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Abstract

The biological interactions between glycosaminoglycans (GAGs) and other biomolecules are 

heavily influenced by structural features of the glycan. The structure of GAGs can be assigned 

using tandem mass spectrometry (MS2), but analysis of these data, to date, requires manually 

interpretation, a slow process that presents a bottleneck to the broader deployment of this approach 

to solving biologically relevant problems. Automated interpretation remains a challenge, as GAG 

biosynthesis is not template-driven, and therefore one cannot predict structures from genomic data, 

as is done with proteins. The lack of a structure database, a consequence of the non-template 

biosynthesis, requires a de novo approach to interpretation of the mass spectral data. We propose a 

model for rapid, high-throughput GAG analysis by using an approach in which candidate 

structures are scored for the likelihood that they would produce the features observed in the mass 

spectrum. To make this approach tractable, a genetic algorithm is used to greatly reduce the 

search-space of isomeric structures that are considered. The time required for analysis is 

significantly reduced compared to an approach in which every possible isomer is considered and 

scored. The model is coded in a software package using the MATLAB environment. This 

approach was tested on tandem mass spectrometry data for long chain, moderately sulfated 

chondroitin sulfate oligomers that were derived from the proteoglycan bikunin. The bikunin data 

was previously interpreted manually. Our approach examines glycosidic fragments to localize SO3 

modifications to specific residues and yields the same structures reported in literature, only much 

more quickly.
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INTRODUCTION

Glycosaminoglycans (GAGs) are linear, polydisperse carbohydrates consisting of a 

repeating uronic sugar and amino sugar copolymer. GAGs serve a multitude of roles in 

biology including cell-cell and cell-matrix interactions, generation of energy, changes in 

proteins binding conformation, and molecular recognition[1–3]. Certain GAGs have also 

been observed as potential biomarkers for disease states[4]. The degree of GAG-protein 

binding has been shown to be highly dependent on their structure and, more specifically, the 

position of modifications within their generic repeating copolymer chain [5, 6].

Despite the simple polymeric backbone in GAGs, a single sugar residue can exhibit varying 

levels of three key modifications, namely O-sulfation, N-deacetylation/sulfation, and uronic 

sugar stereochemistry[2]. Moreover, the biosynthesis of GAGs is not template driven, 

resulting in nonuniform dispersion of these modifications across the chain[7, 8]. Database-

derived approaches are widely used for protein mass spectra assignment (either top-down or 

bottom-up) due to the predictability of amino acid sequences from genome sequences, but 

fail when applied to biomolecules whose production is not template-derived [9, 10]. In 

contrast to the approaches that are successful for protein/peptide analysis, a de novo 
approach is required for the computer-based analysis of the tandem mass spectra of GAGs.

Considerable progress has been made in GAG analysis using mass spectrometry [1, 11]. At 

the MS1 level, a parts-per-million accurate mass measurement, using high resolution 

instruments such as Fourier transform ion cyclotron resonance mass spectrometry (FTICR-

MS), allows assignment of composition, from which GAG chain length, number of 

modifications and types of modification can be assigned [12]. Tandem MS (MS2) of GAGs 

using various ion activation methods, such as collision-induced dissociation (CID)[13–15], 

infrared multiphoton dissociation [16–19], electron-detachment dissociation (EDD)[16, 18–

24], and negative-electron transfer dissociation (NETD) [25–27] yields structurally 

informative fragment ions [28]. Glycosidic bond fragmentation provides monosaccharide 

composition, while cross-ring fragmentation is used to assign the location of modifications 

within each residue [29]. Because this is a de novo analytical approach, complete structure 

analysis requires an information-rich mass spectrum that contains sufficient fragment peaks 

to fully assign all the variable features. Recent developments in ion activation for GAGs has 

led to a variety of approaches to produce informative MS2 spectra [21, 23, 28, 30]. However, 

the interpretation of the such complex mass spectra is generally a tedious manual process 

that relies upon the expertise of the data analyst. A better understanding of the structural 

features that promote GAG activity would benefit from an automated, accurate and high-

throughput analytical process.

