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Abstract

Lipid research represents a frontier for microbiology, as showcased by hopanoid lipids. 

Hopanoids, which resemble sterols and are found in the membranes of diverse bacteria, have left 

an extensive molecular fossil record. They were first discovered by petroleum geologists. Today, 

hopanoid-producing bacteria remain abundant in various ecosystems, such as the rhizosphere. 

Recently, great progress has been made in our understanding of hopanoid biosynthesis, facilitated 

in part by technical advances in lipid identification and quantification. A variety of genetically 

tractable, hopanoid-producing bacteria have been cultured, and tools to manipulate hopanoid 

biosynthesis and detect hopanoids are improving. However, we still have much to learn regarding 

how hopanoid production is regulated, how hopanoids act biophysically and biochemically, and 

how their production affects bacterial interactions with other organisms, such as plants. The study 

of hopanoids thus offers rich opportunities for discovery.

Lipids are the forgotten molecules of the microbial sciences. Despite their central role in 

defining cellular membranes, lipids have been routinely understudied, largely because they 

cannot be measured, synthesized or modified as easily as nucleic acids and amino acids. 

Although recent technical advances are beginning to simplify these tasks (for example, 
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LIPID MAPS1), much of the functional importance of the rich chemical diversity of 

bacterial lipids remains a mystery.

Here, we introduce a particular class of membrane lipids — the hopanoids — as a model for 

modern lipid research. Hopanoids are found in diverse bacteria and in a handful of lichens 

and plants. Similar to eukaryotic sterols, hopanoids are planar, polycyclic hydrocarbons 

containing five rings compared with the four rings in sterols, and they have a variety of polar 

and nonpolar side chains2. This structural analogy underlies their functional similarities. 

Both lipid classes modulate the fluidity and permeability of membranes, and they have other, 

subtler biological functions that are beginning to be elucidated.

Unusual for biological molecules, hopanoids were first discovered in ancient rocks rather 

than in living cells. Hopane skeletons, which are pentacyclic carbon backbones lacking 

complex side chains, are produced by hopanoid degradation during rock formation, and they 

were recognized as components of oil shales many years before their biological source was 

found3. These ‘fossil’ hopanoids are now known to be staggeringly ubiquitous in rocks. 

They are common elements of sedimentary rocks formed as early as 1.64 billion years ago4 

and are estimated to have a greater mass than all other natural products from living 

organisms combined5.

The landmark discovery of hopanoids in the bacteria Methylococcus capsulatus and 

Alicyclobacillus (formerly Bacillus) acidocaldarius6,7 sparked a new field of hopanoid 

research. Since then, much work in this field has been motivated by a geobiological 

question: how can understanding the distribution and the biology of hopanoids in living 

microorganisms inform our interpretations of ancient bacteria on the basis of hopane 

biomarkers in the rock record? So far, a simple answer has proved elusive. As the number of 

sequenced bacteria and the availability of genetic approaches have expanded, it has become 

clear that remarkably diverse organisms produce hopanoids. It is therefore difficult to 

attribute hopanes in the rock record to the advent of a specific phylogenetic group, metabolic 

process or environmental context. Reviews of the efforts to interpret hopanoids in the rock 

record are available in the literature8,9.

Here, we discuss the state of hopanoid research from a biological and biochemical 

perspective. First, we summarize what is known about the structural diversity and 

biosynthesis of hopanoids. Work on these topics has led to the characterization of the genes 

that are required to make hopanoids. Identifying these genes is a necessary first step for 

understanding the distribution of hopanoid production among bacteria and has provided a 

handle for genetic manipulation of hopanoid biosynthesis. In the second section, we discuss 

the functional consequences of disrupting hopanoid biosynthesis from the membrane scale 

to the population level and for bacteria in host-associated environments. In the latter context, 

we focus on how hopanoids may facilitate beneficial plant–bacteria interactions, an 

agronomically and ecologically important issue.
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Hopanoid structure and biosynthesis

The terpenoids, also known as isoprenoids, are formed by condensation of two or more 

isoprene units. They are one of the world’s largest groups of natural products10 and occur in 

all domains of life. In some organisms, terpenoids regulate essential metabolic processes, 

including growth, photosynthesis and respiration. More commonly, terpenoids form 

secondary metabolites that mediate the interactions between organisms and their 

environments.

Hopanoids belong to the cyclic triterpenoid subclass, a structurally diverse group of 

molecules synthesized by the cyclization of the branched terpenoid hydrocarbon squalene 

and its oxygenated derivative 2,3-oxidosqualene11 (FIG. 1). These chemically complex 

reactions are catalysed by the triterpenoid cyclase superfamily of enzymes. Over a dozen 

triterpenoid cyclase families exist, which produce various classes of monocyclic and 

polycyclic triterpenoids11,12.

The largest group of triterpenoid cyclases contains the epoxysqualene or oxidosqualene 

cyclases (OSCs). This family of triterpenoid cyclases is highly specific for the oxygenated 

squalene intermediate 2,3-oxidosqualene13, and as a result, its products bear signature 

oxygen groups on ring A (FIG. 1). Collectively, the OSCs can produce a broad spectrum of 

chemically distinct cyclic triterpenoids, and they are usually divided into subfamilies based 

on their primary end products. Virtually all OSC subfamilies are unique to eukaryotes, with 

the exception of the sterol synthases, which have been identified and characterized in a 

handful of aerobic methanotrophs and myxobacteria. Recent analyses of environmental 

samples suggest that sterol production in bacteria is more widespread than previously 

thought14.

