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Abstract

Identifying sickle cell disease patients at high risk of complications could lead to personalized 

treatment and better prognosis but despite many advances prediction of the clinical course of these 

patients remains elusive. We propose a system-type approach to discover profiles of multiple, 

common biomarkers that correlate with morbidity and mortality in sickle cell disease. We used 

cluster analysis to discover 17 signatures of 17 common circulating biomarkers in 2320 

participants of the Cooperative Study of Sickle Cell Disease, and evaluated the association of these 

signatures with risk for stroke, pain, leg ulceration, acute chest syndrome, avascular necrosis, 

seizure, death, and trend of fetal hemoglobin and hemolysis using longitudinally collected data. 

The analysis shows that some of the signatures are associated with reduced risk for complications, 

while others are associated with increased risk for complications. We also show that these 

signatures repeat in two more contemporary studies of sickle cell disease and correlate with 

recently discovered biomarkers of pulmonary vascular disease. With replication and further study, 

these biomarker signatures could become an important and affordable precision medicine tool to 

aid treatment and management of the disease.
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Introduction

Sickle cell disease is caused by mutations in the β-hemoglobin gene (HBB) and its 

epidemiology, pathophysiology and clinical complications have been recently reviewed1. 

The two most common genotypes of this disease are homozygosity for the HBB glu6val 

mutation (HbS; rs334) called sickle cell anemia (HbSS), and compound heterozygosity for 

HbS and HbC (glu6lys) mutations, called sickle cell–HbC (HbSC) disease. Both of these 

genotypes, and the less common sickle-β thalassemias, have extremely variable 

phenotypes2. In each genotype some individuals have mild disease that in the extreme can be 

clinically unapparent while others can have most of the known severe complications. These 

include pulmonary hypertension, priapism, stroke, leg ulceration, acute painful episodes, 

acute chest syndrome, avascular necrosis of bone and severe hemolytic anemia3. Identifying 

patients at high risk of complications could lead to better treatment and prognosis and 

substantial work has focused on discovering those genetic and non-genetic risk factors of 

sickle cell disease that could be used for risk prediction4.

The greatest progress has been made toward characterizing genetic variants that explain 

variability of fetal hemoglobin (HbF), which is a major marker and modulator of disease 

severity, and the effects of concurrent α thalassemia on subphenotypes of disease5-14. 

Additional genetic variants linked to higher risk for complications of the disease have been 

found through genetic association studies but they often explain only a small part of the 

disease variability15-23. We showed that an ensemble of genetic risk scores can predict with 

substantial precision HbF in patients with HbSS24, but the value of HbF level to predict 

disease complications is limited due to the variable distribution of erythrocyte HbF 

concentrations among patients with similar total HbF25. Despite these efforts, predicting 

patients at higher risk for complications using only genetic data remains difficult.

Between a genetic variant and a physiologic outcome, or between genotype and phenotype, 

are proteins and cells whose levels and biologic effects can be captured by laboratory 

measures and could be more powerful than genetic data to predict morbidity and mortality. 

The review by Rees and Gibson in 201126, reported more than 100 blood and urine 

biomarkers that have been correlated to at least one of the complications of sickle cell 

disease. However, as the authors of the review noted, it is still unclear whether this large 

collection of biomarkers adds any value to simple biomarkers such as hemoglobin 

concentration because often the discovery of predictive biomarkers is done “one-biomarker-

at-a-time” and the relative added values of sets of biomarkers is not always established.

Scores reflecting disease severity have been proposed to stratify patients by risk of 

complications and typically they include a combination of laboratory data and patient 

medical history. Using data from the Cooperative Study of Sickle Cell Disease (CSSCD), we 

generated a model of disease severity that integrated some biomarkers with complications of 
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the disease to define an overall measure of disease severity that can predict death within five 

years27. This model, independently validated in part28, is useful to understand the 

relationships among clinical and laboratory measures of disease expression, although it is 

not designed to predict complications of the disease29. Recent work by Desai et al30 

discovered signatures based on a combination of blood mononuclear cell gene expression 

profiles and medical history of sickle cell disease patients to predict mortality. Despite these 

advances, prediction of the clinical course of patients with sickle cell disease remains 

elusive. We propose here a system-type approach to discover profiles of multiple, common 

biomarkers that correlate with morbidity and mortality in sickle cell disease.

