbles to avoid tissue damage and hemorrhage that 

can occur during a microbubble collapse (110). FUS-BBBO has been shown to be safe when 

used below the inertial cavitation threshold (111), and it is currently undergoing clinical 

trials (29).

Larger biomolecules, such as adeno-associated viral vectors (~20-nm diameter), require 

higher ultrasound pressures than small molecules or proteins to achieve comparable delivery, 

often close to the inertial cavitation threshold (112). Currently, efficient delivery of adeno-

associated viral vectors and nanoparticles requires a careful balance between efficacy and 

safety owing to the possibility of hemorrhage and tissue damage (112, 113). These issues 

can be alleviated by real-time monitoring of inertial cavitation, allowing fine-tuning of 

pressures for each brain site (114).

As a noninvasive technique capable of targeting viral vectors to a specific region of the 

brain, FUS-BBBO creates an unprecedented opportunity for noninvasive control of neural 

activity with spatial, temporal, and cell-type specificity. These aspects were recently 

combined in a technique called acoustically targeted chemogenetics (ATAC) (115), which 

uses FUS-BBBO to deliver viral vectors to specific brain regions, using cell-specific 

promoters to target selected populations of cells within those regions and encoding 

chemogenetic receptors—proteins that respond exclusively to bioinert drugs (116)—to gain 

temporal control of the targeted cells. ATAC holds significant advantages over typical 

neuropsychiatric drugs, which act indiscriminately throughout the brain with limited 

regional and cellular specificity. With viral gene delivery in humans undergoing clinical 

trials (117), ATAC has potential for future clinical translation.

5.3. Acoustic Trapping and Manipulation of Cells and Molecules

In addition to direct biomolecular actuation, ARF can be used to trap and manipulate objects 

with appropriate size and acoustic contrast relative to surrounding media. This effect has 

been used extensively in vitro to separate and trap micron-scale particles and mammalian 

cells for cell sorting and visualization (118, 119). Often, these approaches rely on standing 

acoustic waves in microfluidic devices to create pressure nodes and antinodes serving as 

stable attractors for the particles (Figure 6c). The potential for in vivo translation of ARF has 

also been demonstrated by the manipulation of RBCs inside a blood vessel (120, 121). One 

limitation of ARF is its inability to manipulate objects smaller than approximately a few 

microns, owing to a more dominant force that arises from acoustic streaming (122, 123). 
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Careful engineering of the streaming pattern can itself be used to trap nanoparticles in vitro 

(124, 125), but this may be difficult to realize in a complex environment, such as in vivo.

6. MULTIMODAL IMAGING USING BIOMOLECULES

In addition to its direct use as a single modality, ultrasound can be combined with other 

forms of energy, such as light and magnetic fields, to enable the imaging or actuation of 

biomolecules. These approaches are briefly described below.

6.1. Photoacoustic Imaging

Photoacoustic imaging (PAI) is based on the physical coupling of light and sound. In PAI, 

short laser pulses produce local thermoelastic expansion in a light-absorbing region of 

tissue, which serves as a source of acoustic waves, which are detected by an ultrasound 

transducer coupled to the skin (126, 127). PAI combines optical contrast and spectral 

specificity with improved penetration depth. However, this penetration depth is still smaller 

than that of ultrasound imaging (127).

Endogenous PAI uses light absorption by biomolecules such as hemoglobin (128) and 

melanin (129), which are intrinsically present in the organism. Multiwavelength imaging and 

spectral unmixing allow PAI to differentiate between several materials at the same location. 

For example, it can measure oxygen saturation based on the difference between the 

absorption spectra of deoxygenated and oxygenated hemoglobin (130). In addition to 

endogenous sources, molecular contrast agents have been engineered to enable molecular 

PAI in vivo (131–134).

6.2. Acoustically Modulated Light Focusing

Another useful coupling between ultrasound and light is in the emerging area of scattering 

correction. Because light scattering is a coherent process, photons can be focused through an 

opaque tissue using optical phase conjugation (135, 136) or focused into static tissue using 

iterative wave front shaping (137). However, this focusing requires an internal guide star to 

determine the needed phase distribution. In acoustically modulated light-focusing methods, 

this guide star is produced by modulating the light propagating through an acoustic focus 

using the acousto-optic effect (138). Light selectively modulated at the ultrasound focus is 

time reversed and transmitted back into the desired focus location (139). By using 

acoustically modulated light focusing, focused fluorescent imaging can be performed at a 

depth of 2.5 mm inside scattering tissue (140). Finally, the system resolution can be 

increased beyond the size of the ultrasound focal point, achieving lateral resolution of ~5 μm 

(141). Despite the promise of these methods, one significant limitation to their applications 

in living tissues is the rapid decoherence of scatterers owing to tissue motion relative to the 

timescales involved in focusing.