Another major family of triterpenoid cyclases contains the squalene-hopene cyclases 

(SHCs). These enzymes can synthesize cyclic triterpenoids directly from squalene in an 

oxygen-independent process; they can also cyclize 2,3-oxidosqualene in vitro15, although 

the organisms containing SHCs generally do not produce this substrate. Similarities in the 

sequences and structures of the active sites of OSCs and SHCs have suggested that these 

enzyme families are evolutionarily related16–18. Although the higher substrate promiscuity 

of SHCs than of OSCs has been used to suggest that OSCs evolved from SHCs19, some 

evolutionary models of SHC and OSC relatedness have favoured the idea that SHCs and 

OSCs diverged from a common ancestor20.

Whereas SHCs can accommodate more diverse substrates than OSCs, their known products 

are more limited. SHCs primarily synthesize the hopanoids diploptene and diplopterol, 

which are also known as C30 hopanoids (FIG. 1). In a few bacterial genera, SHC enzymes 

can also produce tetrahymanol through an additional tetrahymanol synthase enzyme. This 

pathway of tetrahymanol synthesis is unique to bacteria and predominantly occurs in the 

Bradyrhizobiaceae family of nitrogen-fixing legume symbionts21.

Roughly 10% of bacteria can produce hopanoids (that is, they encode shc)22–24. The group 

with the highest conservation of shc genes is the Proteobacteria, particularly the 

alphaproteobacterial Bradyrhizobiaceae family and the betaproteobacteria genus 
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Burkholderia, which includes both plant-associated members and human pathogens; shc 
genes are also well conserved among the Firmicutes, especially the plant-associated and 

human-associated Bacilli as well as the Frankiaceae family of plant-symbiont 

Actinobacteria. Other groups in which shc genes are common include the Cyanobacteria, 

Acidobacteria and Planctomycetes.

Although hopanoids are often assumed to be bacteria-specific, many molecules sharing the 

pentacyclic ring structure and core methylation sites of hopanoids have been isolated from 

various tropical trees, grasses, lichens and ferns25,26. Some of these structures are identical 

to bacterial hopanoids. For example, several members of the Polypodiales (polypod) order of 

ferns encode an SHC enzyme24 that seems to exclusively produce the C30 hopanoid 

diplopterol in vitro27. It is likely that these ferns acquired shc by horizontal transfer from 

bacteria28. Other hopanoid-like molecules in plants contain additional accessory groups not 

observed in bacterial hopanoids (FIG. 1). The most common of these accessory groups is a 

C3 oxygen group, indicating that these molecules are 2,3-oxidosqualene derivatives26,29. 

Given the paucity of shc genes in plants, we speculate that plants encode an as-yet-

uncharacterized OSC subfamily member that produces hopanoid-like lipids as a primary 

product.

Side chain formation.

In most organisms, the shc gene is part of a conserved hpn (hopanoid biosynthesis) operon 

that encodes enzymes for upstream terpenoid biosynthesis and downstream hopanoid 

structural modifications30. The most common hopanoid modification is the addition of 

hydrocarbon side chains by the enzyme hopanoid biosynthesis-associated radical SAM 

protein HpnH, which is found in almost all hopanoid-producing bacteria31. Hopanoids made 

by HpnH are known as the extended or C35 hopanoids, and they are formed by the addition 

of a C5 ribose moiety to C30 hopanoids32,33 (FIG. 1). These groups can be processed to 

produce diverse side groups by other hpn gene products, although the fitness advantages 

conferred by specific side chains are generally unknown31,34–36 (FIG. 1).

Core modification.

Both C30 and extended hopanoids can be methylated at either the C2 position by the enzyme 

hopanoid 2-methyltransferase HpnP37, forming the 2-methyl-hopanoids (2Me-hopanoids), 

or at the C3 position by the enzyme hopanoid C3 methylase (HpnR)38, forming the 3-

methyl-hopanoids (3Me-hopanoids) (FIG. 1). These methylation sites are more geostable 

than hopanoid side chains, and they have therefore occupied a central position in hopanoid 

geobiology. Genes encoding HpnP are largely restricted to the Cyanobacteria, Proteobacteria 

and Acidobacteria39, whereas HpnR is even less common and is present in only a handful of 

species among the Proteobacteria, Nitrospirae and Actinobacteria38. Given that 2Me-

hopanoids and 3Me-hopanoids have non-overlapping distributions, they may be functionally 

redundant.

In a few organisms, desaturation of one or more bonds in the pentacyclic hopanoid core also 

occurs, although the enzymes responsible are not known40–44. In general, little attention has 

been paid to hopanoid catabolism
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Biological functions of hopanoids

Unlike proteins and nucleic acids that can be easily probed with fluorescent dyes, antibodies 

or hybridization, detection of lipids in live cells can be technically complex. Most lipids can 

be extracted from cells using organic solvents and partially purified with chromatography45, 

and protocols for hopanoid purification are well established. Great progress has also been 

made in identifying specific hopanoid structures by high-temperature gas chromatography46 

or reverse-phase liquid chromatography47 coupled to mass spectrometry. Although it 

remains challenging to precisely quantify the abundance of hopanoids, synthetic isotope-

labelled standards for some hopanoids have been developed48. Based on the results of these 

approaches, hopanoids seem to constitute less than 1% up to 90% of bacterial membranes, 

depending on the species and growth condition, and they are present in peripheral, 

intracellular and extracellular membranes, such as the outer membranes of cyanobacterial 

akinetes, cyanobacterial thylakoid membranes and the nitrogen-fixing vesicles of Frankia 
spp.49–53. In Gram-negative bacteria, hopanoids are enriched in the outer membrane by the 

hopanoid biosynthesis-associated RND transporter-like protein HpnN54–56 (FIG. 2), 

although other factors regulating hopanoid localization are unknown so far.

