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Current-induced dynamics of skyrmion strings
Tomoyuki Yokouchi1*†, Shintaro Hoshino2*, Naoya Kanazawa1, Akiko Kikkawa2,
Daisuke Morikawa2, Kiyou Shibata2, Taka-hisa Arima2,3, Yasujiro Taguchi2,
Fumitaka Kagawa2, Naoto Nagaosa1,2, Yoshinori Tokura1,2†

Dynamics of string-like objects is an important issue in a broad range of physical systems, including vortex
lines in superconductors, viscoelastic polymers, and superstrings in elementary particle physics. In noncentro-
symmetric magnets, string forms of magnetic skyrmions are present as topological spin objects, and their
current-induced dynamics has recently attracted intense interest. We show in the chiral magnet MnSi that
the current-induced deformation dynamics of skyrmion strings results in transport response associated with
the real-space Berry phase. Prominent nonlinear Hall signals emerge above the threshold current only in the
skyrmion phase. We clarify themechanism for these nonlinear Hall signals by adopting spin density wave picture
to describe themoving skyrmion lattice; deformation of skyrmion strings occurs in an asymmetricmanner due to
the Dzyaloshinskii-Moriya interaction, which leads to the nonreciprocal nonlinear Hall response originating from
an emergent electromagnetic field. This finding reveals the dynamical nature of string-like objects and conse-
quent transport outcomes in noncentrosymmetric systems.
INTRODUCTION
Topologically stable defects cannot be unwound by continuous trans-
formation or weak perturbations (1). As for string-like topological
defects, topological stability determines the degree of freedom of
bends; for example, when part of a string is pulled, the string does
not break but flexibly deforms. Because of this nature, the string-like
topological defects exhibit rich forms and dynamical properties. One
of the most prototypical examples is vortex lines in type II supercon-
ductors (SCs); aggregates of vortex lines form various states, such as
the glass state and the liquid state, depending mainly on the relative
strength of the pinning force, thermal fluctuations, and the energy cost
of bending vortex lines (2). Moreover, deformations are also dynam-
ically induced by external forces such as electrical current (3).

Recently, a string-like topological defect has been found in spin
systems, that is, skyrmion strings (4–8). A skyrmion string is a vortex-like
topological spin structure 5 to 200 nm in diameter and 10 to 10,000 mm
in length along the external magnetic field direction, emerging in
noncentrosymmetric magnets because of competition between ferro-
magnetic exchange interaction and the Dzyaloshinskii-Moriya (DM)
interaction. The topological nature of skyrmions, characterized by a
topological number of −1, not only guarantees their stability against
weak perturbations but also produces unique transport phenomena
related to the real-space Berry phase, which acts as an emergent electro-
magnetic field to conduction electrons (7, 8), such as the topological
Hall effect (9), low current drive (10), and the consequent emergent
electric field analogous to electromagnetic induction (11). In particular,
the latter has inspired research studies on skyrmion-based memory
device applications (12). However, in previous research studies on
current-induced translational motion, skyrmion strings were treated
as two-dimensional objects or straight cylinders, and the degree of
freedom of the deformation of skyrmion strings (that is, flexibility)
was ignored. In reality, a skyrmion string has a flexible nature as in
the case of the vortex line. Hence, especially under translational motion
in the presence of random impurities, skyrmion strings should dynam-
ically deform to avoid impurities (Fig. 1A). This assumption is based
on simulations in a two-dimensional system (13), according to which a
translationally moving skyrmion is deformed to avoid impurities; it is
natural to extend the concept of the deformation to a skyrmion string in
a three-dimensional system.We note that current-induced dynamics of
skyrmion strings in a three-dimensional system has also been simu-
lated to find flexible deformation of the strings (14). In this study, we
investigate current-induced deformation dynamics of skyrmion strings
arising from this flexibility. To this end, we focus on the nonlinear Hall
effect, which is empirically known as a sensitive probe for current-
induced spin dynamics in noncentrosymmetric systems (15). In the
following, we demonstrate that skyrmion strings asymmetrically
deformed because of their flexible nature and the DM interaction,
consequently giving rise to a nonreciprocal nonlinear Hall response
originating from an emergent electromagnetic field.
RESULTS AND DISCUSSION
B20-type MnSi has a noncentrosymmetric lattice structure, which can
exist in two enantiomeric forms: right- and left-handed structures.
From the viewpoint of symmetry, the nonreciprocal nonlinear Hall
electric field (Ez) in MnSi can be described as follows

