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Abstract

Cell cycle activation has been associated with varying types of neurological disorders including 

brain injury. Cyclin D1 is a critical modulator of cell cycle activation and upregulation of Cyclin 

D1 in neurons contributes to the pathology associated with traumatic brain injury (TBI). 

Mitochondrial mass is a critical factor to maintain the mitochondrial function, and it can be 

regulated by different signaling cascades and transcription factors including NRF1. However, the 

underlying mechanism of how TBI leads to impairment of mitochondrial mass following TBI 

remains obscure. Our results indicate that augmentation of CyclinD1 attenuates mitochondrial 

mass formation following TBI. To elucidate the molecular mechanism, we found that Cyclin D1 

interacts with a transcription factor NRF1 in the nucleus and prevents NRF1’s interaction with 

p300 in the pericontusional cortex following TBI. As a result, the acetylation level of NRF1 was 

decreased, and its transcriptional activity was attenuated. This event leads to a loss of 

mitochondrial mass in the pericontusional cortex following TBI. Intranasal delivery of Cyclin D1 

RNAi immediately after TBI rescues transcriptional activation of NRF1 and recovers 

mitochondrial mass after TBI.
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1. Introduction

Neurons are post-mitotic cells have permanently entered G0 phase and were incapable of 

entering the cell cycle (Frade and Ovejero-Benito, 2015). However, recent studies have 

shown that matured differentiated neurons can enter into the cell-cycle reentry phase which 

ultimately results in cell death rather than proliferation (Herrup and Yang, 2007; Kabadi et 

al., 2012; Kranenburg et al., 1996). The sequential activation of Ser/Thr kinases called the 

cyclin-dependent kinases (CDK), and their positive regulators (Kabadi and Faden, 2014; 

Malumbres, 2014) such as activation of Cyclin D1 are essential to maintaining the different 
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stages of cell cycle. Dr. Faden and his associates have convincingly shown that cell cycle 

activation is responsible for cell death in apoptosis in the post-mitotic cells like neuron 

(Kabadi and Faden, 2014). In addition, activation of the cell cycle in microglial cells results 

in the release of pro-inflammatory and neurotoxic molecules which contributes significantly 

to the pathology of TBI (Byrnes and Faden, 2007; Byrnes et al., 2007; Di Giovanni et al., 

2005; Hilton et al., 2008; Wu et al., 2011). However, its role in mitochondrial function is 

mostly unknown.

Mitochondrial dysfunction has been implicated in the TBI pathology (Fischer et al., 2016; 

Hill et al., 2017; Singh et al., 2006) and the maintenance of the mitochondrial mass has been 

suggested to function as a critical factor to maintain the mitochondrial function and 

production of ATP inside cells (Wang et al., 2017b). The proper intracellular distribution of 

mitochondria is assumed to be critical for normal physiology of neuronal cells (Cheng et al., 

2012; Li et al., 2004). The changes in mitochondrial mass are correlated with the 

development and morphological plasticity of spines (Cheng et al., 2010; Li et al., 2004). 

Mitochondrial mass, by itself, represents the net balance between rates of biogenesis and 

degradation (Dominy and Puigserver, 2013) and mitochondrial mass can be regulated by 

mitochondrial DNA (mtDNA) content which is known to be synthesized inside the nucleus 

through activation of several transcription factors (Dominy and Puigserver, 2013; Jornayvaz 

and Shulman, 2010). PGC-1α is a co-transcriptional regulation factor that induces 

mitochondrial mass by activating different transcription factors, including NRF1, which 

promotes the expression of mitochondrial transcription factor A or TFAM (Dominy and 

Puigserver, 2013; Jornayvaz and Shulman, 2010; Scarpulla, 2011; Ventura-Clapier et al., 

2008). NRF1 is an essential contributor to the sequence of events leading to the increase in 

transcription of key mitochondrial enzymes, and it has been shown to regulate TFAM, which 

drives transcription and replication of mtDNA (Jezierska-Drutel et al., 2013; Scarpulla, 

2008). Previously it was shown that NRF1 could interact and acetylated by an 

acetyltransferase p300/CBP and acetylation of NRF1 enhances its transcriptional activation 

by augmenting its DNA binding (Izumi et al., 2003).

Here we have shown that mitochondrial mass was impaired following TBI due to the loss of 

mtDNA content. As a part of the mechanism, we found that activation of the cell cycle, 

notably, cyclin D1 directly contributes to the deficiency in mtDNA content by manipulating 

the transcriptional efficiency of NRF1.

