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Abstract. Visual search, the process of detecting and identifying objects using eye movements (saccades) and
foveal vision, has been studied for identification of root causes of errors in the interpretation of mammograms.
The aim of this study is to model visual search behavior of radiologists and their interpretation of mammograms
using deep machine learning approaches. Our model is based on a deep convolutional neural network, a bio-
logically inspired multilayer perceptron that simulates the visual cortex and is reinforced with transfer learning
techniques. Eye-tracking data were obtained from eight radiologists (of varying experience levels in reading
mammograms) reviewing 120 two-view digital mammography cases (59 cancers), and it has been used to
train the model, which was pretrained with the ImageNet dataset for transfer learning. Areas of the mammogram
that received direct (foveally fixated), indirect (peripherally fixated), or no (never fixated) visual attention were
extracted from radiologists’ visual search maps (obtained by a head mounted eye-tracking device). These areas
along with the radiologists’ assessment (including confidence in the assessment) of the presence of suspected
malignancy were used to model: (1) radiologists’ decision, (2) radiologists’ confidence in such decisions, and
(3) the attentional level (i.e., foveal, peripheral, or none) in an area of the mammogram. Our results indicate high
accuracy and low misclassification in modeling such behaviors. © 2018 Society of Photo-Optical Instrumentation Engineers

(SPIE) [DOI: 10.1117/1.JMI.5.3.035502]
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1 Introduction
The human eyes are more attracted toward areas of higher infor-
mation content than areas of higher redundancy.1 The capability
to process information using human eye is highest at the fovea
centralis (fovea) and decreases rapidly as one moves toward par-
afovea (periphery).2 This decrease in the capability of process-
ing information (e.g., detail, shape, and color) is known to be the
same as a probability density function2 with highest capability
concentrated around 2.5-deg radial angle (foveal vision) of the
center of gaze. Saccades, high-speed rapid eye movements,
together with foveal (direct, overt, and detailed) and peripheral
(indirect, covert, and less detailed) visual attention, allow an
efficient search of specific targets to be carried out. Some of
these aspects of visual search behavior, specifically foveal
vision, have been studied for errors in interpretation of
mammograms.3–6 However, factors that influence the level of
attentional deployment (foveal/peripheral/none) largely remain
unexplored. Better understanding of the aspects of attentional
deployment is vital in building strategies to reduce the number
of cancers that are missed, thereby increasing the accuracy of
mammographic interpretation.

Accuracy of mammographic interpretation is not ideal, as it
has been shown that about 7 to 12%7 lesions are falsely reported
(false positives) and that 4% to 34%8 cancers are missed (false
negatives). Using visual search behavior analysis, it has been
shown that 70% of cancers that are not reported in fact attracted
radiologists’ attention.9–11 Cancers that are correctly reported
(true positives) are known to differ in their energy profile

from cancers that attract foveal attention but are not reported
(false negatives).3–5 Evidently, features of an area containing
the lesion affect, to some extent, the radiologist’s decision out-
come and confidence in that decision.6

These features are critical and could potentially be used to
improve the accuracy of radiologists’ decisions and the patients’
health care experience. This can be achieved by improving train-
ing programs to better understand the radiologists’ search
behaviors and understand what lesions are going to be missed
and where an erroneous decision, such as a false positive (FP), is
likely to be made. Building a system that models visual search
behavior of radiologists is essential in achieving this. Computer-
aided detection (CADe) has been used to address some of these
aspects, such as providing information about where cancer is
likely to be present,12 however except for one study,12 these
algorithms, to our knowledge, have not utilized visual search
behaviors. Due to high false-positives, successful adaptation
of CADe in clinical settings has been limited.13

In this study, we model radiologists’ visual search behavior
to understand whether deep machine learning techniques can
assist in improving radiologists’ diagnostic assessment. A few
studies14–16 have previously used machine learning techniques
to model or to predict radiologists’ decision outcomes; however,
these models were based on neural-nets or support vector
machines (SVM). One of the limitations with these models is
that they are trained with handpicked features. Deep machine
learning learns the features by itself17 as it trains the model
through the input data—suggesting that training is not biased
by the preselected features that the model was provided with.
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The accuracy of deep learning algorithms is also known to be
better than other contemporary machine learning techniques.18