Materials and Methods

Study populations

The CSSCD was a 10-year, multi-center, longitudinal study of sickle cell disease that has 

been extensively described31,32. The study began recruiting patients in 1979 from 23 centers 

resulting in over 3,600 patients in four age groups: newborns, children, adolescents, and 

adults. The Pulmonary Hypertension and the Hypoxic Response in Sickle Cell Disease 

(PUSH) and Sickle Cell Disease with Sildenafil Therapy (Walk-PHaSST) trials were used as 

more contemporary cohorts to replicate the findings33,34. All subjects provided informed 

consent approved by the field centers IRB. More detailed information about the studies is in 

supplement material.

Statistical Analysis

Biomarker selection and data preparation: In the CSSCD, 39 biomarkers were recorded 

at the baseline exam, including four subsequently shown to estimate the severity of the 

intravascular component of hemolytic anemia, along with other laboratory data35,36. 

Biomarkers that were dichotomous, homogeneous, and had more than 25% missing data 

were ignored. One marker was selected from groups of highly correlated biomarkers based 

on clinical interpretation (correlation coefficient > 0.5). This selection removed 22 

biomarkers and left 17 biomarkers for analysis (Supplement Table 1). Outliers defined as 

values that differ from the mean by more than six standard deviation were removed and 

biomarkers were transformed using a log or a cubic root transformation as needed. 

Regression-based imputation with age and sex was used to create complete profiles for each 

subject and biomarkers were standardized within sex and age groups (0-4, 5-12, 13-19, 

20-29, 30+).

Hierarchical Clustering: Hierarchical clustering with complete linkage and Euclidean 

distance was used to group CSSCD participants based on the 17 standardized biomarkers 

(Supplement Figure 1). To determine the number of significant clusters, we used the 

resampling procedure introduced in37 (Supplement Figure 1). Biomarker signatures were 

defined by the median biomarker values in each cluster, and interquartile range, and are 

summarized in Supplement Table 1. Clusters are visually displayed using side-by-side 

boxplots of the 17 biomarkers (Figure 1 and Supplement Figure 2) and color-coded based on 

biomarker function (magenta = liver function, green=kidney function, red= anemia).
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Annotation with disease complication risk: We estimated that a sample size of 40 subjects 

provides 80% power to detect odds ratios of at least three for common complications. 

Therefore, clusters with at least 40 people were correlated with HBB genotype (HbSS, 

HBSC, HbSS-α thalassemia and β thalassemia, or another variant), morbidity (stroke, 

seizure, painful episodes, acute chest syndrome (ACS), avascular necrosis of bone (AVN) 

and leg ulceration), mortality, and trends of HbF and of a score of hemolytic anemia in 

prospectively collected data. In all analyses, the cluster with the majority of standardized 

biomarkers that were symmetrically distributed around zero was set as the reference cluster 

(Cluster 1). Relative risk for mortality, AVN, ACS, leg ulceration, stroke, and seizure of the 

various clusters compared to the referent clusters were estimated using Cox Proportional 

Hazards model controlling for age at enrollment, sex, and hemoglobin genotype. Since dates 

of seizures were not recorded, time to the first follow-up visit after a seizure was used in the 

survival analysis. The proportional hazard assumption was tested using Schoenfeld 

residuals38. To assess the effect of cluster membership on risk for painful episodes, three 

different outcomes were analyzed. The first outcome was the severity of a painful episode 

when subjects reported to a hospital for an acute episode. Severity was self-assessed as mild, 

moderate, severe. Since patients reported multiple acute episodes with hospitalization over 

the course of the study, we estimated the odds of having a severe painful episode compared 

to a mild or moderate painful episode using logistic regression estimated with generalized 

estimating equations (GEE). The second outcome was the number of painful episodes 

reported at each routine follow-up visit that were analyzed using logistic regression with 

GEE. The third outcome was the time to the first acute episode (reporting to the hospital 

with an episode) that was analyzed using a Cox Proportional Hazards model. All models 

controlled for baseline age, sex, and HBB genotype.