2. Materials and Methods

2.1 TBI procedure:

The Committee on Animal Use for Research and Education at the University of Pittsburgh 

approved all animal studies, in compliance with National Institutes of Health guidelines. The 

procedure was done based on our previously published protocol (Farook et al., 2013; Kapoor 

et al., 2013; Sen et al., 2017). Briefly, 8– 12-week old adult male C57BL/6 (Jackson 

Laboratory) mice were anesthetized with xylazine (8 mg/kg)/ketamine (60 mg/kg) and 

subjected to a sham injury or controlled cortical impact. Mice were placed in a stereotaxic 

frame (Ambient Instruments) and a 3.5 mm craniotomy was made in the right parietal bone 

midway between bregma and lambda with the medial edge lateral to the midline, leaving the 
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dura intact. Mice were impacted at 4.5 m/s with a 20 ms dwell time and 1.2 mm depression 

using a 3-mm-diameter convex tip, mimicking a moderate TBI. Sham-operated mice 

underwent the identical surgical procedures but were not impacted. The incision was closed 

with 3M Vetbond tissue adhesive and mice were allowed to recover in the heat pad. Body 

temperature was maintained at 37°C using a small animal temperature controller throughout 

all procedures (Kopf Instruments).

2.2 Western Blot and Co-immunoprecipitation:

Whole tissue lysates were prepared from 3 mm coronal sections centered upon the site of 

impact. A 1 mm micro punch was collected from the pericontusional cortex or the 

corresponding pericontusional hemisphere as described previously (Farook et al., 2013; 

Kapoor et al., 2013; Mir et al., 2014; Sen et al., 2017). Tissue was placed in RIPA buffer 

(containing protease and phosphatase inhibitor), sonicated, and centrifuged for 5 min at 

12,000 × g at 4°C. Fifty micrograms of protein were resolved on a 4–20% SDS-

polyacrylamide gel and transferred onto a nitrocellulose membrane. Blots were incubated 

overnight at 4°C in primary antibody Cyclin Dl, (Cell Signalling, 1:500 dilution), total 

NRF1 (Santa Cruz Biotech., 1:500 dilution), p300 (Sigma-Aldrich, 1:500 dilution), total 

PGClα (Santa Cruz Biotech., 1:500 dilution), Nuclear NRF1 (Abeam, abl75932), nuclear 

PGClα (Abeam ab54481), TFAM (Santa Cruz Biotech., 1:500 dilution), CoxII (Santa Cruz 

Biotech., 1:500 dilution), and Actin (Sigma-Aldrich, 1:5000 dilution) followed by a 2 h 

incubation with a Licor IRDye secondary antibody at room temperature. Blots were 

visualized using a Fi-Cor Odyssey near-infrared imaging system, and densitometry analysis 

was performed using Quantity One software (Bio-Rad) (Farook et al., 2013; Kapoor et al., 

2013; Mir et al., 2014). The intensity of each band was determined by ImageJ software, and 

the changes in the experimental band were represented as the fold change as described 

previously (Sen et al., 2017; Sen and Sen, 2016).

Protein-protein interactions and protein acetylation were measured by co-

immunoprecipitation assay per our method (Farook et al., 2013; Kapoor et al., 2013; Mir et 

al., 2014; Sen et al., 2017). Briefly, treated or untreated cells were homogenized in lysis 

buffer containing 50 mm Tris, pH 7.4, 150mM NaCl, 0.5% (v/v) tween-20, 50mM Tris (pH 

7.5), 1mM EDTA with protease and phosphatase inhibitor by passing through 26- gauge 

syringe needle and centrifuged at 12,000 × g for 5 min. 400ug of the total protein for each 

sample were incubated overnight with either CyclinD1 antibody (1:100), NRF1(1:100) or 

anti-IgG antibody for overnight. 30μ1 of protein G agarose was added, and SDS-PAGE 

resolved co-immunoprecipitates and analyzed by western blotting with either the NRF1 

antibody, p300 antibody or acetyl-lysine antibody.