Deep convolutional neural networks (hereby referred as ConvNet)
are a specialized class of deep learning algorithms that are bio-
logically inspired, a multilayer perceptron simulating the visual
cortex. With a ConvNet model (with transfer learning18,19), as
used in this study, we aim to ascertain (with reasonably high
probability) the radiologists’ decisions (and confidence in such
decisions). We also aim to determine which areas of mammo-
grams are likely to receive visual attention or to be disregarded.

2 Materials and Methods
Eight mammography quality standards act-certified radiologists
participated in this fully crossed multireader multicase visual
search study of digital mammography involving 120 two-view
[craniocaudal (CC) and mediolateral oblique (MLO)] cases (59
cancers). The cases were obtained from a routine screening pro-
gram using a Selenia full-field digital mammography system
(Hologic Inc., Marlborough, Massachusetts).

Ground truth was established by a separate Mammography
Quality Standards Act-certified breast radiologist, who did not
participate as an observer in this study, using pathology reports
and additional imaging. All cancer cases were biopsied, and all
normal cases had a follow up of 2 years.

2.1 Study Protocol

The radiologists were seated 60 cm from a workstation that con-
tained two calibrated medical-grade 5 megapixel flat-panel
portrait-mode displays (model C5i, Planar Systems Inc.,
Beaverton, Oregon), with a resolution of 2048 × 2560 pixels,
typical brightness of 146 ftL, and 3061 unique shades of gray.
The radiologists wore a head-mounted eye-position tracking
(ET) system (ASL Model H6, Applied Sciences Laboratory,
Bedford, Massachusetts) that used an infrared beam (at temporal
resolution of 60 Hz) to calculate line of gaze by monitoring the
pupil and the first corneal reflection. A magnetic head tracker
was used to monitor head position, and this allowed the radiol-
ogists to freely move their heads from side to side as well as
toward the displays, up to 20 cm, at which point they were out-
side the range of the head tracker. The ET integrates eye position
and head position to calculate the intersection of the line of gaze
and the display plane. The system has an accuracy (measured as
the difference between true eye position and computed eye posi-
tion) of <1 deg of visual angle, and it covers a visual range of
50 deg horizontally and 40 deg vertically.

Prior to the beginning of each reading session, a calibration
of ET was performed wherein a 3 × 3 grid was shown on both
the displays. After every five cases, the ET system was
rechecked and if necessary, it was recalibrated, but this was
only required twice at most during each reading session.

After the calibration, the first (or next) case appeared on the
displays wherein the left- and right-hand side monitors would,
respectively, display CC and MLO views of the case. The eye
tracker captured the X- and Y-co-ordinates of fixation location
on the ASL plane, dwell time, view, radiologists’ distance to the
monitor, and other details. Radiologists were advised to mark
the location of malignant lesions on the screen using a
mouse-controlled cursor, along with providing a confidence
score on the likelihood of malignancy at the location. The soft-
ware had the capability to capture both these pieces of informa-
tion on screen with the help of pop-up dialog boxes. Upon
termination of search for a given case, the radiologists used

a mouse-controlled cursor to click on a button in the display
to select the next case of their reading sequence and were
not allowed to come back to previously assessed cases.

Visual search maps of the radiologists were obtained as they
assessed the cases and identified potential malignancies.
Radiologists were asked to provide their decisions (i.e., loca-
tions of suspected malignancy) alongside a five-point scale con-
fidence score on likelihood of malignancy in the location of
these decisions (five being most confident 81% to 100%, one
being least confident 1% to 20%).

From these mammographic images, three types of areas,
namely foveal clusters (FCs), peripheral clusters (PC), and never
fixated clusters (NFC), were extracted.