Ez ¼ að jx;BzÞjx ð1Þ

Here, jx and Bz are the x component of current density and the z
component of magnetic field, respectively, and the nonreciprocal non-
linear Hall coefficient a(jx, Bz) is pseudoscalar, which is an odd
function of jx and Bz (Fig. 1A). The nonreciprocal response in the
nonlinear transport phenomenon is defined as different responses to
positive and negative currents (±j) when viewed from the current di-
rection. A direction of the nonlinear Hall electric field is parallel or
antiparallel to Bz, depending on crystal chirality (see also the Supple-
mentary Materials). We fabricated microscale MnSi thin plates by
using a focused ion beam (FIB) (Fig. 1B) to increase current density
under the limitations of external high-precision current sources. The
crystal chirality was determined by using convergent beam electron
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diffraction (CBED) (16, 17). To detect nonlinear Hall signals, we per-
formed second-harmonic measurement; we input low-frequency
sine-wave AC and measured the real and imaginary parts of second-
harmonic complex resistivity (Re r2fzx and Im r2fzx), which are directly
linked to the nonreciprocal nonlinear Hall coefficient (see the Sup-
plementary Materials). First, we show typical profiles of the second-
harmonic Hall effect. As shown in Fig. 1 (C and D), the B dependence
of Re r2fzx of both right- and left-handed crystals exhibits prominent en-
hancement in the skyrmion lattice (SkL) phase, in which the skyrmion
strings form a triangular lattice (see Fig. 1A for the schematic). The
signs of Re r2fzx are reversed between right- and left-handed crystals,
in accordance with the expected contributions from the nonreciprocal
nonlinear Hall effect. Figure 2A shows the B dependence of Rer2fzx in
the left-handed MnSi crystal with current densities j = 2.1 × 108 A/m2

(blue lines) and j = 8.3 × 108 A/m2 (red lines) at various temperatures.
The magnitude of Re r2fzx measured with j = 2.1 × 108 A/m2 is small
enough below noise levels. In contrast, in the case of Re r2fzx measured
with j = 8.3 × 108 A/m2, the prominent signals of Rer2fzx are observed
in the skyrmion phase. The clear correspondence between the SkL
phase and the conspicuous Rer2fzx signals is further confirmed in the
contour map of Re r2fzx with j = 8.3 × 108 A/m2 in the T-B phase
diagram (Fig. 2B; see the Supplementary Materials for the determi-
nation of the magnetic phase diagram).