Membrane fluidity.

Owing to their planar, hydrophobic structures, eukaryotic sterols and hopanoids can 

intercalate into lipid bilayers and interact with other lipids to alter the biophysical properties 

of membranes (FIG. 2). Early experiments in synthetic membranes and liposomes 

demonstrated that both extended hopanoids and cholesterol can condense, thicken and 

decrease the permeability of membranes, although with different efficiencies57–64. These 

data have shown that, although the membrane-modifying behaviours of sterols and 

hopanoids are broadly similar, they are not functionally interchangeable. Indeed, although 

certain hopanoids can compensate partially for the absence of cholesterol in Mycoplasma 
mycoides, the growth rate of these cells is markedly impaired, indicating that the functions 

of hopanoids and cholesterol are not identical65.

Just as hopanoids differ from cholesterol, extended hopanoids with distinct side chains can 

also differ in their membrane-modifying capacities66,67. These structural differences 

between hopanoids may modulate their ability to interact with other lipids in the bilayer and, 

perhaps, their distribution in bacterial membranes. Molecular dynamics simulations have 

been performed to model the orientation of the C30 hopanoid diploptene and the extended 

hopanoid bacteriohopanetetrol (BHT) in membranes in silico67. In these simulations, BHT 

adopts an upright orientation inside the lipid bilayer, where it can interact with other 

membrane lipids to condense the membrane (FIG. 2). By contrast, diploptene localizes 

between the two leaflets, partitioning to the midplane. This latter positioning is expected to 

decrease membrane permeability by providing an added layer of protection to the cell. In 

vivo analyses of how different hopanoids affect membrane fluidity partially support these 

molecular dynamics results. In synthetic vesicles, diplopterol, which differs from diploptene 

by the addition of a single hydroxyl group, had no effect on membrane fluidity, whereas 

BHT decreased fluidity to a similar degree as cholesterol53.
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The effects of hopanoid methylation on membrane fluidity are less clear and less widely 

studied than the effects of extended hopanoids. In synthetic membranes, 2-methyl-

diplopterol outperformed cholesterol in decreasing membrane fluidity, suggesting that 

methylation is the most relevant modification for condensing the bilayer53. Yet this finding 

was not supported by measurements in live cells. In the purple non-sulfur bacterium 

Rhodopseudomonas palustris TIE-1, membranes from the ΔhpnP mutant, which lacks all 

2Me-hopanoids, are equally as fluid as wild-type membranes53. It has been shown that 

hopanoid mutants overproduce other membrane-condensing lipids68–70, which may explain 

this discrepancy. Regardless, factors affecting membrane fluidity in vivo are clearly more 

complex than what can be captured in vitro.

Lipid rafts.

Another well-noted feature of sterols is their ability to interact with sphingolipids to promote 

the formation of a liquid-ordered (Lo) phase in eukaryotic membranes71–73 in which lipids 

are packed into a highly ordered organization but can still move freely throughout the 

bilayer. This property is important because it creates a platform for the formation of lipid 

rafts, which are specialized membrane microdomains that compartmentalize cellular 

processes by recruiting specific lipids and membrane-associated proteins. Although the 

existence of lipid rafts was once hotly debated, it is now accepted that lipid rafts in 

eukaryotes have important roles in signal transduction, endocytosis, ion homeo stasis and 

cell growth as well as in lipid–protein and protein–protein interactions at the membrane73,74 

(FIG. 2).

Fewer studies have been performed on the formation of lipids rafts in bacteria, and the topic 

remains controversial75–77; however, there is evidence that hopanoids could support this 

process78–80. In hopanoid-producing Gram-negative bacteria, hopanoids typically are 

abundant in the outer membrane, of which lipid A is the major component (FIG. 2). Inspired 

by the structural similarities between lipid A and the eukaryotic sphingolipid sphingomyelin 

(that is, amide-linked acyl chains and hydroxyl groups), Sáenz et al. showed that diplopterol 

can interact with the saturated chains of lipid A to induce the formation of a Lo phase in 

synthetic membranes78,79, which promotes a fluid but mechanically robust membrane (FIG. 

2). The ability of the hopanoids to modulate outer membrane properties through their 

interactions with lipid A suggests that they facilitate membrane compartmentalization into 

functional domains. Additionally, hopanoids appear to localize to membrane microdomains 

in vivo. In the marine cyanobacterium Crocosphaera watsonii, hopanoids are present in 

insoluble, detergent-resistant membrane fractions, as is common for raft-forming lipids in 

eukaryotes80. Microanalysis of isotope-labelled hopanoids in the cyanobacterium Nostoc 
punctiforme and in R. palustris TIE-1 also showed that hopanoids preferentially localize to 

regions of high membrane curvature, where high degrees of membrane tension may require 

thicker, more condensed membranes81. Although these collective data are promising, further 

biophysical analyses of live membranes will be needed to determine whether hopanoids 

indeed form lipid rafts in bacterial cells.
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Stress tolerance.

Many studies in diverse bacteria show that hopanoids facilitate bacterial survival under stress 

(for example, at high temperatures, low pH and high osmotic pressures and during antibiotic 

or detergent treatments), although the specific subset of conditions for which hopanoids are 

beneficial varies between bacterial strains82–87. Under these conditions, hopanoid content is 

typically increased, and it has long been proposed that hopanoids are regulated by canonical 

stress response pathways88. The alphaprotobacterial general stress response pathway 

regulates the hpnP gene in R. palustris TIE-1, although shc appears to be unregulated in this 

organism89. Regulation of hopanoids in other bacteria has not been studied.