6.3. Acoustically Modulated Magnetic Resonance

The capabilities of biomolecular ultrasound could be expanded through coupling to an 

orthogonal noninvasive imaging modality such as MRI, which has advantages in terms of its 

penetration through bone-enclosed structures, such as the skull. For example, an MRI 
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contrast agent that can be modulated with sound waves would stand out against other 

background sources of contrast, enabling more specific and sensitive imaging. This kind of 

coupling was recently demonstrated using GVs, which, in addition to their ability to scatter 

and be collapsed by ultrasound, have been shown to produce two types of MRI contrast. 

These include hyperpolarized xenon MRI based on their gas-exchange properties (142) and 

proton susceptibility–based MRI enabled by the differential magnetic susceptibility of the 

GV-contained gas and the surrounding aqueous media, which creates a nanoscale magnetic 

field gradient around each GV particle (143). The latter study also demonstrated that 

acoustically collapsing GVs in situ erases the GV-specific MRI contrast. Subtracting the 

images taken before and after insonation, the endogenous tissue contrast can be removed. 

Additional benefits of GV-based acoustically modulated MRI include multiplexed imaging 

combining GVs with different acoustic collapse pressures, reporter gene imaging using ARG 

constructs, and clustering-based molecular functional imaging.

7. OUTLOOK

In summary, ultrasound is a versatile modality for observing and perturbing biological 

function in living organisms, with intrinsic advantages owing to its fundamental physics and 

tissue interactions. The field of biomolecular ultrasound and sonogenetics seeks to connect 

these physics to the function of specific biomolecules and cells to enable precise imaging 

and control of cellular processes. This is being accomplished by identifying and engineering 

biomolecular agents with the appropriate properties to interact with sound waves or their 

resultant thermal and mechanical effects. Although this field is in its infancy, the recent 

development of bacterial GVs as the first acoustic biomolecules and reporter genes for 

ultrasound promises to connect this imaging modality to in vivo cell biology, analogously to 

the function performed for optical imaging by fluorescent proteins. At the same time, new 

developments in temperature-sensitive and mechanosensitive biomolecules, as well as 

improved understanding of the biophysical basis of UNM, open the door to precise 

sonogenetic control analogous to optogenetics and chemogenetics. In parallel, the use of 

ultrasound to enhance or pattern the transport of proteins, genes, and viruses across cellular 

and vascular boundaries creates new opportunities to deploy advanced biomolecular tools in 

biological and clinical scenarios.

Much work remains to be done before these nascent technologies will have a major impact 

in biology or medicine. For example, the gene clusters encoding GVs must be transferred to 

a larger variety of organisms, including mammalian cells, for them to serve as versatile 

acoustic reporter genes. To facilitate sensitive detection of these proteins in vivo, their 

acoustic properties must be optimized in tandem with ultrasound techniques to maximally 

distinguish their signals from background. In parallel, a high priority for sonogenetics is to 

eliminate the need for synthetic microbubbles as actuators of mechanosensitive signaling. To 

date, only thermal approaches can truly be considered sonogenetic—using fully genetically 

encoded components. In the future, microbubbles could be replaced with genetically 

encoded actuators, and insights from the study of UNM could identify direct mechanisms 

for cellular coupling to ultrasound not requiring any such actuator. Finally, to enable the use 

of ultrasound to influence a broader range of transport phenomena in vivo, it would be 
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useful to develop methods to nucleate bubbles for cavitation in situ. As biomolecular 

engineers, we face these challenges with buoyant excitement.
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Figure 1. 
Properties and applications of ultrasound waves. (a) Physical properties of ultrasound waves 

in biological tissues. (b) Physical properties of light traveling in biological tissue. (c) 

Fundamental tradeoff between ultrasound resolution and penetration depth as a function of 

frequency in brain tissue (penetration depth was assessed based on a 60-decibel round-trip 

attenuation). At an ultrasound frequency of 15 MHz, one can expect to image the brain 2 cm 

deep at a 100-μm resolution. (d) Illustration of ultrasound imaging capabilities; conventional 

B-mode image of an infant brain with a submillimeter resolution of cerebral structures; 15-

MHz superresolution ultrasound image of the rat brain vasculature with an 8-μm resolution, 

breaking the classical tradeoff exposed in c [adapted with permission from Errico et al. 