To gain more insight, we measured the detailed current-density
dependence of r2fzx . Taking into account the increase in sample tem-
perature owing to Joule heating, we derived the temperature from the
longitudinal resistivity of the thin-plate sample itself and adjusted
the temperature of the heat bath so that the sample temperature re-
mained constant. Figure 3A shows the current-density dependence
of the temperature of the sample, demonstrating that the tempera-
ture (T) of the sample remained nearly constant within the 29.0 ±
0.08 K range. The current-density dependence of Re r2fzx at T = 29 K
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measured by using sine-wave AC with f = 13 Hz exhibits a nonmo-
notonous profile (Fig. 3B). Here, we note that the current-density
dependence measured by using sine-wave AC and square-wave cur-
rent is almost identical. This result rules out the possibility that the
nonmonotonous current dependence results from a temporal tem-
perature change, which would possibly occur in the case of sine-wave
AC but not in the case of square-wave current (see also the Supplemen-
tary Materials). The profile of the current-density dependence of
Re r2fzx is divided into three distinct regimes: (i) almost zero below
jth = 3.2 × 108 A/m2, (ii) monotonic increase between jth and jCO =
8.9 × 108 A/m2, and (iii) monotonic decrease above jCO. This indi-
cates that the nature of the SkL state changes with increasing current
density. These changes are widely observed in charge density wave
(CDW) (18, 19) and SC vortices (20, 21): (i) pinned lattice state at low
current densities, (ii) disordered flow of lattice affected by the pinning
potential in intermediate current densities, and (iii) recovery of crys-
tallinity due to motional narrowing, that is, relative reduction of the
pinning force, at large current densities, termed dynamical reordering.
Such a dynamical phase diagram is also theoretically predicted for SkL
in the presence of a strong random pinning potential (22). On the basis
of this theoretical prediction and the analogousness to dynamical phase
diagrams of CDW and SC vortices, we assign jth and jCO to the onset
of disordered translational motion and dynamical reordering of sky-
rmion strings, respectively. Note that jth corresponds to the dynamical
phase transition point, while jCO characterizes the crossover (CO). The
temperature dependences of jth and jCO (Fig. 3C) are also consistent
with the above assignment; jth and jCO decrease with increasing tem-
perature because thermal activation effectively weakens the pinning
force. Therefore, a plausible scenario accounting for the nonmonoto-
Fig. 1. Experimental configurations and the second-harmonic Hall effect in
MnSi. (A) Schematic picture of translationally moving skyrmion strings and the
experimental setup for second-harmonic Hall measurement. (B) Scanning elec-
tron microscope image of a MnSi thin-plate sample: MnSi crystal (green), gold
electrodes (yellow), tungsten (light blue) to fix the MnSi and to connect the gold
electrodes to MnSi, and a silicon stage (gray). (C and D) Magnetic field depen-
dence of second-harmonic Hall resistivity (r2fzx) in right-handed (C) and left-handed
(D) MnSi crystals. The blue, orange, green, and white shadows represent helical
(H), SkL, conical (C), and ferromagnetic (FM) phases, respectively.
Fig. 2. The second-harmonic Hall effect near the transition temperature.
(A) Magnetic field dependence of the real part of second-harmonic Hall resistivity
(Re r2fzx) measured with current densities j = 2.1 × 108 A/m2 (blue lines) and j = 8.3 ×
108 A/m2 (red lines). The blue, orange, green, and white shadows represent helical,
SkL, conical, and ferromagnetic phases, respectively. (B) Contour mapping of Rer2fzx
in the temperature–magnetic field plane. The blue, green, and red circles denote
helical-to-conical, conical-to-ferromagnetic, and SkL-to-conical phase transitions,
respectively, determined from kinks in themagnetic field dependence of planar linear
Hall resistivity. The green squares represent helical, conical, and SKL-to-paramagnetic
phase transitions determined from inflection points of the temperature dependence
of longitudinal resistivity (see also the Supplementary Materials).
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nous current dependence of r2fzx is that the translational motion of
deformed skyrmion strings occurs at current densities between jth
and jCO, leading to the second-harmonic Hall signal along the B direc-
tion. We note that the critical current density required for the
translational motion of SkL, jth = 3.2 × 108 A/m2, is two orders of
magnitude larger than that reported for bulk MnSi (10, 11). This is
perhaps due to the chemical disorder/strain on the wide top and
bottom surfaces of the sample plate (see Fig. 1A) caused by the device
fabrication procedure, which involved focused ion (Ga ion) beams,
which act as additional pinning sites for skyrmion strings.

The close relationship between the second-harmonic Hall effect
and the translational motion of skyrmion strings is further confirmed
by the dependence ofr2fzx on the input-current frequency. In Fig. 3D, we
show the frequency dependence of Rer2fzx and Imr2fzx measured with j =
7.0 × 108 A/m2 at T = 28 K. At around f = 3 kHz, Re r2fzx shows a rapid
decrease together with the Im r2fzx peak, and both Re r2fzx and Im r2fzx
are almost zero above f = 6 kHz. This nonmonotonous frequency
dependence in the present frequency range ( f < 10 kHz) could not
be explained by conventionalmechanisms of the second-harmonicHall
effect, such as spin-orbit torque (15) or asymmetric electron-magnon
scattering (23), with typical frequencies of several gigahertz. Because
the characteristic frequency inmotion of nanoscale spin structures such
as ferromagnetic domain walls is below several megahertz (24), the ob-
served frequency dependence can be interpreted as representing the
relationship between r2fzx and the translational motion of skyrmion
Yokouchi et al., Sci. Adv. 2018;4 : eaat1115 10 August 2018
strings; skyrmion strings cannot follow the AC with a frequency ( f )
above 6 kHz. The profile of the observed frequency dependence of
r2fzx resembles that of the skyrmion velocity (vSK) derived from
Thiele’s equation (see the Supplementary Materials). Additionally,
as shown in Fig. 3E, the frequency ( f0) at which Im r2fzx peaks increases
with increasing temperature. Because skyrmion strings can be driven
faster at higher temperatures owing to the assistance of thermal activa-
tion, the temperature dependence of f0 also reasonably supports the
relationship between r2fzx and the translational motion of SkL.