The relative contributions of hopanoid structural modifications to survival under stress vary. 

2Me-hopanoids seem to be generally associated with pH stress in diverse bacteria but have 

negligible or very subtle effects in the presence of other stressors, depending upon the 

bacterial strain37,86,89–91. Extended hopanoids are more important in this context, as they 

improve growth during exposure to bile salts, high temperatures, low pH, detergents, 

osmotic stress and antimicrobial peptides34,86. In Bradyrhizobium diazoefficiens, extended 

hopanoids are also essential for hypoxic growth in rich media86.

The role of hopanoids in stress tolerance is particularly apparent in bacteria that form 

specialized, stress-associated cell types. In N. punctiforme, hopanoids do not affect growth 

of vegetative cells under stress but primarily localize to stress-associated akinete cells52,90. 

Similarly, in Streptomyces coelicolor, hopanoids are not detectable in vegetative cells but are 

massively upregulated during sporulation92. Tetracyclic isoprenoids, which are called 

sporulenes, are synthesized during spore formation in Bacillus subtilis and provide 

resistance to oxidative stress93; it is possible that hopanoids may have a similar role.

It is unknown whether the role of hopanoids in stress tolerance is simply a consequence of 

their impact on membrane fluidity and permeability or whether more specific stress response 

mechanisms are at play. In the case of hopanoid-dependent pH tolerance, it was suggested 

that lowered membrane permeability due to hopanoids prevents leakage of cations and 

protons across the membrane87. Similarly, the high content of hopanoids in membranes of 

thermotolerant and thermophilic bacteria88 likely reflects their ability to reinforce the 

membrane bilayer against thermal disorder or thermolysis while maintaining its fluidity. 

Molecular dynamics simulations show that BHT has a strongly temperature-dependent effect 

on lipid tails, whereas its effect on the polar heads is negligible94.

Other evidence suggests that hopanoids can promote the stress response beyond membrane 

stabilization. In Methylobacterium extorquens, a hopanoid-deficient mutant is impaired in 

multidrug efflux, hinting that hopanoids may modulate the action of membrane-associated 

protein complexes, possibly in subcellular membrane compartments79,95. Hopanoids also 

facilitate the formation of intracellular nutrient storage granules in N. punctiforme, a process 

that does not have an obvious, direct requirement for a more stable membrane but may result 

from an indirect metabolic effect90.
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Nitrogen fixation.

Many hopanoid-producing bacteria are capable of nitrogen fixation, including Anabaena 
spp., Azotobacter spp., Beijerinckia spp., Bradyrhizobium spp., Burkholderia spp., Frankia 
spp. and Nostoc spp.96–99. It has long been suggested that hopanoids facilitate this 

metabolism96, though few direct tests of this hypothesis have been performed. Almost all 

nitrogen-fixing hopanoid producers associate with plants; some, such as the endosymbiotic 

non-photosynthetic Bradyrhizobium spp., are wholly reliant on their hosts for cofactors that 

are essential for nitrogen fixation100. Others, such as Nostoc spp., Anabaena spp. and 

Frankia spp., are plant symbionts but can also fix nitrogen in the free-living state. A few of 

these nitrogen fixers are exclusively free living, most notably Azotobacter vinelandii.

Nitrogen fixation typically occurs under a narrow range of environmental conditions. 

Oxygen irreversibly inhibits the nitrogenase enzyme, and as a result, nitrogen fixation 

typically occurs in a low oxygen atmosphere. Nitrogen fixation is less often observed at 

higher oxygen concentrations, as this requires sophisticated mechanisms for nitrogenase 

protection. During bacterial nitrogen-fixing symbioses with plants, the hosts can provide this 

protection. For example, in the root nodule symbioses that occur between rhizobia and 

legumes (BOX 1), plants express leghaemoglobin molecules that maintain low-nanomolar 

levels of free oxygen101.

In other cases of nitrogen fixation under high oxygen concentration, the mechanisms of 

nitrogenase protection are less clear. The free-living obligate aerobe A. vinelandii is 

presumed to both consume oxygen rapidly and create an extracellular alginate barrier to 

prevent oxygen diffusion into the cell102. Uniquely in Frankia spp., nitrogenase is 

sequestered into vesicles with a multi-layered lipid envelope that is presumed to form an 

oxygen diffusion barrier, as the thickness of the vesicle envelope is directly correlated to the 

oxygen concentration103,104 (FIG. 3). Up to 90% of these vesicle envelopes consist of BHT 

and a phenylacetyl monoester of BHT (phenylacetic acid (PAA)-BHT), at an estimated 

PAA-BHT:BHT ratio between 30:70 and 50:50 (REFS 51,105). Purified PAA-BHT and 

BHT seem to optimally stabilize membranes at those relative abundances in vitro, and so 

this mixture of PAA-BHT and BHT may promote vesicle stability66. Intriguingly, PAA-BHT 

in Frankia alni can also be cleaved to release PAA, which is a plant auxin involved in 

development106,107. It is thus possible that during the interaction of Frankia spp. with plants, 

hopanoids also have indirect roles by releasing symbiotic signals.

Plant–bacteria association.

Beyond Frankia spp., the correlation between hopanoid biosynthesis and plant-associated 

nitrogen fixation may reflect a more general role for hopanoids in promoting bacterial 

survival in the rhizosphere, regardless of whether cells are free-living in the soil or 

associated with plants. Bacteria encounter diverse stressors in these habitats, and teasing out 

the specific selective pressures that underpin this correlation is a priority for future research. 