Annotation with longitudinal trend of HbF and hemolysis: The association between 

biomarker signatures and longitudinal trend of HbF was assessed using a linear regression 

model that included cluster membership, age, sex and HBB genotype. GEE was used to 

estimate the regression parameters from repeated measurements. To estimate the association 

between intravascular hemolysis and biomarker signatures, we used principal component 

analysis (PCA) of AST, LDH, reticulocyte and bilirubin collected at enrollment and at the 

first follow up visit, to derive a score of hemolysis as in39. The first principal components 

from each analysis were analyzed in a regression model that included age, sex, HBB 
genotype and cluster membership using GEE. In neither analysis the interaction between 

cluster membership and time reached statistical significance suggesting that signatures 

associated with different clusters affect levels of hemolysis and HbF but not their change 

over time.

Replication in PUSH and Walk-PHaSST Studies: PUSH40 and Walk-PHaSST41 were 

used for replication and validation. The PUSH data contained 16 out of the 17 biomarkers 

(missing uric acid), and the Walk-PHaSST data contained 13 out of the 17 biomarkers 

(missing uric acid, eosinophils, lymphocytes and monocytes). We used the Bayesian 

classification method described in42 to compute the most likely cluster membership for each 

subject in PUSH and Walk-PhaSST. This method essentially computed the probability that 

each subject was in one of the 17 clusters discovered in the CSSCD using the subject 
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biomarker data, and allocated the subject to the most likely cluster. Subjects in the two 

studies were stratified using the most likely cluster assignment, and the distribution of the 

biomarkers in the various clusters are displayed using side-by-side boxplots (Figures 3, 4 

and Supplement Figures 3, 4). We correlated the clusters predicted in PUSH and Walk-

PHaSST with HBB genotypes, history of hydroxyurea treatment, tricuspid regurgitant jet 

velocity (TRV) and additional biomarkers including nt-proBNP measured at enrollment. We 

also analyzed the association between biomarker signatures and mortality data in Walk-

PHaSST (Table 3). In these two data sets, the referent clusters were chosen based on the 

majority of standardized biomarkers that were symmetrically distributed around zero.

All analyses were conducted in R3.3.

Results

Table 1 summarizes characteristics of 2320 CSSCD subjects included in the analysis, after 

exclusion of participants who did not have HbF values (564), or were missing their entire 

blood panel at enrollment (n=596). The mean age of all participants was 15.30 years 

(standard deviation [sd]: 12.15) and the subjects ranged from newborns to age 63. The mean 

follow-up time was 6.44 years (sd: 2.32) and 1217 (52.2%) were men.

Discovery of Biomarker Signatures

A total of 17 biomarkers were included in the clustering analysis resulting in the 

dendrogram in Supplement Figure 1. We used a resampling procedure to detect 17 

statistically significant clusters of subjects with similar biomarker profiles and a significance 

level of 0.00537. Supplement Table 1 shows summary statistics of biomarkers in the 17 

clusters and Table 1 shows summary age, HbF level, and the hemolytic score based on 

principal component analysis in the eight clusters with at least 40 subjects. The complete 

description of patient characteristics by clusters is in Supplement Table 2. Note that the 

mean age of participants through Clusters 1-6, and 8 are very similar. Sensitivity analysis 

was conducted to test the selection of 17 biomarkers by testing the difference between each 

standardized biomarker in each cluster and the referent cluster. All differences were 

statistically significant implying that the clusters were efficiently capturing the varying 

biomarker profiles and all biomarkers were necessary.

Figure 1 displays side-by-side boxplots of the biomarkers in the eight largest clusters that 

included at least 40 people. The largest cluster, Cluster 1 with 657 subjects, was 

characterized by all biomarkers having a distribution centered at zero, and was used as 

referent group in all other analyses. In all of the other clusters, the biomarkers displayed 

characteristic patterns of departures from the average distribution, and the differences were 

statistically significant. For example, the levels of biomarkers of liver function in patients 

assigned to Cluster 2 appear to be below the values of age and sex matched referent 

participants (left of zero), while the patterns of markers of anemia (lower than average 

reticulocyte counts, white blood cell counts and higher than average hemoglobin) suggest 

that patients in Cluster 2 have less hemolysis than patients in Cluster 1. Cluster 3 shows 

almost the opposite situation, with higher than average biomarkers of liver function, higher 

markers of anemia and worse kidney function, suggesting that patients in this cluster have 
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more hemolysis than patients in Cluster 1. Patients in Cluster 4 show a pattern of biomarkers 

of liver function that is similar to that of patients in Cluster 3, but less difference from the 

average distribution of markers of anemia, and increased HbF. Cluster 5 shows a pattern of 

liver and anemia biomarkers similar to Cluster 2, suggesting that these patients have less 

hemolysis than patients in Cluster 1 but, in addition, patients in Cluster 5 have substantially 

lower than average HbF compared to patients in Cluster 2. Patients in Clusters 6 have fairly 

average biomarkers with the exception of substantially elevated platelet levels (median 

standardized value =2). Patients in Clusters 7 and 8 are characterized by substantially 

elevated biomarkers of kidney function (median standardized uric acid >2). Additional 

clusters are small (13 or less patients) and the distribution of the biomarkers are visualized in 