2.3 Immunohistochemistry:

Deeply anesthetized mice were perfused with phosphate buffer saline (0.1 M PBS, pH 7.4), 

followed by fixation with 4% paraformaldehyde in PBS. Brains were post-fixed for 1h in 4% 

paraformaldehyde, followed by cryoprotection with 30% sucrose in PBS until brains 

permeated. Serial coronal sections of 20μm were prepared using a cryostat microtome 

(Leica) and mounted directly onto glass slides before allowing them for drying for 1h at 

room temperature. For immunofluorescence analysis sections were incubated 10 min at 
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room temperature with 0.1% Triton X-100 in PBS containing, followed by overnight 

incubation at 4°C with the primary antibody against CyclinD1 (1:100), NRF1 (1:100), 

PGClα (1:100) or p300 (1:100 dilution). Sections were then washed with PBS and 

incubated with the appropriate Alexa Fluor-tagged secondary antibody for 2h at room 

temperature in the dark. Sections were washed and mounted with sufficient drops of 

ProLong Gold Antifade Mountant with DAPI solution (Molecular Probes). Imaging was 

performed with the help of Olympus fluorescent microscope (IX83) and Nikon’s C1 Digital 

Eclipse Modular Confocal Microscope Systems. The omission of primary antibody served 

as a negative control (Farook et al., 2013; Kapoor et al., 2013; Mir et al., 2014; Sen et al., 

2017).

2.4 Intranasal delivery of Cyclin D1-RNAi:

CyclinD1-RNAi (Santa Cruz Biotechnology) were administered to 8–12 weeks C57BL/6J 

mice through intranasal route using in vivo jetPEI (PolyPlus) transfection reagent as 

described previously with modifications (Bitko and Barik, 2008; Rodriguez et al., 2017). 

The RNAi-JetPEI complex was prepared according to the manufacturer’s protocol with 

modifications (Aigner, 2006; Rodriguez et al., 2017). Briefly, either the cyclinD1 RNAi or 

control RNAi along with JetPEI were separately diluted into half the injection volume in a 

10% sterile glucose solution where the final glucose concentration would have to be 5%. 

This formulation corresponds to nitrogen and phosphate (N/P) ratio of 7. Both the solutions 

were mixed by slight vortexing, and the JetPEI-RNAi mixture was incubated 15 min at room 

temperature. Intranasal administration of the Jet-PEI complex was performed 30 min after 

either sham or TBI surgery with the pipette tip to each nostril of the mouse. A 5ul of the 

jetPEI-RNAi complex was slowly administered to the nostrils maintaining a 2–3 sec interval 

up to l0u1 total/nostril of a mouse.After 5–10 s another 10u1 of the solution was 

administered to the other nostril following the similar way for a total of 20ul/mouse and 

10ug of siRNA/mouse. Mice were under observation for the entire solution disappears 

through the nasal cavity and till their consciousness. After 24 hours all the mice were 

sacrificed, and brain samples were collected for further experiments.

2.5 Chromatin immunoprecipitation (ChIP) assay:

For chromatin immunoprecipitation (ChIP) assays, we used a chromatin 

immunoprecipitation assay kit purchased from Millipore and followed the instructions from 

the supplier. ChIP assay was performed as described previously (Mir et al., 2014; Sen et al., 

2017). Briefly, after sonication, tissue lysates containing soluble chromatin were incubated 

overnight with an anti-NRF1 antibody or with normal rabbit IgG. DNA-protein 

immunocomplexes were precipitated with protein A-agarose beads, washed, and eluted. The 

eluates were used as templates in PCR using the primers 5’-TTTGCTGTTGGGCA −3’ and 

5’-CGGCGGCTTACCCCA −3’. The expected DNA fragment that was amplified is in the 

TFAM promoter region, which encompassed the NRF1 binding site.

2.6 Analysis of mitochondrial DNA (mtDNA):

mtDNA was isolated from the using a Mitochondrial DNA Isolation Kit (Biovison). Briefly, 

tissues were incubated with extraction buffer and homogenized using Dounce homogenizer. 

The homogenates were separated into the cytosol (supernatant) and mitochondrial fractions 
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(pellet) by differential centrifugation following manufacturer’s protocol. The mitochondrial 

pellets were lysed overnight using mitochondrial lysis buffer. mtDNA will be isolated by 

ethanol precipitation. An aliquot of homogenates was reserved for protein quantification, 

and mtDNA content was normalized to the protein concentration (Cheng et al., 2012; Zhang 

et al., 2014). Total nuclear DNA was isolated from the nuclear fraction using QIAamp DNA 

Mini Kit (Qiagen), according to the manufacturer’s protocol. The purified mitochondrial 

DNA was quantified by quantitative PCR with SYBR Green master mix (Quanta 

Biosystems) as described previously (Gonzalez-Hunt et al., 2016; Rooney et al., 2015). 