The complexity of the data sets and the time required for analysis increases dramatically as 

the chain length and the number of modifications increase. Two families of GAGs, heparin/

heparan sulfate (Hp/HS) and chondroitin/dermatan sulfate (CS/DS), often contain large 

numbers of labile sulfate modifications. For these compounds, conventional MS2 methods 

are often inadequate for complete structural determination, either because they do not 

produce a comprehensive set of fragment ions required to assign all variable features, or 

because they lead to decomposition products that confound the analysis [8, 31]. For 
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example, fragmentation can be accompanied by decomposition of sulfo modifications, 

producing peaks that are reduced in mass by multiples of 80 mass units, but match the mass 

of standard glycosidic fragments of their counterparts with fewer sulfate modifications [28, 

32]. If one does not recognize the peaks that arise from such decomposition, incorrect 

structural assignments will result. Common de novo strategies that have been successful for 

protein sequencing [25, 33–35] will inevitably be exposed to substantially more false 

positives due to the high-likelihood of SO3 loss fragments in GAG MS and MS2. Na+/H+ 

exchange has been shown to decrease SO3 loss and makes characterization of highly sulfate 

species possible [30], however SO3 loss is almost always observed in MS2 spectra.

An alternative to the above approach to interpretation is to generate a list of possible 

fragment peaks for a candidate structure, and to score the match with the experimental data. 

This process can be repeated for all possible isomers having a given elemental composition. 

Comparison of the experimental MS2 against the theoretical fragment list allows us to rank 

each permutation based on closeness-of-fit to the experimental results. This method becomes 

impractical to perform manually when the number of possible permutations for a 

composition exceeds the capability to examine the data. For example, Arixtra, a heparin with 

5 monosaccharides, is the largest highly sulfated GAG to have complete mass spectral 

characterization [30]. The number of total possible permutations for a GAG scale 

logarithmically with the respect to chain length. For both chondroitin/dermatan sulfate and 

heparan sulfate/heparin, the number of permutations based on chain length and number of 

modifications is calculated as n-choose-k combinations, where n is the number of possible 

modifiable sites and k is the number of modifications:

Ntotal ∝ log Nchain length (eq.1)

n
k = n!

k!(n − k)! (eq.2)

Tools for comparison of user-input structures with fragment peaks from tandem MS have 

been developed[12, 36, 37], but the requirement for a known starting structure limit 

applicability for high-throughput analysis.

To address this bottleneck for high-throughput sequencing of GAGs, efforts in computer-

assisted methods look to improve upon the speed of analysis and to reduce the amount of 

user-input and supervision. Several software packages have been developed to overcome 

modern challenges in GAG analysis although a few require addition steps at the 

experimental level for optimal software performance. HOST [38] is a computational tool 

designed for sequencing heparin/HS oligosaccharides using enzymatic digestion combined 

with ESI-MSn. The method scores and returns the best matching sequences of GAGs based 

on disaccharide composition analysis, yielding predicted compositions and calculating 

expected fragmentation patterns in silico. Comparisons of theoretical fragments can then be 

compared to fragmentation of heparin/HS oligosaccharide MSn data and is scored to return 
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the most likely sequence. However, disaccharide analysis requires complete enzymatic 

digestion of the GAG using heparin lyase I, II and III over multiple hours of incubation (16 

h), limiting the method’s overall speed and applicability in a high-throughput GAG analysis 

platform.

Another piece of software known as GAG-ID [39] has been shown to discriminate and 

identify 21 synthetic tetrasaccharides eluted from LC-MS/MS using a scoring system based 

on peak intensities. It is the first of its kind to automated the interpretation of mixtures when 

coupled to LC-MS/MS but require complete chemical derivatization of the GAG by 

replacing all labile sulfate modifications with more stable acetyl groups. Much like HOST, 

derivatization may not be a viable option for universal GAG analysis.