To clarify the dominant mechanism of the nonlinear Hall signal
along the B direction, we calculate the current-induced dynamics of
skyrmion strings and the consequent emergent electromagnetic field
in the presence of impurity potentials. Themodel corresponds to exper-
imental situations in which skyrmion strings flow while accompanying
distortions (that is, jth < j < jCO). In the following, we demonstrate that
the experimental observation is well explained in terms of the current-
driven asymmetric deformation dynamics of skyrmion strings and
the consequent generation of the emergent electromagnetic field. On
the basis of the spin density wave picture, the spin texture for SkL is
given by the triple-helix state with the modulated phase in space-time
(4, 7, 25). This deformation corresponds to the low-lying spin-wave ex-
citationmodes of SkL, namely, phasons (25). The response function for
phasons is calculated from the energy cost of the deformation based on
the DM ferromagnetic Hamiltonian in the presence of impurities (26)

H ¼ ∫ dr
a3

1
2
Ja2ð∇nÞ2 þ Dan ⋅ ð∇� nÞ � gmBB⋅n

� �
þ

∫ dr
ℓ3

VðrÞðnzÞ2 ð2Þ

where the first, second, third, and fourth terms are Heisenberg inter-
action, DM interaction, Zeeman term, and impurity potential, respec-
tively. The length ℓð> lattice constant a) is the average distance between
impurities, and the inverse of skyrmion radii is given byQ= |D|/(Ja) in
thismodel. Combining the aboveHamiltonianwith the Berry phase term
in the action, we derive a dynamical response function (seeMaterials and
Methods). The excitation energy D(q) of SkL, which is determined from
the pole of the response function, has the following form (27): D(q) =
aq2 + bq4 + gq4qz +O(q6) (Fig. 4A). The third termwith qz shows non-
reciprocity of skyrmion string dynamics along the z direction, which is
crucial to the nonlinear Hall effect, as shown in the following.

First, to provide an intuitive picture of the current-induced string
dynamics in the presence of impurities and consequent emergent
electromagnetic fields, we focus on a flowing single skyrmion string bent
to avoid an impurity as a representative example of deformed skyrmion
strings. Bending of the skyrmion string is described by the displacement
vector u = (ux, uy, 0) (Fig. 4C), and the Hall electric field originating
from emergent magnetic and electric fields is given by e + (ve − vSk) ×
b, where ve ¼ vex̂ and vSk ¼ vSkx̂ are the velocity of electrons and
skyrmions (vSk≲ ve) ande ¼ �̇u� band (ve − vSk) × b are the emer-
gent electric field and the topological Hall electric field in the moving
frameof skyrmions, respectively (see also the SupplementaryMaterials).
As shown in Fig. 4 (C and F), the electric field Ez along the magnetic
field direction is nonzero only when a skyrmion string bends. For
a detailed investigation of electric fields along the B direction arising
from current-induced dynamical bending, we calculate the time evolu-
tion of the bending skyrmion string by using D(q) and its eigenmode
and the concomitant magnitude of [(ve − vSk) × b]z and�½ ̇u� b�z (see
the SupplementaryMaterials for detailed calculations). Figure 4 (DandG)
Fig. 3. Current density and frequency dependence of the second-harmonic
Hall effect. (A and B) Current density (j) dependence of the temperature of the
MnSi thin-plate sample estimated from longitudinal resistivity (A) and the real part
of second-harmonic Hall resistivity (Rer2fzx) at B= 0.15 Tmeasuredwith the frequency
f = 13 Hz (B). The red solid curve is a guide to the eyes. (C) Temperature dependence
of threshold current densities jth and the crossover point jCO at B = 0.15 T. The values
of jth and jCO at T = 29.0 K are represented as triangles in (B). (D) Dependence of the
real part (line with red dots) and the imaginary part (line with blue dots) of r2fzx on
the input current frequency at T = 28 K and B = 0.16 T. (E) Temperature depen-
dence of frequency (f0), where the imaginary part of r2fzx peaks. The f0 values at T =
28 K are represented by the inverse triangle in (D). The thick light blue band is a
guide to the eyes.
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shows the time evolution of a bending skyrmion string shown together
with the color map of the magnitude of [(ve − vSk) × b]z and �½ ̇u� b�z ,
respectively, and Fig. 4 (E and H) shows the time dependence of their
averages over the skyrmion string. At the initial state (t = 0), because
deformation is symmetric, both [(ve − vSk) × b]z and�½̇u� b�z cancel
out.With increasing time, however, the skyrmion string asymmetrically
deforms because of the nonreciprocity of the dispersion D(q), which
leads to the nonzero average of Ez. The above intuitive picture thus in-
dicates asymmetric deformation of skyrmion strings; therefore, the
emergent electromagnetic fields play a crucial role in the nonreciprocal
nonlinear Hall signal along the B direction.