(18)]. (e) Illustration of focused ultrasound energy delivery with millimeter precision. (top) 

Local blood-brain barrier opening induced by stable microbubble cavitation and tracked with 

gadolinium-enhanced magnetic resonance image (MRI); (bottom) MRI temperature map of 

a phantom during focused ultrasound insonification.
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Figure 2. 
Regimes of biomolecular ultrasound. (a) Short ultrasound pulse backscattering is used to 

image acoustic biomolecules in vivo. (b) Extended ultrasound pulses induce an acoustic 

radiation force that can actuate ultrasound-sensitive particles. (c) Continuous ultrasound 

waves lead to local heating and can be used to turn on thermal bioswitches. (d) Low-

frequency ultrasound can be used to cavitate microbubbles that can induce cell or vascular 

barrier disruption.
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Figure 3. 
Gas vesicles as acoustic biomolecules. (a) Transmission electron micrograph of individual 

gas vesicle (GV) from Anabaena flos-aquae. (b) Illustration of GV structure. (c) Protein 

folding model for A. flos-aquae gas vesicle protein A (GvpA), colored to indicate 

hydrophobilicy (red). Structure from Ezzeldin et al. (40), rendered in PyMOL. (d) Gene 

cluster encoding A. flos-aquae GVs (top), illustration of GvpA and GvpC spatial 

arrangement (middle), and repeat structure of GvpC protein (bottom). (e) Ultrasound image 

of GVs at various optical densities and after hydrostatic collapse in vitro. Image of mouse 

during and after GV administration in vivo, showing contrast in the liver owing to GV 

accumulation. (f) Illustration of protocol for replacing native GvpC with engineered 

versions. (g) GV properties that can be modified by substituting engineered versions of 

GvpC. (h) Multiplexed image of engineered GVs acquired with pressure spectral unmixing. 

(i) Finite element model of A. flos-aquae GV buckling under acoustic pressure. (j) Predicted 

acoustic output from buckling GVs. (k) B-mode and amplitude modulated images of gas 

vesicles arranged in a phantom with linear background scatterers. Panel a adapted with 

permission from Lu et al. (143). Panels d, f–h adapted with permission from Lakshmanan et 

al. (43). Panel e adapted with permission from Shapiro et al. (35). Panels i–k adapted with 

permission from Maresca et al. (45).
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Figure 4. 
Acoustic reporter genes. (a) Diagram of engineered ARG1 gene cluster encoding gas vesicle 

protein A (GvpA) and GvpC from Anabaena flos-aquae and GvpN–U from Bacillus 
megaterium (top), resulting in ultrasound contrast when expressed in Escherichia coli or 

Salmonella typhimurium (bottom), compared with bacteria expressing the LuxABCDE 

operon. (b) Transmission electron microscopy image of E. coli Nissle 1917 expressing 

ARG1. (c) Illustration of engineered circuit in which ARG expression is driven by a 

chemical inducer (top), and ultrasound images of E. coli after induction with different 

amounts of the inducer [isopropyl β-D-1-thiogalactopyranoside (IPTG), bottom]. (d) 
Normalized ultrasound signal intensity from bacteria induced with different amounts of the 

inducer, showing the expected circuit output. (e) Anatomical (gray) and background-

subtracted contrast (hot colormap) ultrasound image of mouse with colon containing E. coli 
Nissle 1917 expressing either ARG1 or LuxABCDE in the indicated spatial arrangement. 

Panels a–e adapted with permission from Bourdeau et al. (46).
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Figure 5. 
Biomolecular applications of focused ultrasound. (a) Schematic of thermal bioswitch 

controlling gene expression and in vitro patterned gene expression in the region targeted by 

focused ultrasound. (b) Mechanical actuation of a mechanosensitive channel by exerting 

acoustic radiation force on a microbubble. Panel a adapted with permission from Piraner & 

Abedi (71).
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Figure 6. 
Biomolecular transport using ultrasound. (a) Sonoporation of a cell with a bubble, enabling 

DNA uptake. (b) Microbubble vibration induces loosening of vascular tight junctions, 

enabling virus uptake through the blood-brain barrier (BBB). (c) Acoustic trapping of 

particles in a microfluidic channel with standing ultrasound waves.
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