1. FCs: FCs are defined as the breast areas measuring
2.5-deg radial angle (about 160 pixels × 160 pixels

square area) consisting of at least three temporally
sequential fixations (Fig. 1). FC cluster extraction
algorithm involves performing: (1) A fixed radius
nearest neighbor algorithm using K-dimensional
(KD)-tree and bounded deformation (BD)-tree20 to
obtain all clusters containing fixation points that are
within 2.5-deg radial angle to each other, followed
by (2) removal of the redundant clusters, and (3) selec-
tion of clusters that contained at least three temporally
sequential fixation points.

2. PCs: PCs are defined as the breast areas within 2.5-deg
radial angle, from the location of a lesion where a deci-
sion was made by radiologists, consisting of <3 tem-
porally sequential fixations (Fig. 2). To extract PC
clusters: a square of 160 pixels around the location
where radiologists made a decision but had <3 tempo-
rally sequential fixation points was automatically
extracted from the image. These clusters were retro-
spectively checked to ensure that they contained at
least one fixation point.

3. NFCs: NFCs are defined as the breast areas that did
not receive any fixation by any of the eight radiologists
(Fig. 3). NFC were extracted by: (1) overlaying all eight
radiologists’ visual search maps on the cases, (2) iden-
tifying 2.5-deg radial angle areas per view per case that
did not receive any fixation by any of the radiologists
and extracting center co-ordinate for these areas, and
(3) automatically extracting these areas from the
image. Only one such cluster per view per case was
obtained bringing the total to about 240 NFCs.

A more in-depth description of the extraction algorithm to
obtain these clusters can be found elsewhere.6 FC, PC, and
NFC were then classified into four categories of decision out-
come [true positive (TP), FP, true negative (TN), and false neg-
ative (FN)] based on the accuracy of decision. NFC (all TN)
clusters, however, were not used in modeling either decision
outcome or confidence in such decision, but they were used
in modeling attentional level.

These labeled datasets were used to model radiologists’ visual
search behavior and decisions. The following three models of
search behavior of radiologists and their decisions were trained
separately using a deep ConvNet, specifically “Inception-
ResNet (V2)”21 with workflow shown in detail in Fig. 4
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Fig. 2 PCs are the breast areas within 2.5-deg radial angle, from a location where a decision was made
by radiologists, consisting of <3 temporally sequential fixations. In this figure, the area shown in red circle
is an example of PC. PC, in this example, is TP. For details of the figure annotations, please refer to Fig. 1
legend.

Fig. 1 FCs are the breast areas measuring 2.5-deg radial angle consisting of at least three temporally
sequential fixations. These are highlighted with white circles. Red star indicates true malignancy and blue
square marking indicates location where a radiologist reported a malignant finding. Green points and
dotted lines represent the temporal visual search behavior (fixation points and the temporal sequencing
amid these points). The FC containing blue star in this figure on left view has been classified as TP as true
cancer lies within the FC area, whereas the FC containing blue star in right view has been classified as
FP because no true malignancy was present within 2.5-deg radial angle area.
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(1) Decision outcome,

(2) confidence in the decision, and

(3) attentional level (i.e., foveal, peripheral, or none)
obtained by an area of the mammogram.

2.2 Data Processing and Analysis

2.2.1 Preparing the dataset

The distribution of clusters per category, in our case, was non-
uniform (as shown in Table 1). Using the entire dataset would

Fig. 3 NFCs are the breast areas that did not receive any fixation by any of the eight radiologists. This
figure overlays visual search behavior of all radiologists for the case indicating areas that did not receive
any attention by any of the radiologists. Example of NFC area is shown in pink circle. For details of the
figure annotations, please refer to Fig. 1 legend.

Fig. 4 Details of the workflow used to model radiologists’ visual search behavior and their decisions.
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lead to a very high null accuracy (a.k.a. “no information rate,”
that is, the accuracy when the model has no training (dumb
model) and always predicts one category that has highest
amount of data in the dataset). For example, for attentional level
(ref. Table 1), the FC category includes 10,458 clusters while
NFC only has only 240, leading to null accuracy of 88%
½¼ 10458∕ð10458þ 240þ 1196Þ�, thus increasing the risk of
bias or dumb model. For this reason, using a random sampling

approach, the distribution of data for each model was normal-
ized (i.e., brought to be approximately of the same order as other
categories) and only a subset of all available data was used in
training. These are detailed in Table 1.