Mitochondrial DNA content was represented by primers towards two mtDNA- encoded 

genes, mitochondrial cyclooxygenase II (CoxII), and NADH dehydrogenase subunit 1 (ND1, 

Realtimesprimer.com) normalized to a nuclear intron of β-globin. The primer sequences 

were as follows: Cox2, 5’-GCCGACTAAATCAAGCAACA-3’ (forward) and 5’-

CAATGGGCATAAAGCTATGG-3’ (reverse); and β-globin, 5 ‘-

GAAGCGATTCTAGGGAGCAG-3’ (forward) and 5’-GGAGCAGC 

GATTCTGAGTAGA-3’ (reverse). The relative mtDNA to nuclear DNA copy number ratio 

was determined using the comparative DDCT method (Ballista-Hemandez et al., 2017; 

Gonzalez-Hunt et al., 2016; Lien et al., 2017), in which NDl/β-globin and Cox2/β-globin 

ratios were calculated.

2.7 Determination of mitochondrial mass:

For mitochondrial mass measurements freshly prepared mitochondrial fraction from coronal 

tissues sections were made by differential centrifugation following previous publication (Sen 

et al., 2007). The isolated mitochondria were loaded with MitoTracker Green (Molecular 

Probes) at a final concentration of 500 nM and incubated for 20 min. The fluorescence 

intensity will be measured at ex. 485 and em. 535 nm (Cheng et al., 2012) using BioTek’s 

Fluorescence Microplate Readers. The values will be normalized by protein concentrations.

2.8 Citrate Synthase Activity:

Citrate synthase activity was determined in homogenates prepared from pericontusional 

cortex using a citrate synthase assay kit (K318, Biovision)(Liu et al., 2015; Wang et al., 

2017a) Total protein was determined in triplicate by the method of Bradford and the protein 

concentration of all samples was equalized. Citrate synthase activity was determined in 

triplicate based on the formation of 2-nitro-5- thiobenzoic acid at a wavelength of 412 nm at 

25°C on a spectrophotometer. In each well, 8 μl of sample was added to a reaction medium 

containing 178 μl of assay buffer, 2 μl of 30 mmol/L acetyl coenzyme A, and 10 mmol/L 2-

nitro-5-thiobenzoic acid. The baseline solution absorbance was recorded, reactions were 

initiated by the addition of 10 μl of oxaloacetic acid, and the change in absorbance measured 

every 15 seconds for 2 minutes.

2.8 Statistical Analysis:

All data are presented as the mean ± SEM (standard error of the mean). The effects of 

treatments were analyzed using a one-way ANOVA. Results are expressed as mean ± SEM 

(n = 5–7). A p-value <0.05 was considered as statistically significant. Male C57BL/6 mice 

were used for all experiments.
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3. Results:

3.1 TBI leads to a decrease in mitochondrial mass

Mice were subjected to TBI, and pericontusional cortex was isolated after 24h of TBI. For 

the measurement of mitochondrial mass, mitochondrial fractions from pericontusional 

cortex were isolated and incubated with MitoTracker Green. We found that the green 

fluorescent intensity was decreased significantly after 24h of TBI compared to a sham 

control to more than 35%. This data indicates that TBI may affect mitochondrial mass (Fig. 

1A).

Since the content of mtDNA is a critical determinant of mitochondrial mass (de la Monte et 

al., 2000; Lanza and Nair, 2010; Lee and Wei, 2005; May-Panloup et al., 2005), we 

monitored the mtDNA content and the level of mitochondrial genes e.g. ND1 and CoxII 

using real-time-PCR using mitochondrial DNA as a template. We found that the level of 

mtDNA content was decreased significantly after TBI which was evidenced by a decrease in 

levels of ND1 and COXII genes (Fig. 1B and 1C). To further confirm, we have monitored 

the protein level of CoxII using the pericontusional cortex and found that the expression of 

COXII was decreased significantly following TBI (Fig. 1D). Since little is known to regulate 

the expression of mitochondrial genes, we monitored the expression of TFAM in the 

mitochondrial fraction of TBI. We found that the protein level of TFAM was decreased 

following TBI (Fig. 1E). This data suggests that TBI affects the mtDNA content inside the 

brain.

To see whether the loss of mtDNA affects the mitochondrial function following TBI, we 

monitored the mitochondrial function by citrate synthase assay. Citrate Synthase is a key 

enzyme that is present in all living organisms. It catalyzes the conversion of acetyl-CoA and 

oxaloacetate into citrate and serves as a marker for intact mitochondria and it is considered 

as a biochemical determination of mitochondrial mass (Lopez-Lluch et al., 2006; Yin et al., 

2008). We found that, following TBI, mitochondria function was decreased more than 70% 

compared to sham mice after 24h (Fig. 1F).