HS-SEQ [40] is a de novo GAG sequencing computation framework that has been used to 

automate the structural identification of HS of dp4, 5, 6, 8 and 15. The method determines a 

precursor sequence (unmodified GAG backbone) and uses information from the tandem MS 

to best assign possible sulfate and acetate modifications. Assignments are made based on 

confidence values and are used to generate a list of top candidates. This is the first GAG 

software that requires only the tandem MS for sequence information. While certainly a high-

throughput option, the structural assignment conflicts can arise in the form of sulfate loss 

fragment, internal fragments or random matches. The authors of HS-SEQ note that the 

software removes the assignments with lower-confidence to resolve conflicting assignments 

but also believe this may produce false hits when examining samples extracted from 

biological sources.

The software developed in our laboratory is designed to sequence GAGs of indefinite length 

by comparing fragments of theoretical structures (in silico) against experimental data 

without the need for construction of a database, instead using a genetic algorithm 

optimization technique to limit the number of permutations while keeping analysis time to a 

maximum of a few minutes. The method assigns structures based on greatest likelihood 

using fragment ion products as a critical parameter for the genetic algorithm fitness criterion. 

Fragments that are in direct conflict with the highest scoring structure(s) are not discarded 

but reviewed again for possible additional components. We have tested this approach on 

MS2 data from intact CS chains released from the proteoglycan, bikunin. These chains vary 

in length from 27–43 saccharide residues, and vary in the degree of O-sulfo modification 

from 4 to 7, and thus represent a challenging test of this automated procedure.

EXPERIMENTAL METHODS

Mass spectrometry analysis. Bikunin GAG MS and MS2 data reported in [41] was used as a 

proof-of-principle data set for the purposes of testing genetic algorithm efficacy. The 

monoisotopic peaks were selected via the SNAP algorithm from Bruker DataAnalysis 

software. Analysis of the MS2 was performed with the software alone and with no user 

supervision or assistance.

Computational methods. MS1 analysis of parent ion mass is performed using a composition 

assignment software module written in the MATLAB coding environment. Monoisotopic 
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peaks and charge states are acquired from Bruker DataAnalysis and deconvoluted to a 

neutral mass. A composition is derived from one or more neutral mass(es) by searching a 

data matrix of possible chain lengths, degrees of sulfation, deacetylation, and sodium/

hydrogen exchange. The user input also includes the possibility of reducing end 

modifications, and nonreducing ends that can terminate in unsaturated uronic acids, as is 

common in enzymatically produced GAG oligomers. Theoretical neutral masses in the 

spreadsheet are compared against user specified masses with a user-defined mass tolerance. 

The sequences that match are then used for performing the MS2 analysis.

For MS2 assignment, we implement a genetic algorithm based on fundamental aspects 

common to all genetic algorithms[42–44]. For MS2 analysis, the software uses a binary 

vector to represent glycan structures where on-bits denote an occupied site of SO3 

modification. The first step generates two glycan structures at random that fit the expected 

composition (initialization step) and then proceeds to “breed” these structures into a new 

generation of candidates (crossover step). The new generation also is subject to potential 

mutations in their structure in the form of exchanges between their on and off-bits (mutation 
step) in an effort to avoid converging upon a local maximum. Theoretical structures created 

in the crossover and mutation steps are then tested against the experimental MS2 data where 

the score of each structure is determined based on a closeness-of-fit paradigm (fitness). The 

scoring system is subject to various factors that will be discussed in detail in future papers. 

In the case of bikunin, the score of a structure is a naïve model that determines the top 

candidate based on the number of matching glyocosidic fragments. The primary three steps 

(crossover, mutation and fitness) are iterated until the maximum fitness value does not 

change after numerous cycles. The number of iterations required before termination of the 

algorithm can be defined by the user but is defaulted at a value of 3. The structure(s) 

containing the highest scores are then examined using additional data interpretation tools 

that assign fragment peak masses alongside their charge, intensity and mass error (in ppm).