Next, to gain more insight, we calculate the nonreciprocal re-
sponse in SkL. Here, we note that the deformations of skyrmion
strings are described as collective excitations, which include other
types of deformations in addition to the bending deformation. The
dynamical spin texture generates emergent electromagnetic fields
that are given in the laboratory frame by (28, 29)

bm ¼ ℏ
2e
∑
nl
Dmnln ⋅ ð∂nn� ∂lnÞ ð3Þ

em ¼ ℏ

e
n ⋅ ð∂mn� ∂tnÞ ð4Þ

The Hall electric field in the DC limit is

EDC ¼ lim
T→∞

∫
T

�T
dt
2T
∫ dr
W

P〈eðr; tÞ þ ve � bðr; tÞ〉 ð5Þ

where W is the volume of the system, P is the spin polarization of the
conduction electron at the Fermi level, and the angle bracket denotes
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the impurity average. We expand the expression with respect to the
impurity potentials (see Materials and Methods). After some calcu-
lations, we obtain the leading-order contribution to the nonlinear
Hall resistivity defined by EDC

z ¼ rDCzx jx

rDCzx e P2ℏa
e2

⋅
ℏa2
e jc

� �3
J2D

j
jc

� �2

ð6Þ

where the electrical current is given by j = eneve, with ne ~ a−3 denot-
ing electron density. Here, critical current density ( jc) can be described
by the impurity potential in Eq. 2 (see Materials and Methods). From
Eq. 6, the sign of D, which depends on crystal chirality, corresponds to
the sign of nonreciprocal nonlinear Hall resistivity, which is consistent
with experimental observations (Fig. 1, C and D). We take the follow-
ing parameters for MnSi (30): a ≃ 2. 9 Å; J = J0S

2, with J0 ≃ 150 K
being the Heisenberg exchange at T = 0 and with the helical spin
moment S = 0.02 taken near the transition temperature; D = 0. 1J;
and P ≃ 0.1. We have roughly estimated the typical value at j = 2jc by
using Eq. 6 as rDCzx ≃ 0:4 nΩ cm, which is comparable to the ex-
perimental values.

Although Eq. 6 is valid in the disordered skyrmion flowing regime at
the current density with jth < j < jCO (see also the broken line in Fig. 4B),
where the spin-transfer torque dominates over the collective pinning of
SkL, the above microscopic mechanism also qualitatively explains the
experimental observation of the decrease of the nonlinear Hall signal
above jCO, which we assign to the onset of dynamical reordering (that
is, onset of reduction of the effective pinning force). Because a stronger
disorder potential yields a larger deformation of SkL, the nonlinear Hall
signal is an increasing function of the strength of the pinning poten-
tial. Therefore, the effective reduction of the pinning force reduces
Fig. 4. Emergent electromagnetic fields for dynamically generated deformed skyrmion strings. (A) Dispersion relation of the low-energy excitation (e) of SkL with
a propagating vector along the external magnetic field direction (qz). (B) Schematic for the current dependence of nonreciprocal nonlinear (second-harmonic) Hall
resistivity. The solid blue line represents the theoretical calculation, which is valid for the current density between jth and jCO, and the broken blue line denotes the
square of the current density and is simply a guide to the eyes. The red line indicates the experimentally observed current profile (see also Fig. 3B). (C and F) Schematics of
emergent electromagnetic fields for the deformation of a skyrmion string when it collides with point-like impurity. u represents the displacement vector of a skyrmion string.
The red arrows denote the z components of the topological Hall electric field [(ve − vSk) × b]z (C) and the emergent electric field ez ¼ �½u̇� b�z (F). (D and G) Position (z)
dependence of the displacement of skyrmion strings shown together with the color map of the z components of both (ve − vSk) × b (D) and e ¼ �u̇� b (G) at several time
points. (E and H) Time dependence of the average z components of both (ve − vSk) × b (E) and e ¼ �u̇� b (H) over the skyrmion string.
4 of 7



SC I ENCE ADVANCES | R E S EARCH ART I C L E
the deformation of skyrmion strings, leading to the decrease of non-
linear Hall signals.