2.2.2 Preprocessing

Adhering to the useful field of view (2.5 deg) radial angle, as
described in Ref. 6, all clusters (obtained from processing visual
search data of radiologists) were 160 × 160 pixel images. These
gray-scale images that represent areas of the breast were then
processed to be converted to colored images using the
lookup-table approach. Prior to color conversion, histogram nor-
malization was applied to avoid any loss of information. The
results of normalization and color conversion are shown in
Fig. 5. This step was necessary because ConvNets are designed
to work with natural images that have three channels.22

2.2.3 Modeling visual search behavior of radiologists and
their decisions

The models were trained and validated using the following
approach.

K-fold cross validation. We used a fivefold (k-fold wherein
K ¼ 5) cross validation approach to match the 80% to 20% split
of the training and validation samples. The final results were
calculated based on the average prediction matrix of these five-
fold training/validation outcomes.

Modeling visual search behavior of radiologists and their
decisions.. Deep ConvNet architectures, as used in this study,
are layered ConvNets of different configurations and filter sizes
(7 × 1, 1 × 7, 1 × 3, 3 × 1, 3 × 3, and 1 × 1). The “Inception-
ResNet-v2”21 (the deep ConvNet architectures used in this
study) combines three residual networks (ResNet) containing
1 Inception v4 network (Fig. 6). This network has shown
3.08% top-5 error in the ImageNet dataset21 and has been
shown to outperform Inception-v4 (albeit by a thin margin)
and thereby all its predecessors. The hyperparameters used were

Table 1 Details of the dataset used in modeling radiologists’ visual
search behavior.

Dataset Category

Total data
available in
the category

Randomized dataset
used in modeling

Total
count

Training and
validation split
(training and
validation)

Attentional
level

FC 10458 1200 (960, 240)

PC 1196 1196 (957, 239)

NFC 240 240 (192, 48)

Decision TN 9866 1500 (1200, 300)

TP 224 224 (179, 45)

FN 147 147 (118, 29)

FP 1417 1417 (1134, 283)

Confidence 1 660 330 (264, 66)

2 362 362 (290, 72)

3 210 210 (168, 42)

4 209 209 (167, 42)

5 224 224 (179, 45)

Fig. 5 Stepwise results of preprocessing on clusters aimed to convert grayscale cluster images to col-
ored images using the lookup table approach.

Journal of Medical Imaging 035502-5 Jul–Sep 2018 • Vol. 5(3)

Mall, Brennan, and Mello-Thoms: Modeling visual search behavior of breast radiologists using a deep. . .



(1) Learning rate: exponential decay function, initial rate
0.01, end rate 0.0001;

(2) Optimization function: RMSProp [(Root mean
square), an adaptive learning rate method proposed
by Geoff Hinton23] with moment 0.9, epsilon 1.0,
decay 0.9;

(3) Follow the regularized leader: accumulator value 0.1,
L1, and L2 strength 0.

To avoid overfitting and improve model performance, image
augmentation was also applied. Distortion in color (by changing
the hue, contrast, and saturation) and random rotation of images
was used for augmentation. Random cropping was not used
to avoid any loss of information [the objective of the study
was to retain the cluster with information of the useful field
of view, which is essentially the size of cluster images
(160 × 160 pixels)].

A very large amount of data is required to train a deep learn-
ing model; however, in our case, the dataset is relatively small.
For this reason, we have reinforced our analysis using transfer
learning techniques. In transfer learning, a model that was pre-
viously trained to perform a specific task, T1, is retrained (a.k.a.
fine-tuned) to perform task T2. It has been shown that models
are able to use the knowledge they have gained to perform T1
into performing task T2.18,19 The ImageNet dataset was used to
train this model, which was then trained further to learn specific
task of predicting the (1) attentional level, (2) decision outcome,
and (3) confidence in the decision made on a given location.