Intriguingly, an analysis of hpnP and shc distributions in metagenomes found that hopanoid 

production is enriched in plant-associated environments and is correlated with markers for 

nitrogen fixation as well as methanol utilization, another metabolic activity common in 

plant-associated bacteria108. Hopanoid production is also common among beneficial 

Belin et al. Page 8

Nat Rev Microbiol. Author manuscript; available in PMC 2018 August 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



members of the Bacilli class24, which do not fix nitrogen but are nonetheless known for 

promoting plant growth109.

The role of hopanoids in beneficial plant–bacteria interactions has been studied best in 

legume–rhizobia root nodule symbioses. Hopanoid production occurs predominantly in 

rhizobia that associate with tropical legumes110–112, and in the association of 

Bradyrhizobium spp. with tropical Aeschynomene legumes, they seem to support rhizobial 

survival within hosts (BOX 1). In the photosynthetic Bradyrhizobium sp. BTAi1, a Δshc 
mutant that lacked hopanoids showed severe defects in outer membrane integrity and was 

both slower growing under optimal growth conditions and less resistant to stresses 

mimicking the root nodule microenvironment (such as low pH, hypoxia, high osmolarity and 

antimicrobial peptides) than wild-type bacteria113. In association with Aeschynomene 
evenia, this Δshc mutant induced nodules showing normal development and wild-type 

nitrogen fixation activity but a shorter lifespan, prematurely triggering a plant senescence 

programme in which the symbiotic tissue is digested by the host113. This may reflect an 

inability to maintain a persistent host infection, perhaps owing to a long-term survival 

defect.

Information on the roles of different hopanoid modifications during root nodule symbiosis 

has been obtained in B. diazoefficiens USDA 110 (formerly named Bradyrhizobium 
japonicum114) in association with Aeschynomene afraspera86. In this symbiosis, loss of 

2Me-hopanoids (ΔhpnP) has no discernible impact, while loss of extended hopanoids 

(ΔhpnH) induces nodules that fix nitrogen poorly and display morphological disorders such 

as disorganization of the nodule tissue and triggering of plant defence responses. Given that 

extended hopanoids contribute strongly to survival under stress for free-living B. 
diazoefficiens, we suggest that the ΔhpnH mutant is similarly challenged inside hosts.

Interestingly, hopanoids seem to be irrelevant for the symbiosis between the nitrogen-fixing 

cyanobacterium N. punctiforme and the (non-hopanoid-producing) fern hosts Azolla spp.90. 

In this symbiosis, bacteria associate with the plant surface only and do not experience such 

harsh changes in their environment; it is likely that the promotion of stress survival by 

hopanoids is not relevant in this context. However, it is also possible that the relevance of 

hopanoids in Bradyrhizobium spp. symbioses can be attributed to the presence of an unusual 

lipid A structure: hopanoid-lipid A (HoLA), in which lipid A is covalently attached to an 

extended hopanoid polyol113,115,116 (FIG. 4). Although the physiological benefit of the 

attachment of hopanoids to lipid A remains to be determined, the impact of HoLA on the 

physiochemical properties of model membranes is known. The very long chain fatty acids 

(VLCFAs) of HoLA span the entire bilayer, helping tightly link the two membrane leaflets 

and inducing compact packing of the lipid tails of the bilayer, which increases the 

mechanical strength of the membrane113. The covalently linked hopanoic acid is positioned 

within the inner leaflet, further enhancing the mechanical robustness of the outer 

membrane113. Yeasts and archaea likely adopt similar strategies to regulate their membrane 

properties, as they also have very long lipid chains117,118. Archaeal membrane lipids consist 

of saturated isoprenoid chains between 20 and 40 carbons long, which span the bilayer and 

contribute to the thermal stability of the membrane118. In yeast, sphingolipids containing 

hydroxylated VLCFAs are interdigitated into the opposing leaflet of the bilayer and interact 
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with ergosterol117. Despite these intriguing in vitro findings, identifying the enzyme that 

joins hopanoids to lipid A will be essential for assessing HoLA functions and distribution 

within bacteria and for assessing whether this molecule is sufficient to explain the phenotype 

of hopanoid iosynthesis mutants during symbiosis with legumes.

Outlook

Hopanoid biology represents a frontier for the microbial sciences. Although hopanoid 

biosynthetic pathways are known, much remains to be discovered about their biochemistry, 

biophysics and how they impact bacterial fitness in the context of plant and animal hosts. We 

have paid particular attention to the relationship between hopanoids and plants in this 

Review, not only because hopanoid-producing bacteria are abundant in the rhizosphere but 

also because hopanoids are critical for the development of certain plant–microorganism 

symbioses. Given the need to better understand what makes these symbioses robust in light 

of a warming climate, it is important to identify the mechanisms whereby hopanoids mediate 

these relationships.

The chemical similarity between hopanoids made by bacteria and pentacyclic triterpenoids 

made by lichens and plants is striking (FIG. 1). It is worth exploring whether this similarity 

is coincidental or, perhaps more plausibly, reflects an underlying functional connection. Our 

expanding ability to analyse the chemistry of hopanoids has revealed a plethora of structures 

and triggered numerous questions. What is the functional importance of this chemical 

diversity? Do certain hopanoids interact with membrane proteins, enabling their proper 

localization and/or function? How do they enable bacterial survival within the nodule 

microenvironment? Can hopanoids mediate the exchange of signals or nutrients between 

bacteria and plants? Could it be that bacterial hopanoids and plant cyclic triterpenoids 

engage in crosstalk, during which one can substitute the other? Might the diversity of side-

chain modifications regulate the degree to which functional exchange could occur? The fact 

that hopanoids themselves might serve as carriers for auxin-like compounds that affect plant 

development is fascinating and merits further study.