Experimental MS2 data collected by FT-ICR is extracted from Bruker Apex user interface 

software using the SNAP peak-picking algorithm. Monoisotopic peak masses and intensities 

are extracted in the form of comma-separate value (.csv) files. MATLAB software prompts 

the user for a .csv file containing mass-to-charge in column 1 and intensity in column 2, with 

mass-to-charge sorted in ascending order. Parent ion mass and charge must be provided by 

the user as well as mass information pertaining to a linker region mass on the reducing end. 

Composition details (chain length and numbers of: sulfation, n-acetylation, Na-H exchange) 

are calculated from a composition calculation module and then given to the software in the 

preliminary step before initializing the genetic algorithm.

For bikunin proteoglycan a linker mass of 641.1473 (Gal4S-Gal-Xyl-Serine) was used with 

the remainder of the bikunin chain length represented as a binary vector.

Software integrates separate functional modules to perform mass calculations of theoretical 

fragment ions, performing standard genetic algorithm features, and scoring theoretical 

structures against experimental data.
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RESULTS AND DISCUSSION

As GAG chain length and modification increases, the number of possible structural 

permutations exceeds a value suitable for practical, computationally efficient search 

methods. For the chondroitin sulfate oligomers studied here, the number of structural 

possibilities is as large as 3.7E22 for an oligomer of length 50 (eq. 2). The number of 

possibilities is narrowed down when composition can be assigned and the number of known 

sulfate modifications is determined. While the paradigm for comparing theoretical structures 

against experimental data can differ, a minimum number of elements such as fragment type, 

fragment intensity and sequence coverage must be considered for complete GAG 

characterization [45]. Thus, instead of trying to shortcut these facets of analysis, we chose an 

approach that reduces the total search space. Hundreds of millions of structures may exist 

for a specific GAG composition but for a pure sample only one of these structures is a valid 

assignment. The impracticality of searching through a massive number of incorrect 

structures is reduced dramatically when a genetic algorithm search heuristic is applied [44].

The genetic algorithm is an optimization tool that has been used for a wide variety of 

applications[46–51]. It mimics the evolutionary process, by using a survival of the fittest 

mechanism that quickly eliminates large groups of candidates from a pool if they share a 

feature that does not meet a specific set of criteria [44]. Here we examine the application of 

this approach to GAG MS2 analysis. We have developed software in the MATLAB coding 

environment that utilizes the genetic algorithm. GAG sequences are expressed as a binary 

code where on-bits (1’s) and off-bits (0’s) represent the presence or absence of 

modifications, respectively and can be applied to both CS/DS and HS/Hp GAG classes, 

Figure 1 [42, 43]. The binary sequence is shortened or lengthened to accommodate the 

appropriate composition calculated from the parent-ion mass. The number of on and off bits 

in the genome is also adjusted based on the number of modifications observed. The final 

structure is determined via a genetic algorithm, the workflow for which is shown in Figure 2.

Improvements in analysis time and search space reduction can be observed using CID MS2 

data from several fractions of intact CS chains for the proteoglycan bikunin [41]. The 

advantage of using these data is threefold. First, the mass spectra are rich in structurally 

informative fragments. Structural assignment of bikunin from MS2 was done previously 

with manual de novo analysis of these fragments. Software suitable for analysis should make 

the same assignments using these fragments without any user supervision. A second 

advantage is that modifications are limited to a single sulfate group per disaccharide. Sulfate 

modifications have been shown to only occur on the 4-O position of the amino sugar using 

enzymatic disaccharide analysis. Reducing the total number of possible modification 

diminishes the search space dramatically. For example, a CS dp43 with 5 sulfate groups has 

20,349 possible structures when only examining the occupancy of the 4-O position but 