During transfer learning/fine-tuning, the softmax layer
(Fig. 6) of the pretrained model was dropped and replaced
with new layer due to mismatch in the number of outputs (cat-
egories) of the pretrained (1000 categories, as trained with
ImageNet) and the desired (fine-tuned) model [i.e., models

for decision (four categories), confidence in decision (five cat-
egories), and attention level (three categories)]. This is a stan-
dard practice when using transfer learning.

Most of the analysis was performed using Tensorflow and
R-language. Graphical processing unit (GPU) NVIDIA GRID
K520 was utilized to accelerate the training and validation
durations.

2.2.4 Evaluation of the model

Model performance. The confusion matrix obtained from
the model formed the basis of the evaluation. The averaged
(of k-fold predictions) confusion matrix was analyzed to obtain

• Per-category evaluation: We analyzed sensitivity, speci-
ficity, positive (PPV) and negative (NPV) predictive val-
ues, and accuracy [i.e., ð1 −Misclassification RateÞ] of
the model in predicting a specific category. These mea-
sures indicate how well the model understands and cate-
gorizes breast areas for a given specific category.

• Overall evaluation: To evaluate the overall performance
of the model, we analyzed accuracy [i.e., ð1 −
Misclassification RateÞ� and confidence interval (95%
CI) of accuracy. We also compared the model against
null accuracy using hypothesis testing with H1: accuracy
of current model is better than “dumb model.” To look at
the agreement between truth and predicted class, we per-
formed Cohen’s Kappa analysis. Lastly, we also analyzed
microprecisions and macroprecisions,24 recall24 and F-
score24 for our multiclass classifiers models.

Bias and variance analysis.. Bias and variance of decision
outcome, confidence in the decision and attentional level models

Fig. 6 High-level architecture of deep convolution network used in modeling the behavior of radiologists.
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were also calculated using the misclassification rates, i.e., the
error estimates of their respective k-iteration (of k-fold) training.
The bias is defined as

EQ-TARGET;temp:intralink-;sec2.2.4.2;63;355Bias ¼
P

i¼k
i¼1 ðmisclassification rateÞi

k
.

The variance in the error estimates is defined as

EQ-TARGET;temp:intralink-;sec2.2.4.2;63;301Variance ¼
P

i¼k
i¼1 ½ðmisclassification rateÞi − Bias�2

k
.

3 Results
Our results from modeling the radiologists’ visual search behav-
ior and decisions are as follows.

3.1 Decision Outcome

We noted 92% accuracy in modeling radiologists’ decisions
using their visual search behavior. This model was found to
be statistically significantly better (p-value ≅ 0) than the dumb
model (Table 2). We have also noted a very high agreement
(k ¼ 0.86) between the true decision outcome and the predicted
decision outcome.

Standard deviation and variance in sensitivity
(standard deviation ¼ 0.13 and variance ¼ 0.01) and specific-
ity (standard deviation ¼ 0.02 and variance < 0.001) for all
decision outcome categories were low. The least sensitivity
was obtained for the false negative category of decision

prediction; perhaps not coincidently, this category had the small-
est dataset.

3.2 Confidence in the Decision

We noted 66% accuracy in modeling radiologists’ confidence in
their decisions using their visual search behavior. This model
was found to be statistically significantly (p-value ≅ 0)
better than the dumb model (Table 3). We have also noted mod-
erate agreement (k ¼ 0.56) between the true confidence level
on the decisions and the predicted confidence level on the
decisions. Standard deviation and variance in sensitivity
(standard deviation ¼ 0.10 and variance ¼ 0.01) and specific-
ity (standard deviation ¼ 0.03, variance < 0.001) for all confi-
dence level categories were low.