In closing, we remind the reader of the words of John F. Kennedy when explaining what was 

needed to send astronauts to the Moon. “We choose to go to the Moon! … We choose to go 

to the Moon in this decade and do the other things, not because they are easy, but because 

they are hard; because that goal will serve to organize and measure the best of our energies 

and skills…”. Replacing the words ‘go to the Moon’ with ‘study lipids’ provides fitting 

inspiration for tackling one of the next great challenges in microbiology. It is time for lipids 

to get the attention they deserve, and the study of hopanoids is an excellent place to begin.

Note added in proof

While the proofs of this Review were being finalized, a new study140 was published that 

identified the dominant bacterial taxa in global soils, including organisms from the 

Bradyrhizobium genus, further motivating efforts to understand whether hopanoid 

production by this genus contributes to its ecological success.
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Box 1 |

The role of hopanoids in the development of legume–rhizobia root nodule 
symbioses

Nitrogen-fixing root nodule symbioses (see the figure), which catalyse the conversion of 

dinitrogen gas to ammonium, occur between rhizobia and most legumes as well as in a 

small subset of trees, shrubs and herbaceous plants. These symbioses are initiated under 

conditions where soil nitrogen levels are too low to support robust plant growth, resulting 

in the release of pro-symbiotic signals from both plants and rhizobia119. These signals 

suppress the plant immune response to allow rhizobial colonization of the root surface 

and, subsequently, invasion of the root120. The simplest pathways for rhizobial invasion 

are through root cracks. This process is associated with reactive oxygen species that 

challenge rhizobial growth but are necessary to sustain the development of symbiosis121. 

Once the bacterial infection progresses to the root interior, host cells internalize the 

rhizobia through an endocytosis-like process. This creates a new organelle known as a 

symbiosome containing a rhizobial cell, now known as a bacteroid, surrounded by a 

plant-derived membrane. The region between the bacteroid and symbiosome membranes 

is known as the peribacteroid space (PBS). The environment of the PBS is harsh and 

drastically different from that of free-living rhizobia. Some of this harshness is necessary 

for efficient nitrogen fixation, including the creation of a low pH environment to provide 

protons for nitrogenase122 and concentrated carbon osmolytes for increased bacteroid 

metabolism123. Other stresses result from host control mechanisms, such as antimicrobial 

nodule-specific cysteine-rich peptides that change the morphology, proliferation and gene 

expression of bacteroids to maximize their productivity124–126. Bacteroid-containing host 

cells undergo many rounds of proliferation after the initial internalization event to form 

the mature root nodule. Root nodule formation occurs simultaneously across the entire 

root system until the supply of nitrogen to the host is sufficient to support plant growth. 

In some plant hosts, only a single rhizobial cell is internalized per nodule, resulting in a 

clonal population of bacteroids, whereas in other hosts, multiple strains of bacteria may 

coexist in the same nodule. It is unknown whether hopanoids can facilitate 

competitiveness of rhizobia under mixed-species infections; answering this question is an 

important next step in determining the relevance of hopanoids for real-world agricultural 

conditions. Hopanoid production is most conserved in root nodule symbionts from the 

Bradyrhizobium and Burkholderia genera, which are known to inhabit high-temperature, 

low-pH soils127,128, suggesting that hopanoids facilitate adaptation to these conditions. In 

the context of global warming129, in which temperature and soil acidity are predicted to 

increase globally, hopanoid-producing rhizobia may become more dominant. In the 

symbioses between Bradyrhizobium spp. and legumes, hopanoids seem to be important 

for maintaining a chronic infection within this stressful environment. In the symbiosis 

between the tropical legume Aeschynomene evenia and its native symbiont 

Bradyrhizobium sp. BTAi1, infection of hosts with a hopanoid-free Δshc mutant elicits 

nodules that initially develop normally but trigger an early onset of nodule senescence 

(see the figure), a process in which nodule tissue is degraded and recycled by the host. 

This senescence presents as air-filled cavities in the central nodule tissue and a decrease 

in nitrogen fixation, which is reflected by a lighter pink colour that is indicative of low 
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leghaemoglobin levels113. In association with Aeschynomene afraspera, loss of extended 

hopanoids (ΔhpnH) results in a slight reduction in nitrogen fixation levels and a 

disorganization of the central nodule tissue86 (see the figure).

Early senescence images are reproduced from REF. 113, Macmillan Publishers Limited.
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Hopanoids

Pentacyclic lipids with C6 A-D rings and a C5 E ring, among which six core methyl 

groups are distributed. Hopanoids are also characterized by the formation of accessory 

groups at their C2, C3 and C30 positions.
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Sterols

Tetracyclic lipids with C6 A-C rings and a C5 D ring. The parent compounds for all 

sterols contain oxygen groups at the C3 position.
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Terpenoids

Molecules assembled from two or more C5 isoprene units that share the core formula 

(C5H8)n. They are also known as isoprenoids.