5,949,147 possible structures when every sulfate position (2-O, 4-O, 6-O) is taken into 

consideration. A simplified search space allows us to demonstrate proof of principle while 

still maintaining computational efficiency. Finally, the structures of bikunin fractions have 

been manually verified and reported in the literature [41]. A common motif among bikunin 

fractions was observed after manual sequence analysis. We were particularly interested to 

see if the unsupervised approach with our software also yielded these same patterns. 
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Candidate structures of bikunin GAGs produced in the genetic algorithm cycles are assigned 

scores based on the number of matched glycosidic fragments in the experimental data. The 

fitness of a candidate structure is determined using three separate tiers of scoring:

f 1 = ∑
i = 1

dp
NRE − ∑

i = 1

dp
NRE + SO3 (eq.3)

f 2 = ∑
i = 1

dp
NNRE − ∑

i = 1

dp
NNRE + SO3 (eq.4)

f 3 = ∑
i = 1

dp
Iglyc (eq.5)

Unambiguous mass tags such as the linker region dictate that greater emphasis should be 

placed on the reducing end (Y and Z fragments) and provide a more valid structural 

assignment. The primary fitness of a score is therefore based on its calculated f1 value, 

which considers the number of glycosidic fragments from the reducing end (NRE) that are 

matched in the experimental data. The software then checks to see if any match is potentially 

a sulfate decomposition peak by adding the mass of an SO3-H exchange (79.9568 Da) and 

searches the experimental data again for a matching mass. The value of f1 is then reduced by 

the number of peaks determined to be a product of sulfate decomposition (NRE+SO3).

If the value of f1 is tied among multiple structures, a secondary ranking is then determined 

with f2, the value of which is based on the number of glycosidic matches from the non-

reducing end (B and C fragments). In similar fashion to calculating f1, considerations for 

potential sulfate decompositions are considered. Non-reducing end fragments are a tier 

below reducing end fragments since they could potentially match internal fragments due to 

the lack of an unambiguous mass tag. Incorrect assignment of internal fragments as non-

reducing end fragments limits the validity of assignment.

A tertiary score f3 is used after matching glycosidic fragments from both reducing and non-

reducing ends. Typically, a small selection of candidate structures (2–4) may end up with 

equal f1 and f2 values, in which case the summation of the intensities of all matched 

glycosidic fragments is the tiebreaker. This simple algorithm can and should be continuously 

fine-tuned for other purposes as software development continues but is sufficient for proof-

of-principle purposes.

11 bikunin samples of different compositions were tested using the genetic algorithm. Of 

these 11, the single highest scoring candidate of the genetic algorithm for 9 of these samples 

matched the structures reported in literature. Without user supervision, the genetic algorithm 

results also reaffirm the common bikunin motif reported in literature [41], figure 3. For the 
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remaining 2 samples, the genetic algorithm software reported multiple top-scoring 

candidates. MS2 data for these two samples could not unambiguously differentiate these 

structures; however, the structures reported in literature for these samples were present 

among the top-scoring candidates. This highlights the importance of data quality for optimal 

software performance. A lack of informative fragmentation peaks can result in structural 

ambiguities, but information-rich mass spectra can be interpreted with minimal trouble. 

However, a genetic algorithm approach has no theoretical minimum for data quality. Spectra 

not containing sufficient fragmentation for complete glycan characterization can still be 

interpreted based on available fragment ions and a partial sequence can be generated. 

Although the spectral quality of bikunin GAG tandem MS are high, more complex and 

longer chain intact GAGs of proteoglycans may yield less than the full suite of fragments 

necessary for complete sequencing. In this event, our approach can still be used to determine 

some portion of the overall glycan structure, as has been done recently for decorin glycans 

[52].

In addition to matching previously reported structures, a closer examination of other high-

scoring candidate structures among samples shows a consistent motif across compositions. 