Supplement Figure 2. We next investigated whether these different signatures of biomarkers 

have clinical relevance and can be used to identify sickle cell disease patients at risk for 

certain complications of the disease.

Annotation with disease complications

Table 2 shows the prevalence of HbSS, HbSC and HbSS -α-thalassemia in the most 

common clusters. HbSS was most prevalent in Clusters 1, 3, 4, 6, 7 and 8, while Clusters 2 

and 5 were enriched for patients with HbSC disease. The prevalence of HbSS-α-thalassemia 

was highest in Cluster 1. The differences were statistically significant (p-value < 2 E-16). 

We also correlated cluster membership with HBB haplotypes that we recently inferred in 

CSSCD patients using a more sensitive algorithm,43 but the analysis did not detect any 

significant association between cluster membership and haplotype.

The clusters were annotated with hazard of mortality, ACS, AVN, leg ulceration, stroke, 

seizure, and acute painful episodes. Overall, 132 subjects included in this analysis died, 56 

had at least one stroke, 91 had at least one seizure, 142 had leg ulceration, 700 had at least 

one ACS episode, 314 had AVN, and 942 had at least one acute painful episode in the 

longitudinal follow up (Supplemental Table 3). To determine the odds of having a severe 

acute painful episode (as opposed to a mild episode), we identified a total of 3717 hospital 

visits for an acute painful event in 923 subjects and, among these, 2282 hospital visits of 639 

subjects were severe acute events. Furthermore, to assess the odds of having at least one 

painful episode between routine visits, we identified 10,207 routine visits for 2257 subjects, 

with 4324 visits of 1632 subjects who reported at least having one painful episode since the 

last visit. Table 2 and Figure 2 summarize the results of the analysis of morbidity and 

mortality in the eight largest clusters. After controlling for hemoglobin genotype, age and 

sex, the biomarker signature of Cluster 2 was protective against having at least one painful 

episode in between visits when compared to Cluster 1 (Odds Ratio [OR]: 0.68, p-value:

0.0005), and ACS (HR: 0.75, p-value: 0.04). There was suggestive protection against 

mortality and stroke although the association did not reach statistical significance (Hazard 

Ratio [HR]: 0.57, p-value: 0.17; HR=0.26, p-value=0.08 respectively). Cluster 3 signature 

was borderline protective against having a severe painful episode (HR: 0.76, p-value:0.07) 

and was associated with a suggested increased risk for leg ulceration (HR: 1.5, p-

value=0.067), and for stroke and mortality, although these effects did not reach statistical 

significance. The signature of Cluster 4 was protective against mortality (HR: 0.51, p-value: 

0.03), AVN (HR: 0.67, p-value: 0.03), seizure (HR: 0.45, p-value: 0.06), and against having 
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a severe acute painful episode (OR: 0.60, p-value: 0.0005). Participants in Cluster 6 had an 

increased hazard of seizure (HR: 2.27, p-value: 0.042), ACS (HR: 1.53, p-value: 0.01), and 

AVN (HR: 2.12, p-value: 0.003). Finally, patients in Cluster 7 had a decreased hazard of 

reporting to the hospital with an acute painful episode (HR: 0.50, p-value: 0.0095).

In the analysis of longitudinal measurements of HbF, 1433 subjects had at least two 

measurements and over 100 subjects had at least seven measurements. Regression modeling 

showed that the level of HbF decreased on average 0.96 times for every 1-year increase in 

age and females had 0.83 times the HbF levels of males. Several clusters were associated 

with higher or lower HbF, compared to the referent cluster in which we estimated an average 

9.5% HbF at age eight years, but cluster membership was not associated with different rate 

of HbF change with increasing age. Consistent with reduced risk for mortality, stroke and 

painful episodes, Cluster 2 and 4 were associated with increased HbF levels compared to 

Cluster 1, while HbF was lower in all other clusters.