Belin et al. Page 22

Nat Rev Microbiol. Author manuscript; available in PMC 2018 August 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Triterpenoid

Molecules derived from assemblies of six isoprene units with the core formula (C5H8)6 

or C30H48. They may be acyclic or cyclic.
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Squalene

An acyclic triterpene with an irregular (tail-to-tail) linkage between two 3-isoprene units; 

a parent molecule of cyclic triterpenoids.
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Triterpenoid cyclase

A superfamily of enzymes that convert acyclic triterpenoids, including squalene and 2,3-

oxidosqualene, into various cyclic products.
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Oxidosqualene cyclases

(OSCs). A family of predominantly eukaryotic 3-β-hydroxytriterpene cyclases that 

transform 2,3-oxidosqualene into sterols and diverse other cyclic triterpenoids.
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Squalene-hopene cyclases

A family of predominantly bacterial 3-deoxytriterpene cyclases that cyclize squalene to 

primarily form hopanoids.
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C30 hopanoids

Short hopanoids containing no additional carbon atoms that are not derived from 

squalene.
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Tetrahymanol

A hopanoid-like compound with a C6 E-ring. In bacteria, it is made from E-ring 

expansion of the C30 hopanoid diploptene.
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Legume

Legumes are flowering plants of the Fabaceae (previously known as Leguminosae) 

family, which includes economically important crops such as soybeans, common beans 

and peanuts.
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C35 hopanoids

Extended hopanoids that contain ribose-derived hydrocarbon side chains at their C30 

position.
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2-Methyl-hopanoids

(2Me-hopanoids). Hopanoids containing an accessory methyl group at the C2 position.
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3-Methyl-hopanoids

(3Me-hopanoids). Hopanoids containing an accessory methyl group at the C3 position.
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Liposomes

Spherical vesicles surrounded by one or more lipid bilayers that can be produced from 

cellular membranes in vivo or synthetically by sonication or extrusion of lipids into 

aqueous solution.
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Bacteriohopanetetrol

(BHT). A common C35 hopanoid containing a tetra-hydroxylated C5 side chain.
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Membrane fluidity

The rotational and diffusional freedom of movement of molecules within a membrane.
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Lipid rafts

Membrane microdomains with high stability that are thought to recruit specific 

membrane- associated proteins to spatially regulate their functions.
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Lipopolysaccharides

(LPSs). Complex, heat-stable amphiphilic lipids that are the main component of the 

external leaflet of the outer membrane of Gram-negative bacteria.
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Lipid A

The lipophilic moiety of lipopolysaccharides.
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Hypoxic

An environment with a low concentration of oxygen (usually less than 30% saturation).
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Nitrogen fixation

The conversion of dinitrogen gas into fixed or bioavailable nitrogen sources such as 

ammonia.
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Nitrogenase

A bacterial enzyme complex that performs the following reaction:

N2 + 16ATP + 10H+ + 8e−   2NH4
+ + H2 + 16ADP‐Pi
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Root nodule

A specialized root organ that is generated by most legume plants to house nitrogen-fixing 

symbionts and create a specialized microenvironment to support bacterial nitrogen 

fixation.
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Rhizobia

A paraphyletic group of nitrogen-fixing soil bacteria that can engage in symbioses with 

legumes.
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Leghaemoglobin

An oxygen-carrying haem protein expressed in the root nodules of rhizobial host plants.
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Aeschynomene

A genus of tropical legumes that is broadly distributed globally and is used for livestock 

grazing.
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Hopanoid-lipid A

(HoLa). An extended hopanoid that is covalently attached to lipid A and appears to be 

unique to the Bradyrhizobiaceae.
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Figure 1 |. Pathways of sterol and hopanoid biosynthesis.
Sterols and hopanoids are synthesized from squalene through oxygen-dependent and 

oxygen-independent mechanisms, respectively130. a | To produce the cholesterol precursor 

lanosterol, squalene is oxygenated by the squalene epoxidase enzyme to form 2,3-

oxidosqualene, which is then cyclized by the oxidosqualene cyclase (OSC) family member 

lanosterol synthase. b | During hopanoid biosynthesis, squalene-hopene cyclase (SHC) 

enzymes directly cyclize squalene to form one of two C30 hopanoids — diploptene or 

diplopterol. c | Interestingly, many hopanoid-like compounds made by plants seem to 
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originate from a hybrid cyclization, in which 2,3-oxidosqualene cyclization results in a 

molecule that contains a hopanoid core with a C3 oxygen signature. d | Bacterial C30 

hopanoids, which are produced directly by SHC (as in part b), also can be modified to form 

C35 hopanoids. The first steps of C35 hopanoid formation are the addition of adenosine by 

hopanoid biosynthesis-associated radical SAM protein HpnH (step 1) and the removal of 

adenine by putative hopanoid-associated phosphorylase HpnG (step 2), which generates a 

ribosylhopanoid with a ribose side chain. This ribose moiety can be readily interconverted 

between the cyclic and acyclic forms (step 3), from which the signature-extended hopanoid 

bacteriohopanetetrol (BHT) can be produced by an unknown enzyme (step 4). The side 

chains of the extended hopanoids can be further altered by the hpn gene products hopanoid 

biosynthesis-associated glycosyltransferase protein HpnI, hopanoid biosynthesis-associated 

protein HpnK, hopanoid biosynthesis-associated radical SAM protein HpnJ and 

aminotransferase HpnO to generate N-acetylglucosaminyl BHT, glucosaminyl BHT, BHT 

cyclitol ether and aminobacteriohopanetriol (steps 5,6,7 and 8). Hopanoids can also be 

methylated at the C2 or C3 positions by hopanoid 2-methyltransferase HpnP and hopanoid 

C3 methylase HpnR, respectively (steps 9 and 10); although only BHT methylation is 

shown, it can occur for any C35 or C30 hopanoid. For details of triterpenoid stereochemistry, 

we refer the reader to REF. 131. Part d is adapted from REF. 132, CC BY.
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Figure 2 |. Regulation of lipid raft formation by hopanoids.
a | The main constituents of bacterial membranes are amphiphilic lipids, which contain polar 

headgroups and hydrophobic tails that preferentially self-associate to form lipid bilayers. All 

bacteria have a cytoplasmic membrane (CM) that delimits the cytoplasm and is enclosed by 

a protective and rigid layer of peptidoglycan. In Gram-positive bacteria, a thick layer of 

peptidoglycan encloses the CM and forms the basis of the cell surface. In Gram-negative 

bacteria, the CM is also referred to as the inner membrane (IM) and the peptidoglycan is 

surrounded further by an additional asymmetric bilayer, the outer membrane (OM). The 

inner leaflet of the OM comprises glycerophospholipids, and the external leaflet mainly 

comprises lipopolysaccharides (LPSs), which can cover up to 75% of the cell exterior133,134. 