Additional structural motifs shown in Figure 4 consistently score within the top 5 structures 

of the genetic algorithm. These alternate structures are ones consisting of similar f1 and f2 

scores and but have low intensity values for some of their fragment matches (affecting the 

value of f3). The high degree of similarity between the primary component identified in 

literature and the alternate structures may be a result of A) our scoring method being favored 

towards reducing end fragments, B) assigning low intensity noise peaks as glycosidic 

fragments or C) the possibility of a mixture containing some minor components.

The speed of analysis between using the genetic algorithm versus the exhaustive search of 

every possible permutation of a composition is shown in Figure 5. Here we see that the 

genetic algorithm has found the correct answer within a small fraction of the time (0.9–2.5% 

on average) required to examine every possible structure with the assumption that sulfation 

only occurs on the 4-O position of the N-acetylgalactosamine. Decrease in search time is 

primarily due to a reduction in the frequency in which unlikely features are eliminated from 

the genetic algorithm gene pool. As reported [41], bikunin’s sulfation occurs near the 

reducing end. Isomeric structures that contain sulfate groups in the non-reducing end ranked 

lowest in the scoring process, resulting in rapid elimination of a test structure and all 

structures of similar sulfation patterns with one single iteration. A greater number of 

iterations were spent refining high-scoring structures once poorly scored structures have 

been eliminated from consideration. The algorithm is designed to rerun the entire genetic 

process from scratch multiple times in order to avoid plateauing at local maxima. 

Convergence upon the same highest scoring structure 5 times was the baseline criterion for 

an acceptable structural assignment. The repetition number is a user-adjustable parameter, as 

well.

Of particular significance, the efficiency of this approach is found to increase as the total 

number of permutations increases. For a pure sample, only a single structure can be assigned 

to the MS2 spectrum, but the number of structures with drastically different modification 

patterns increases with respect to chain length. An increase in chain length also increases the 
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number of GAG structures that could potentially share a feature not observed in the MS2. 

Structures containing these features drop out of the algorithm as possible options once a 

single structure of that particular type is scored.

Calculations shown here are run on a 2.4 GHz dual-core processor with 4GB of RAM, a 

standard laptop or desktop computer. Speed of calculations can increase with more powerful 

processors such as a GPU workstation or computer cluster. It’s important to note that the 

genetic algorithm in MATLAB is operated with separate function calls at each step of the 

algorithm’s cycle. Parallelization of these function calls is particularly attractive for samples 

of higher chain length and, in theory, could make spectra interpretation no longer the 

bottleneck for structural elucidation of GAGs. Additional GAG structures determined using 

this genetic-algorithm based GAG analysis software have been reported [53].

CONCLUSIONS

The software performance is limited by two factors: 1) the quality of the MS2 data and 2) the 

specificity of the fitness function. The former limitation can be reduced by using a high-

performance instrument such as FTICR or Orbitrap mass spectrometers. Some fragment 

mass values differ by less than 1 Da, increasing the possibility of ambiguity in low 

performance instruments. High resolution mass spectra with single digit or lower ppm mass 

error minimize margins for incorrect assignment. Acquisition condition must also be 

optimized for glycan fragmentation and ideally limits production of confounding fragments 

such as SO3 loss or internal cleavages.

The latter factor, specificity of the fitness function in the genetic algorithm, is one that can 

be fine-tuned to GAG analysis by tandem mass spectrometry. The fitness function presented 

in this paper is simple, arbitrary and based on the basics of glycan analysis. This approach 

works for the examples selected here because only glycosidic bond cleavage was assigned. 

Higher level structure analysis based on cross-ring cleavages requires a more sophisticated 

fitness function. A more complete and non-arbitrary scoring algorithm is being developed 

that assigns statistical weights and importance factors to various fragment peaks. Additional, 

peak intensity, while not considered heavily in this iteration of the code, can also signify 

important characteristics in GAG structure. Details for creating an optimized scoring 

algorithm will be discussed in future work.