The result from the regression analysis of the hemolytic score suggests a strong longitudinal 

correlation (p<0.0001). We did not find any significant effect of the biomarker signatures on 

this longitudinal correlation. However, signatures were strongly associated with different 

levels of hemolysis compared to the referent signature of Cluster 1. Cluster 2 and 5 were 

significantly associated with lower hemolytic score compared to Cluster 1, while Clusters 3, 

4, 6, and 8 were associated with higher hemolytic score, and the signatures of different 

clusters distinguished between different degrees of intravascular hemolysis.

Replication of the signatures in PUSH and Walk-PHaSST studies

We used a Bayesian classification rule to predict the cluster membership of patients in 

PUSH and Walk-PHaSST and used the most likely predicted signature to assign each patient 

to one of the 17 clusters. Only 12 of the 17 signatures were detected in PUSH, and 13 of the 

17 signatures were detected in Walk-PHaSST. Figures 3 and 4 display side-by-side boxplots 

of the biomarker distributions in clusters 1-8 in the two studies that reproduce very closely 

the signatures in the discovery set (CSSCD). Additional signatures are in Supplement 

Figures 3 and 4. The HBB genotype distribution in the clusters inferred in PUSH and Walk-

PHaSST were similar to the distribution in the clusters discovered in CSSCD (Table 3), for 

most clusters. Specifically, there was no significant difference in the distribution of HbSS in 

clusters 3, 5, 7 between CSSCD and PUSH studies, and also there was no significant 

difference in the distribution of HbSS in clusters 5 and 8 between CSSCD and Walk-

PHaSST studies. Interestingly, Cluster 2 in PUSH included a large proportion of HbSS 

patients compared to Cluster 2 in CSSCD (62% compared to 16%). In the absence of follow 

up data for major complications of the disease, we correlated the signatures in PUSH and 

Walk-PHaSSt with history of hydroxyurea treatment and noted a correlation between the 

“protective effect” of Cluster 2 signature and a predominant portion of subjects with a 

history of hydroxyurea treatment. Clusters 5 in both PUSH and Walk-PHaSST included a 

large portion of HbSC disease patients, as in the primary analysis in Table 2, and very small 

portion of hydroxyurea treated patients. We also examined the association between risk for 

death and biomarker signatures using the approximate 2-year follow up in Walk-PHaSSt44. 

Only Clusters 1 and 7 had more than five events, and Cluster 7 was associated with an 
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increased risk for mortality as in the CSSCD, although the association did not reach 

statistical significance (HR: 2.3, p=0.17).

We then correlated the biomarker signatures with two biomarkers of pulmonary 

vasculopathy in PUSH and Walk-PHaSST. Figure 5 shows that TRV and nt-proBNP of 

patients in Clusters 2 and 5 tend to be lower than Cluster 1, while patients in Clusters 3 and 

7 have elevated values of both TRV and nt-proBNP. The association between cluster 

membership and TRV and BNP was statistically significant in both studies (p-value from 

ANOVA < 10-6).

Discussion

We have identified signatures of 17 circulating biomarkers that stratify sickle cell disease 

patients in groups with different risk for disease complications and mortality. The biomarker 

signatures were discovered using data from the CSSCD but we replicated the patterns in two 

independent, contemporary cohorts of sickle cell disease, the PUSH and Walk-PHaSST 

trials. The former was a study of pulmonary vascular disease focused on children while the 

latter study of adults was also focused on pulmonary disease. Patients in the contemporary 

cohorts were sometimes treated with hydroxyurea, which can alter the pathophysiology of 

disease. The CSSCD was an observational study done in the pre-hydroxyurea era.

The advantage of using many biomarkers concurrently is to be able to simultaneously detect 

risk for a variety of disease complications, rather than focusing on one complication at a 

time, and to increase the specificity of risk prediction. For example, the patterns of markers 

of anemia in Clusters 3 and 7 are very similar and are consistent with more anemic patients, 

but those patterns combined with different patterns of kidney disease predict different 

severity. Patients in Cluster 3 have a higher risk for leg ulcers but a lower risk for a severe 

painful episode than patients in Cluster 7. Similarly, while the lower risk for mortality and 

stroke in Clusters 2 and 4 is consistent with the higher than average HbF compared to 

Cluster 1, the differences in risk for AVN and pain in Clusters 2 and 4 would not be 

detectable with HbF alone. Our analyses with incident events in the CSSCD showed that 

indeed different biomarker signatures can predict risk for stroke, seizure, acute painful 

episodes, AVN, ACS, leg ulceration, and ultimately mortality. The analyses also showed that 

the biomarker signatures can predict trends of HbF and intravascular hemolysis, both of 

which are associated with different constellations of common complications 14,45. The 

correlation between signatures and contemporary markers of hemolysis and pulmonary 

vasculopathy suggests that these signatures could also predict increased risk for these 

complications although we do not have data to independently verify this hypothesis. 