Finally, we discuss the nonreciprocal nonlinearHall resistivity under
DCdensity below jc and in single-helix states (that is, helical and conical
phases). In the former case, because the qz-linear term in the response
function, which is the source of nonreciprocity, enters only together
with the dynamical term, the pinned skyrmions do not have the non-
reciprocal term.Hence, theHall electric fieldEDC

z does not arise in the
pinned regime below jc, which is also consistent with experimental
observations. In the single-helix state, because both ez and by involve
the derivative ∂z along the magnetic field direction as seen from Eqs. 3
and 4, the nonreciprocal nature along the z direction is necessary. This
effect is characteristic of SkL with a multiple-Q nature but is absent in
the single-helix state. Hence, the Hall electric fieldEDC

z is observed only
for SkL.

We have demonstrated that the current-induced asymmetric defor-
mation of skyrmion strings arising from both their flexible nature and
theDM interaction results in a nonreciprocal transport response related
to the real-space Berry phase of skyrmion strings. The asymmetric dy-
namics and the consequent nonreciprocal transport response are some
of the generic properties of the dynamics of string-like objects in non-
centrosymmetric systems, including vortex lines in noncentrosymmetric
SCs as well as skyrmion strings in chiral magnets investigated here.
MATERIALS AND METHODS
Sample preparation
Single crystals of MnSi were synthesized by using the Czochralski
method. Their crystalline chirality was confirmed by using the CBED
method. Using the FIB technique (NB-5000, Hitachi), we cut the
thin plates out of those single crystals. The dimensions of the thin
plates were typically ~10 mm× 10 mm×500 nm. The thin plates were
mounted on a silicon stage and fixed by FIB-assisted tungsten dep-
osition. The gold electrodes were patterned by combining photo-
lithography and electron beam deposition techniques. We prepared
several thin plates with left-handed and right-handed chirality in
order to confirm reproducibility.

Transport measurement
Linear longitudinal resistivity and planar Hall resistivity were measured
by using the DC transport option of the Physical Property Measure-
ment System. Second-harmonic resistivity was measured by using a
lock-in technique (SR-830, Stanford Research Systems); we input low-
frequency sine-wave AC and measured second-harmonic resistivity.
To confirm the negligible effect of Joule heating, we simultaneously
monitored the temperature by measuring longitudinal resistivity.

Calculation of the nonreciprocal nonlinear Hall effect in SkL
We begin with the spin texture of the disordered SkL, which is given by
superposing the three deformed helix states as (4, 7, 25)

nðr; tÞ ¼ ∑
3

i¼1
biðr; tÞQ̂i þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� biðr; tÞ2

q
niðr; tÞ

� �
niðr; tÞ ¼ ẑcos Qi⋅ðr� RðtÞÞ þ fiðr; tÞ½ � þ

Q̂i � ẑ sin Qi⋅ðr� RðtÞÞ þ fiðr; tÞ½ �
whereQi = 1,2,3 aremodulationwave vectors of the helices perpendicular
to the external magnetic field along the z direction. The low-energy
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dynamics of SkL can be effectively described by the above dynamical
phason field variables. The hat symbol represents a unit vector, and

Q̂1 ¼ �
ffiffi
3

p
2 ;� 1

2 ; 0
	 


; Q̂2 ¼
ffiffi
3

p
2 ;� 1

2 ; 0
	 


; and Q̂3 ¼ ð0; 1; 0Þ. The dy-
namical field variables fi and bi describe the deformation from the
perfect lattice induced by the collision of spins with impurities. The
phason field fi shows the modulation of the phase of the helix, which
is relevant to the low-energy dynamics of SkL, and its canonical con-
jugate variable bi represents a tilt of spin moment from the plane per-
pendicular toQi. The vectorR(t) is a uniformdisplacement driven by the
external electrical current and has the form R(t) = vSkt in the DC limit.

Next, we consider the action for deformation field variables. The
Berry phase term has the form (25, 30)

SB ¼ iℏ∫dt∫ dr
a3
∑
ij

9
8
Eijfi

:
fj �

3
2
Pijbi

:
fj

� �

which describes the dynamics of spin texture. Here, we have introduced
the symmetric and antisymmetricmatrices byPij ¼ 2

3 Q̂i ⋅ Q̂ j andEij ¼
2
3 ẑ ⋅ ðQ̂i � Q̂ jÞ, respectively. We can consider the new phason field
variables byfx ¼ 1ffiffi

2
p ð�f1 þ f2Þ,fy ¼ 1ffiffi

6
p ð�f1 � f2 þ 2f3Þ, andfs ¼

1ffiffi
3

p ðf1 þ f2 þ f3Þ, which correspond to two (x, y) translational modes
and a massive breathing mode, respectively (25, 27). Similar quan-
tities for b are also considered. We have neglected the massive
breathing mode because the low-lying energy mode gives a domi-
nant contribution. The above action is written only by translational
modes, which is confirmed by rewriting the action in terms of fx,y,s
and bx,y,s.