3.3 Attentional Level

We noted 90% accuracy in modeling deployment of radiolog-
ists’ attentional level using their visual search behavior. This
model was found to be statistically significantly (p-value ≅ 0)
better than the dumb model (Table 4). We have also noted very
high agreement (k ¼ 0.82) between the true attentional level
(deployed on a cluster) and the predicted attentional level
(Figs. 7 and 8).

Standard deviation and variance in sensitivity
(standard deviation ¼ 0.02, variance < 0.001) and specificity
(standard deviation ¼ 0.03, variance < 0.001) for all atten-
tional-level categories were low. The lowest sensitivity was
obtained for NFC category of attentional-level prediction;

Table 2 Results from modeling radiologists’ decision outcome.

Average
outcome of
K ð5Þ-fold

cross validation

True category of decision outcome on
breast area

Measures based on average
of kð5Þ-fold evaluation Overall model measure

TP
decision

TN
decision

FP
decision

FN
decision

Predicted category
of decision outcome
on breast area

TP decision 30 3 6 0

Sensitivity: 0.77
Specificity: 0.98
PPV: 0.67
NPV: 0.99
Accuracy: 0.67
Misclassification rate: 0.33

Accuracy: 0.92
95% CI: (0.8924, 0.9363)
Misclassification: 0.08
Null-accuracy: 0.46
P-value: <2 × 10−16

Kappa: 0.86
Precisionμ: 0.92
Recallμ: 0.92
F1-scoreμ: 0.92
PrecisionM : 0.79
RecallM : 0.83
F1-scoreM : 0.81

TN Decision 3 285 2 7

Sensitivity: 0.96
Specificity: 0.96
PPV: 0.95
NPV: 0.97
Accuracy: 0.95
Misclassification rate: 0.05

FP Decision 11 10 270 5

Sensitivity: 0.91
Specificity: 0.96
PPV: 0.95
NPV: 0.93
Accuracy: 0.95
Misclassification rate: 0.05

FN Decision 1 2 5 17

Sensitivity: 0.68
Specificity: 0.98
PPV: 0.59
NPV: 0.99
Accuracy: 0.59
Misclassification rate: 0.41
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Table 3 Results from modeling radiologists’ confidence in their decision.

Average of
K ð5Þ fold

True confidence in the
radiologist’s decision on

breast area
Measures based on average of

kð5Þ-fold evaluation Overall model measure1 2 3 4 5

Predicted confidence
in the radiologist’s
decision on breast area

1 44 12 7 6 6

Sensitivity: 0.59
Specificity: 0.89
PPV: 0.67
NPV: 0.85
Accuracy: 0.67
Misclassification rate: 0.33

Accuracy: 0.66
95% CI: (0.5989, 0.7159)
Misclassification: 0.34
Null-accuracy: 0.27
P-value: <2 × 10−16

Kappa: 0.56
Precisionμ: 0.66
Recallμ: 0.66
F1-scoreμ: 0.66
PrecisionM : 0.65
RecallM : 0.69
F1-scoreM : 0.67

2 15 51 9 5 4

Sensitivity: 0.61
Specificity: 0.89
PPV: 0.71
NPV: 0.83
Accuracy: 0.71
Misclassification rate: 0.29

3 3 4 24 3 3

Sensitivity: 0.65
Specificity: 0.92
PPV: 0.58
NPV: 0.94
Accuracy: 0.57
Misclassification rate: 0.43

4 2 3 1 27 2

Sensitivity: 0.77
Specificity: 0.94
PPV: 0.64
NPV: 0.96
Accuracy: 0.64
Misclassification rate: 0.36

5 2 2 1 1 30

Sensitivity: 0.83
Specificity: 0.94
PPV: 0.67
NPV: 0.97
Accuracy: 0.67
Misclassification rate: 0.33

Table 4 Results from modeling radiologists’ attentional level.