Peak picking for GAG fragmentation is not discussed in this paper but is an important 

consideration moving forward. Bikunin fragment peaks were selected by the SNAP 

algorithm using averagine and manually validated; this approach is practical for lowly 

sulfated samples but averagine is insufficiently for highly sulfated compounds due to 

contributions of sulfur to the A+2 isotope peak. A fully-automated and GAG-specific peak 

picking system is current in development.

The software is applicable for GAGs that are both lowly sulfated such as bikunin and 

moderate and highly sulfated samples for both CS/DS and HS/Hp samples. Short chain HS 

with more than one SO3 modification per disaccharide and long chain chondroitin sulfate 

Duan and Amster Page 9

J Am Soc Mass Spectrom. Author manuscript; available in PMC 2019 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



such as decorin with approximate 1 SO3 per disaccharide have been determined using our 

software [52, 53].

The uronic sugar stereochemistry is a variable modification in GAGs that is difficult to 

observe using just mass spectrometry. EDD data of heparin and heparan sulfate GAGs has 

produced a small subset of diagnostic fragments capable of distinguishing between 

glucuronic and iduronic acid epimers [22]. Chemometric applications has yielded a 

diagnostic fragment ratio that can definitively determine the C5 stereochemistry [54]. 

Application of this ratio can be integrated into the software after basic structural features 

have been assigned using the approach presented here.
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Figure 1. 
4-bit binary representation for both CS and HS/Hp glycan disaccharides. Each bit is turned 

on (assigned 1) if a modification is present and off (assigned 0) if the R-group is a hydrogen. 

Bit 2 represents R2 which has an acetyl modification instead of a hydrogen for an off-bit 

assignment. In the case of HS where the free-amine is possible, a different numeral can be 

used to represent the absence of SO3 and acetylation. Additional bits can be introduced so 

serve as negative control bits as well as a representation for the uronic sugar stereochemistry.
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Figure 2. 
2a. Workflow for our MATLAB software. User is asked to input three pieces of information 

for the software: parent ion mass, mass list from MS2 (charge state deconvolution will be 

automated), and desired mass accuracy for composition assignment and fragment matching 

(in ppm). The software automates the remaining steps and calculates compositions from the 

parent ion mass and generates a list of optimized structures using a genetic algorithm. (User 

provided information is highlighted in the green box. Automated features are highlighted in 

blue. Software output is shown in purple.)

2b. A demonstration of how genetic operators work on glycan structures. Child candidate 

modification positions are limited to the modification position of their parents. Mutations, 

however, and not dependent on parent candidate structure.
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Figure 3. 
A list of the highest scoring structures for all MS2 collected on FT-ICR using the genetic 

algorithm. The structures provided by the genetic algorithm match ones reported in 

literature. The conserved sulfation pattern of bikunin is also observed. For structures dp43–

5S and dp43–6S, three structures are tied for highest scores. Alternate structures for these 

chain lengths are shown in figure.
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Figure 4. 
The highest scoring structure assigned to the all bikunin compositions (except d35–7S) 

provided, where the bracketed region is a variable stretch of unmodified disaccharides is 

outlined in blue. Two alternative structures are also frequently observed and outlined in 

black. The structures appear in the top 5 highest-scoring candidates for all compositions. For 

chain length dp43 (both 5SO3 and 6SO3), the highest score is tied amongst all three 

structures. Diagnostic fragments to confidently differentiate between these differences is 

absent.
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Figure 5. 
Speed comparison between the genetic algorithm and exhaustive search method. The bar 

graph shows the amount of time in hours (left y-axis) it requires for a standard desktop PC 

(2.4 GHz processor, 4GB ram) to exhaustively search through all possible combinations of a 

specific composition. The line plot shows the percentage of time (right y-axis) that is 

required for the genetic algorithm to arrive at the correct answer. Overall search space is 

reduced dramatically as the number of permutations per composition increases.
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