The action is then given by S = SB − ∫dtH, which determines the
equation of motion and the response functions. The explicit form is
written as

fiðr; tÞ ¼ ∑
j
∫dr′dt′Gijðr� r′; t � t′ÞFjðr′; t′Þ

Fiðr; tÞ ¼ 2VðrÞ
ℓ3

nzðr; tÞsin½Qi ⋅ ðr� RðtÞÞ þ fiðr; tÞ�

biðr; tÞ ¼
3Jℏ

2D2∑
j

Pij þ 3
Q
Eij∂z

� �
:
fjðr; tÞ

Namely, the deformations fi and bi are generated from the impurity
pinning force Fi through the response functionGij. The term with the
z derivative in the equation for the b field is responsible for the non-
reciprocal nature of skyrmion strings. The Fourier-transformed Green
function is given by

G�1
ij ðq;wÞ ¼ Ja2q2 � 9Jℏ2

4D2 w
2 � ilℏw

� �
Pij þ

9iℏ
4

wþ 27iJ2ℏ2a

4D3 w2qz

� �
Eij

Here, we have introduced the damping termwith the dimensionless co-
efficient l. Because the low-energy dynamics is important at a small
current density, we can neglect the high-order term with w2 and obtain
the excitation energy as

DðqÞ ¼ 4Ja2

9
q2 � 16J3a4

81D2 q4 � 16J4a5

27D3 q4qz þ Oðq6Þ
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The quadratic dispersion at small q originates from a topological
property of SkL (30). The third term on the right-hand side with
qz shows nonreciprocal excitation.We note that the frequencyw here
corresponds to the excitation energy of SkL and is not related to the
frequency f of the external current, which is used to measure second-
harmonic resistivity, because we considered the DC limit (see also the
Supplementary Materials for the relationship between the DC limit
of the nonreciprocal nonlinear Hall effect, which we discussed theo-
retically, and second-harmonic resistivity).

We assume the spatially uncorrelated impurity potential with
〈VðrÞVðr′Þ〉 ¼ V2

impℓ
3dðr� r′Þ, where the angle bracket denotes the

impurity average. Vimp can be written in terms of the critical current
density ( jc), and the final expression contains only jc, as will be dis-
cussed later. We now consider the Hall electric field in the DC limit
(see also Eqs. 3 to 5). Because bi º wfi from canonical conjugate
relations, the terms that directly involve the phason field variables
fi are dominant at low frequencies, compared to contributions
from bi field variables. By expanding the expression with respect
to deformation field variables, the leading-order contribution is
given by

EDC
z ¼ lim

T→∞
∫
T

�T
dt
2T
∫ dr
W

P〈ðve � vSkÞxby þ ez′〉

≃
Pbz
3Q2∑

ijk
Eij lim

T→∞
∫
T

�T
dt
2T
∫ dr
W

½Qi⋅ðve � vSkÞ þ ∂tfi�∂zfjb2k

In this equation, the emergent magnetic field by is of third-order
with respect to the deformation field variables, and the emergent
electric field ez associated with dynamical internal deformation is
the fourth-order term. We note that the second-order and first-order
terms for ez and by exist without integrating over space-time but vanish
in the DC and uniform limit with negligible boundary contributions.
A similar conclusion can be obtained if we consider the single skyrmion
string (see the Supplementary Materials). Expanding the phason field
with respect to the impurity potentials as f = f(1) + f(2) + O(V3), we
now write the leading-order contribution for the Hall electric field in
terms of the Fourier transposed variables as

EDC
z ¼ ve

vSk
� 1

� �
E1 þ E2

E1 ¼

� 9iPℏw*
16e

3Jℏ2

2D2

� �2

∑
ijkl

Eijai∫
dq1dq2dq3dw1dw2dw3

ð2pÞ12 q1zw2w3 �

ðPkl þ 6i
Q
Eklq3zÞ� ½〈fð2Þj ðq1;w1Þfð1Þk ðq2;w2Þfð1Þl ðq3;w3Þ〉 þ
〈fð1Þj ðq1;w1Þfð2Þk ðq2;w2Þfð1Þl ðq3;w3Þ〉 þ
〈fð1Þj ðq1;w1Þfð1Þk ðq2;w2Þfð2Þl ðq3;w3Þ〉�

E2 ¼

� 9Pℏ
16e

3Jℏ2

2D2

� �2

∑
ijkl
Eij∫

dq1dq2dq3dq4dw1dw2dw3dw4

ð2pÞ16 w1q2zw3w4�

ðPkl þ 6i
Q
Eklq4zÞ fð1Þi ðq1;w1Þfð1Þj ðq2;w2Þfð1Þk ðq3;w3Þfð1Þl ðq4;w4Þ

D E

where ai ¼ v̂Sk⋅Q̂i . We have defined w* = QvSk, which is the
characteristic frequency for moving skyrmions corresponding to the
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periodic passage of the “washboard potential” of SkL. These are evalu-
ated with the conservation laws of momentum and energy which nat-
urally enter through Fourier transformation. The contributions E1 and
E2 are those from emergent fields by and ez in the moving frame,
respectively. The contributions from both ez and by are of fourth-order
with respect to Vimp and have the same parameter dependence. Hence,
these can be of the same orders of magnitude, which are numerically
shown later. Keeping the qz-linear term in the lowest order, we obtain
the leading-order contribution for the Hall electric field as

EDC
z ≃

243PD
512ea

a
ℓ

	 
6 V imp

J

� �4 ðℏw�
0Þ3

jDj3
ve
vSk

� 1

� �
f bðlÞ þ f eðlÞ

� �

We have defined w*
0 ¼ J

jDjw* ¼ vSk=a. The dimensionless functions
fb(l) and fe(l) represent contributions from emergent magnetic and
electric fields in the moving frame, respectively, and can be evaluated
by performing the q-integrals of products of four Green functions.
Figure S1 shows the damping coefficient l dependences of fb(l) and
fe(l). For weak impurities, assuming that the damping coefficient l
for themoving regime near jc has a characteristic similar to the one in
the pinned regime with j < jc, we can use the relation l ~ 1 derived for
pinned SkL, and then the function fe,b(l) ~ fe,b(1) can be regarded as a
constant on the order of unity. We have thus confirmed that these
functions can be of the same orders of magnitude. Because the signs
are not unique, the Hall electric field can be either negative or pos-
itive depending on the form of disorder potentials.

For comparison, we have also checked another form of the impurity
potential. Namely, we choose the random Ising fieldH imp ¼ ∫ dr

ℓ3
VðrÞnz

instead of random anisotropy.While the parameter dependences (such
asw*,Vimp, J, andD) of the Hall electric field are the same, the values of
dimensionless functions fb(l) and fe(l) are nearly 10

3 times smaller than
those for random anisotropy. Hence, the value of the Hall signal is sen-
sitively dependent on the types of the impurity potentials.

Let us relate the pinning potential to the critical current density. The
energy supplied to the spin texture through spin transfer torque is given
by Hext = Pbz∫dr jxuy, where uy = (−f1 −f2 + 2f3)/Q is a displacement
along the y direction (30). This energy is set as equal to the pinning
energy at the critical current density (31). For the weak pinning case,
the SkL is collectively pinned by impurities in the range over the pinning

length xpea J
V imp

	 
2
ℓ
a

� �3
. The relation for the energy density balance is

Pbzjc
Q e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2

impðxp=ℓÞ3
q

xp
3

which shows jcºV4
imp. Rewriting the impurity pinning potential at

the critical current density and noting the magnitude relation vSk ≲ ve,
we obtained Eq. 6.
SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/4/8/eaat1115/DC1
Section S1. Determination of the magnetic phase diagram for MnSi thin plates
Section S2. Relationship between the nonreciprocal nonlinear Hall effect and second-harmonic
resistivity
Section S3. Current dependence of the nonlinear Hall effect measured by using
square-wave current
Section S4. Frequency dependence of skyrmion velocity
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Section S5. Calculation of nonreciprocal nonlinear Hall responses to AC
Section S6. Calculation of current-induced dynamics of a single skyrmion string
Fig. S1. Functional forms of the dimensionless functions fb(l) and fe(l).
Fig. S2. Temperature dependence of longitudinal resistivity and magnetic field dependence of
planar Hall resistivity.
Fig. S3. Current dependence of the nonreciprocal nonlinear Hall effect measured by using
square-wave current.
Fig. S4. Frequency dependence of skyrmion velocity.
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