LPS structures are highly strain-specific, but they can be roughly divided into three domains: 

a core oligosaccharide and a O-specific polysaccharide (or O-chain) that together form a 

hydrophilic heteropolysaccharide, and a lipophilic, membrane-anchoring domain, termed 

lipid A135. The hopanoids shown in the figure are present in some, but not all, Gram-

negative and Gram-positive bacteria. b | The distributions of specific lipid classes between, 

and within, the leaflets of the IM and OM determine their physical and biochemical 

properties. In addition to containing distinct functional groups, lipids differ in the lengths 

and degrees of saturation of their hydrophobic tails. These properties tune the effective 

molecular geometries of lipids and in turn determine their packing within the bilayer. A high 

proportion of unsaturated and variable-length lipids, which pack poorly in the membrane, is 

associated with a more fluid, liquid-disordered (Ld) phase. When more planar saturated 

lipids interact with cholesterol (or some hopanoids), they can self-associate within 
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membranes to form a less fluid, more tightly and regularly packed liquid-ordered (Lo) phase. 

The interactions leading to the formation of an Lo phase in model membranes are thought to 

provide the basis for the assembly of raft domains in eukaryotic membranes. The Lo phase is 

also associated with longer lipid tails, as the increased surface of hydrophobic interactions 

increases their stability. In Gram-negative bacteria, hopanoids are enriched in the OM where 

they preferentially interact with lipid A79,113, and in some organisms, such as 

Bradyrhizobium sp. BTAi1, they greatly enhance the mechanical integrity of the membrane, 

as evidenced in transmission electron micrographs. Because hopanoids have a rigid, planar 

ring structure, it is presumed that they generally are found in Lo microdomains, perhaps 

regulating the relative position of LPSs, thereby facilitating LPS recognition during host–

bacteria interactions136,137. These membrane microdomains could also affect the 

localization and dynamics of proteins, restricting their roles in membrane trafficking, 

signalling and metabolism to functional sub-compartments. The ability of hopanoids to 

promote lipid rafts has been demonstrated in model membrane vesicles containing 

eukaryotic phosphatidylcholine (DOPC) and sphingomyelin (SM), in which diploptene 

addition results in the formation of low-fluidity microdomains. Part b is reproduced from 

REF. 113, Macmillan Publishers Limited, and with permission from REF. 78, Proceedings 

of the National Academy of Sciences.
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Figure 3 |. Hopanoid-rich vesicles in Frankia spp.
a | Root nodules induced by Frankia spp. on Alnus incana subsp. rugosa. Sample is ~1.5 cm 

in diameter. b | Filamentous structure of Frankia symbionts containing spherical nitrogen-

fixing vesicles. c | Detail of cultured Frankia vesicles containing nitrogenase (scale bar = 500 

nm). d | Multilamellate, hopanoid-rich lipid envelope (arrowheads) of the Frankia 
nitrogenase vesicles (scale bar = 50 nm) (arrows show the bacterial cell wall). Parts a and b 

are courtesy of David R. Benson, University of Connecticut, USA, and part c is amended 

from Journal of Bacteriology, 173, 2061–2067 doi: 10.1128/jb.173.6.2061–2067.1991 

(1991) with permission from American Society for Microbiology (REF. 138). Part d is 

reproduced with permission from REF. 139, Proceedings of the National Academy of 

Sciences.
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Figure 4 |. Chemical structure of hopanoid-lipid A from Bradyrhizobium spp.
a | Hexa-acylated lipid A from Escherichia coli contains a bis-phosphorylated (light blue) 

glucosamine disaccharide backbone (green), which is asymmetrically substituted by six acyl 

chains. b | Bradyrhizobium spp. hopanoid-lipid A (HoLA) molecules are a mixture of penta-

to-hepta-acylated species, which differ in the number, length and nature of acyl substitutes 

on the saccharide backbone and are devoid of phosphate groups. Bradyrhizobium spp. lipid 

A has a 2,3-diaminoglucose (DAG) disaccharide backbone (violet), a galacturonic acid 

(GalA) residue (yellow) on the vicinal DAG and an α-(1, 6)-mannose disaccharide (orange) 

on the distal DAG. The acyl chains are asymmetrically distributed on the sugar skeleton; the 

two secondary very long chain fatty acids (VLCFAs; red), one of which is not 

stoichiometrically hydroxylated at C2, are subsititued at the ω−1 position by a hopanepolyol 

acid and by an acetyl (Ac) group (blue), respectively. The primary acyl chains on the E. coli 
and Bradyrhizobium spp. lipid A backbone have the R configuration at the chiral centre, 

whereas the VLCFAs have the S configuration at the ω−1 position. The non-stoichiometric 

2-hydroxylation of the fatty acids occurs with the S configuration. c | A conceptual scheme 

illustrating the outer membrane (OM) of Bradyrhizobium spp. is shown. Lipid A (red) 

insertion decreases the fluidity and increases the mechanical strength of the membrane; 

VLCFAs entirely span the lipid bilayer so that the covalently linked hopanoid (red) is 
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positioned in the inner leaflet; collectively, this would be expected to order both leaflets, 

with VLCFAs contributing to tightly link the two. Regular phospholipids are shown in green 

and free hopanoid molecules are shown in blue.
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