Average of K ð5Þ
fold cross validation

True level of attention
deployed on breast area

Measures based on average of
kð5Þ-fold evaluation Overall model measureFC PFC NFC

Predicted level of
attention deployed
on breast area

FC 221 13 8

Sensitivity: 0.91
Specificity: 0.93
PPV: 0.92
NPV: 0.93
Accuracy: 0.92
Misclassification rate: 0.08

Accuracy: 0.90
95% CI: (0.8705, 0.9238)
Misclassification: 0.10
Null-accuracy: 0.46
P-Value: <2 × 10−16

Kappa: 0.82
Precisionμ: 0.90
Recallμ: 0.90
F1-scoreμ: 0.90
PrecisionM : 0.82
RecallM : 0.89
F1-scoreM : 0.86

PFC 17 224 11

Sensitivity: 0.89
Specificity: 0.95
PPV: 0.94
NPV: 0.90
Accuracy: 0.94
Misclassification rate: 0.06

NFC 2 2 29

Sensitivity: 0.88
Specificity: 0.96
PPV: 0.60
NPV: 0.99
Accuracy: 0.60
Misclassification rate: 0.40
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perhaps not coincidently, this category had the smallest dataset
(240 clusters only).

3.4 Bias and Variance of these Models

Bias and variance are the two tradeoffs of a model. Bias can be
represented as the misclassification rate, i.e., the error estimates
of the model, and it is minimized by choosing a sufficiently large
training set. The variance in the error estimates of the model
indicates the ability to generalize (based on test dataset). In
other words, high variance in the error estimates implies that
the performance of the model is highly dependent on the training
data and the model does not generalize well (i.e., does not find
too many outliers that effect the model performance).

The benefit of using k-fold cross-validation technique is that
all the data have been used for both training and validation pur-
poses in k-iteration of modeling the radiologists’ behavior.
Although there is an overlap in the training set in each of the
k iterations (wherever k > 2), the validation set remains unique
per iteration. Our results of bias and variance analysis based on
all k-fold iterations of training of all the three models are shown
in Table 5. We observed standard deviations of 0.015, 0.06, and
0.015 in error estimates of fivefold cross validation for decision
outcome, confidence in decision and attentional-level modeling,
respectively. The variance in error estimate of all our models was
observed to be <0.004.

4 Discussion
Detection and identification of malignancy in radiographic im-
aging is a learnt skill that radiologists acquire over the course of
time. In analogy, machine learning techniques learn to perform a
specific task based on the information (learning dataset) it is pro-
vided with. Machine learning techniques, specifically deep con-
volution neural networks, in the last 10 years have evolved to be
really efficient in detecting and identifying everyday objects.
From initial 17% top-5 error rate25 when the ImageNet large
scale visual recognition challenge first reported the use of
ConvNet (AlexNet25) to now at about <4% (e.g., Inception-
ResNet21), the reduction in the error rate is promising. The lay-
ered architecture of deep ConvNet is a multitiered multilayer
perceptron that simulates how information is processed in the
human visual cortex. Use of various hidden layers in such a net-
work has also previously been compared with how radiologists
process information.26 In both cases, recollection of all the steps
and the weight of the factors that contributed to the final deci-
sion are not explicit and some factors are always hidden/
endogenous.26

The benefits of understanding radiologists’ visual search
behavior and being able to predict some aspects of search,

Fig. 7 Example of breast regions that were classified as FC, PC, and
NFC. These are the true FC, PC, and NFC regions.

Fig. 8 Example of breast regions FC, PC, and NFC in truth and the
predicted region types (as determined by the classifier) shown in a
confusion matrix format.

Table 5 Result of bias and variance analysis of misclassification rates (probability of error) for each iterator of kð5Þ-fold cross validation.