Unfortunately we did not have incident events in PUSH or Walk-Phasst to replicate the 

association of the biomarker signatures with complications we estimated in the CSSCD.

Convincing evidence, accrued by dozens of investigators studying thousands of patients, 

showed that the complications of sickle cell disease are affected by both sickle 

vasoocclusion and intravascular hemolysis, and that each is associated with a spectrum of 

subphenotypes14. Each contributes to the pathophysiology of disease but are often difficult 

to disentangle in individuals. Our analysis illustrates the complexity of this phenotypic 

Du et al. Page 8

Blood Cells Mol Dis. Author manuscript; available in PMC 2019 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



dichotomization when readily available biomarkers are used to group patients and allows 

this pathophysiologic and mechanistically simplistic separation to be clinically more 

applicable. For example, while Cluster 2 contained patients with less intravascular 

hemolysis, these individuals also had a reduction in pain and ACS in addition to the trend to 

reduced mortality and stroke. Similarly, in Cluster 7 the expected increased mortality, stroke 

and seizure risk, and worsening of renal function associated with a high level of hemolysis 

was accompanied by an increase in some measures of acute pain.

Our analysis included all participants from the CSSCD with biomarker data, regardless of 

the age at enrollment or complications of the disease. Other studies to discover predictors of 

sickle cell disease complications focused on particular age groups, for example young 

children 46, and it remains to be seen if the sensitivity and specificity of the biomarker 

signatures we found are comparable to other scoring systems that target particular 

complications. Compared to the disease severity score that we introduced27, an important 

feature of the biomarker signatures is to rely exclusively on biomarkers to predict risk for 

disease complications. Inclusion of medical history of patients in the signatures could 

improve the prediction for the risk of death, but make the signature less useful to identify 

patients at risk for complications, independently of death.

Desai and colleagues have shown that there are two signatures based on gene expression 

profiles of peripheral blood mononuclear cell that together with other clinical markers of 

severity such as TRV, white blood cell count, history of ACS, and hemoglobin levels 

significantly differentiate survival in three small longitudinal studies of sickle cell disease30. 

Our results are consistent with the general hypothesis that biomarker signatures should be 

able to identify patients with different clinical presentations and ultimately different risks for 

death, but promote the specific hypothesis that these data alone should be able to capture 

signatures of disease complications before their clinical expression.

Another advantage of these signatures is that they rely on commonly available laboratory 

data, so that their translation into a clinical tool should be relatively easy. However, more 

extensive validation of these results is necessary before these signatures can be used in 

clinical practice in time for preventive therapy, or for patient stratification by risk of 

complications for enrollment in clinical trials.

In addition to the suggestive utility in clinical practice, our analysis discovered one 

biomarker signature shared predominantly by HbSC disease patients, and a small portion of 

HbSS patients in the CSSCD (Cluster 2). This cluster was associated with a higher HbF 

level contributed by the patients with HbSS (mean HbF = 22.7%), but a lower prevalence of 

HbSS-α thalassemia compared to Cluster 1. There was also a reduced risk for mortality, 

stroke, chronic pain, and less intravascular hemolysis compared to Cluster 1, all features of 

HbSC disease. Consistently with the well-established therapeutic effects of hydroxyurea, the 

same biomarker signature in PUSH was shared by a majority of HbSS patients treated with 

hydroxyurea. We conjecture that untreated HbSS patients in Cluster 2 with this signature 

might be enriched for protective genetic variants in addition to HbF, or could be exposed to 

other non-genetic factors that protects them from complications of HbSS. Additional 

analysis that is beyond the scope of this work is needed to test this hypothesis.
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A limitation of our analysis is the use of CSSCD cases, a cohort of patients from the pre-

hydroxyurea era where the contemporary treatment paradigms that might impact morbidity 

and mortality, in addition to hydroxyurea, were unavailable. Furthermore, some clusters that 

represent uncommon patterns are small and we had limited statistical power to evaluate their 

diagnostic and prognostic value. Nevertheless, although we replicated the patterns of 

biomarkers in more contemporary cohorts, replication in larger studies with longitudinal 

follow up is needed to establish the clinical utility of these signatures. It will also be 

important to replicate this work in studies from other locales, particularly Africa, the Middle 

East, India and Brazil where the health burden of sickle cell disease is high and growing1. 