Misclassification error of each iteration of
K ð5Þ-fold cross validation Average

misclassification
rate of k -fold validation Bias

Standard
deviation Variance1 2 3 4 5

Decision outcome 0.10 0.07 0.10 0.07 0.08 0.08 0.084 0.015 0.0002

Confidence in decision 0.25 0.32 0.38 0.40 0.35 0.34 0.339 0.060 0.0036

Attentional level 0.08 0.09 0.10 0.11 0.12 0.1 0.101 0.015 0.0002
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such as the selection of the regions to which the foveal vision is
deployed and the characteristics of regions that influence radi-
ologists’ decisions, are manifold. For example, it can be used to
predict which lesions are likely to be missed during search and
where an erroneous decision is likely to be made. This informa-
tion can thus be used in providing more efficient training pro-
grams and second opinions during mammography interpretation
—leading to increased accuracy of interpretation and improved
health care experience. Artificial neural networks (ANN) have
previously been used to predict the decision outcome on
foveally fixated (FC) regions using energy profile characteristics
of the regions.3,14 This ANNmodel, built using feature engineer-
ing (handcrafted features), had about 67% accuracy in predict-
ing TP decisions. Error in predicting all decision outcome
categories varied from about 2% to 33%. In our study, we
have shown that deep ConvNet (Inception-ResNet V2) self-
learnt feature network can be trained to predict decision out-
come based on visual search behavior and that high accuracy
and high agreement (k ¼ 0.86) in such predictions can be
achieved.

Kundel and Nodine’s focal/global model12 describes a multi-
stage process wherein radiologists build a holistic view of
the image (in <2 s27), identify perturbations, gather information
through foveal vision, and make a decision and terminate search
reporting suspected cancer or absence of abnormalities.
Radiologists’ holistic view of the mammographic image is
based on information gathered using peripheral vision only
as fixation/foveal attention is deployed afterward. Peripheral
attention is very much a covert operation, continually occurring
and assisting in foveal deployments, thereby enabling efficient
extraction of information.28 Also, peripheral vision despite
being less detailed, at the expense of increased latency,29,30 can
assist in identification.2,29 The role peripheral vision takes in
identification of suspected lesions in mammography is largely
unexplored; however, it has been shown that, in mammography,
areas that receive direct (foveal), indirect (peripheral), or no
attention at all are different from each other.6 In this study,
we show that a ConvNet model does learn about characteristics
that play a critical role in attention deployment and the level of
attention a location is likely to receive (or not receive at all) can
be predicted with high accuracy. This information can be used in
the identification of malignancies that may be missed (FN) and it
can also be used to improve CAD algorithms that sample the
whole image in their search strategies.

Confidence level in radiologists’ (binary) decision (cancer or
non-cancer) is a probability score (of five levels) and is provi-
sional—it is not an everyday practice that radiologists observe in
the clinic. It is a laboratory measure that is asked so that the area
under the trapezoidal receiver operating characteristic curve can
be plotted. It has been shown that radiologists’ binary decisions
do not necessarily agree with the confidence levels reported.31 In
this study, only moderate agreement between the true and pre-
dicted confidence in radiologist’s decision could be achieved.
We theorize that perhaps it is more the endogenous factors of
radiologists that influence the confidence in their decisions,
thereby making it harder to model using visual search behaviors.

4.1 Limitations

In this study, the areas that received direct or indirect attention
were extracted from each of eight radiologists’ visual search
behavior and were pooled together to form the available dataset
for behavior modeling. Out of this larger dataset, using a random

sampling approach [to avoid building dumb model (as described
in Sec. 2)], a subset of the dataset was partitioned and used in the
modeling. It is possible that for some categories (such as FC,
TN) the same area (or overlapping areas) has been used
more than once. This, if at all true, would have only occurred
for FC and TN categories as there was an overlap in these cat-
egories among radiologists. We minimized the occurrence of
such influences using random sampling but, if occurred, this
may have adversely impacted the training or validation out-
comes for said categories.

5 Conclusion
We have shown the radiologists decision outcome (and the con-
fidence in such decisions), and attentional level received at
a given area can successfully be modeled, and high accuracy
in such predictions can be achieved. We have also shown
that there is very high agreement between the predicted outcome
and true decision (k ¼ 0.86) and attentional level (k ¼ 0.82) and
that all these models are statistically significantly better than
“dumb” models. In addition, these models possess knowledge
related to the radiologists’ search characteristics and decision
making, suggesting that these are “smart” models that learn
about the radiologists’ behaviors.
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