With replication and further study, biomarker signatures could become an important and 

affordable precision medicine tool to aid treatment and management of the disease. They can 

also be useful in the selection for, and analysis of, the increasing number of clinical trials in 

sickle cell disease where the studied agents are targeted to different facets of 

pathophysiology.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Key points

• Prediction of the clinical course of patients with sickle cell disease remains 

elusive.

• We discovered signatures of 17 common circulating biomarkers that correlate 

with morbidity and mortality in sickle cell disease.

• We replicate the signatures in two independent studies of sickle cell disease 

and show that they correlate with recently discovered biomarkers of 

pulmonary vasculopathy.

• With replication and further study, these biomarker signatures could become 

an important and affordable precision medicine tool to aid treatment and 

management of the disease.
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Figure 1. Most common biomarker signatures discovered in CSSCD
The side-by-side boxplots show the patterns of 17 biomarkers in the 8 clusters with > 40 

subjects. Biomarkers are age and sex standardized and color coded by function: 

magenta=liver function; green= kidney function; red=anemia. All 17 clusters are displayed 

in Supplement Figure 2. (LDH-lactic dehydrogenase; ALKP-alkaline phosphatase; AST-

aspartate aminotransferase; BILI-total bilirubin; ALB-serum albumen; URA-uric acid; 

CREAT-creatinine; BUN-Blood urea nitrogen; HbF-fetal hemoglobin level; RETIC-

reticulocyte count; PLTS-platelets; MON-monocyte count; LYMP-lymphocyte count; EOS-

eosinophil count; MCV-mean corpuscular volume; WBC white blood cell count; HB-

hemoglobin level).
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Figure 2. 
Forest plots of hazard ratios for various complications of sickle cell disease comparing 

clusters 2 through 8 to cluster 1. Intervals that include 1 show non-significant results.
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Figure 3. Predicted signatures in PUSH
Cluster membership of each PUSH subject was predicted using a Bayesian classifier and the 

side-by-side boxplots display the patterns of 16 biomarkers stratified by predicted clusters. 

Biomarkers are age and sex standardized and color coded by function: magenta=liver 

function; green= kidney function; red=anemia. Additional clusters are displayed in 

Supplement Figure 3. (LDH-lactic dehydrogenase; ALKP-alkaline phosphatase; AST-

aspartate aminotransferase; BILI-total bilirubin; ALB-serum albumen; URA-uric acid; 

CREAT-creatinine; HbF-fetal hemoglobin level; RETIC-reticulocyte count; PLTS-platelets; 

MON-monocyte count; LYMP-lymphocyte count; EOS-eosinophil count; MCV-mean 

corpuscular volume; WBC white blood cell count; HB-hemoglobin level).
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Figure 4. Predicted signatures in Walk-PHaSST
Cluster membership of each Walk-PHaSST subject was predicted using a Bayesian classifier 

and the side-by-side boxplots display the patterns of 15 biomarkers stratified by predicted 

clusters. Biomarkers are age and sex standardized and color coded by function: 

magenta=liver function; green= kidney function; red=anemia. Additional clusters are 

displayed in Supplement Figure 4. (LDH-lactic dehydrogenase; ALKP-alkaline phosphatase; 

AST-aspartate aminotransferase; BILI-total bilirubin; ALB-serum albumen; URA-uric acid; 

CREAT-creatinine; HbF-fetal hemoglobin level; RETIC-reticulocyte count; PLTS-platelets; 

EOS-eosinophil count; MCV-mean corpuscular volume; WBC white blood cell count; HB-

hemoglobin level).
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Figure 5. Distributions of TRV and nt-proBNP in the clusters predicted in PUSH and Walk-
PHaSST
The distributions of TRV and nt-proBNP among clusters were significantly different (p-

value from ANOVA, age-adjusted, shown in each panel).
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