3.2 TBI leads to inactivation of NRF1 by decreasing its acetylation via p300

Since, the nuclear transcription factors such as PGC1α and NRF1 are known to regulate the 

synthesis of mitochondrial genes (Fernandez-Marcos and Auwerx, 2011; Jornayvaz and 

Shulman, 2010; Scarpulla, 2011), we monitored the level of these transcription factors using 

pericontusional cortex isolated after 24h of TBI. Interestingly, we did not find a significant 

change in the expression level of either nuclear or total level of PGC1α or NRF1 (Fig. 2A). 

To further confirm, we have carried out confocal microscopic analysis of both PGC1α and 

NRF1 in the pericontusional cortex. Similar to our western blot data, we found that the total 

expression level (supplementary Fig 1A and Fig 1B) or nuclear level (Fig 2B and Fig 2C) of 

both PGClα and NRF1 remains unaltered compared to the sham condition. Previously it was 

shown that the activation of PGClα depends on its acetylation status (Gurd, 2011; Jeninga et 

al., 2010). To test whether TBI has any difference in acetylation level of PGClα, we 

performed the acetylation assay of PGClα. We found that the acetylation status of PGClα 
remained unaltered following TBI (Fig. 2D). To further confirm, we monitored the 
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interaction between PGClα and acetyltransferase, p300 and found that there is a change in 

their level of interaction (Fig. 2E). This data leads us to test whether transcriptional activity 

of NRF1 contributes to the alteration in mtDNA following TBI.

Previously it was shown that acetylation of NRF1 is required for its transcription (Izumi et 

al., 2003). To test whether TBI has any influence on acetylation level of NRF1, we have 

carried out acetylation assay using the pericontusional cortex after 24h of TBI. Interestingly, 

we found that the acetylation of NRF1 was decreased significantly compared to sham 

condition (Fig. 2F). This data indicates that the lack of acetylation of NRF1 may affect its 

transcriptional activity following TBI. To measure whether the DNA binding affinity of 

NRF1 is altered in the pericontusional cortex after TBI, we have performed the chromatin 

immunoprecipitation (ChIP) assay using TFAM promoter. We found that the binding of 

NRF1 to the TFAM promoter was decreased significantly in TBI mice (Fig. 2G); suggests 

that the transcriptional activity of NRF1 was attenuated after TBI due to the loss of its 

acetylation status.

We were interested in understanding the underlying mechanism responsible for a decrease in 

acetylation of NRF1. Previously it was shown that NRF1 interacts with an acetyltransferase 

p300 which in turn acetylates NRF1. We monitored the interaction between NRF1 and p300 

in the pericontusional cortex after TBI through the immunoprecipitation (IP) assay, and we 

found that the binding between NRF1 and p300 was decreased significantly compared to 

sham control (Fig. 2H). To further confirm, we have done the analysis using confocal 

microscopy, and we found that the interaction between NRF1 and p300 was decreased in the 

pericontusional cortex compared to sham control (Fig. 2I).

3.3 TBI leads to an augmentation in Cyclin D1 and the interaction between Cyclin D1 and 
NRF1 prevents acetylation of NRF1.

This data raised the question what the possible mechanism for a decrease in interaction 

between p300 and NRF1 is. Previously it was shown that TBI causes cell cycle activation 

and the level of cyclin D1 (CD1) was increased significantly after TBI (Kabadi et al., 2012). 

We monitored the activation of CD1 in mice following TBI using CCI method. Consistent 

with the previous finding, we found that within 6h of TBI, the CD1 level was increased and 

it was further augmented at 12h and 24h of TBI. Then the CD1 level remains unaltered up to 

3 days of TBI (Fig. 3A). To further confirm, we have carried out the confocal microscopy 

for the cyclin D1 level in both TBI and sham conditions. We found that TBI leads to an 

increase in Cyclin D1 level compared to sham condition (Fig. 3B). However, the western 

blot data cannot distinguish whether neuronal cells and glial cells contribute to the increase 

in CD1 following TBI. To confirm whether glial cells can also express an increased level of 

CD1, we stained glial cells with anti-Ibal antibody along with anti-CDl antibody. Neuronal 

cells were stained with NeuN. Interestingly, we found that CD1 expression was increased in 

the nucleus of Iba1-positive cells along with NeuN positive cells; indicates that glial cells 

also express higher level of CD1 like neuronal cells following TBI (Fig. 3C).

To see whether CD1 can interact with NRF1 in the nucleus, we performed the 

immunoprecipitation assay and found that the interaction between NRF1 and CD1 was 

increased significantly after TBI (Fig. 3D). This was further confirmed by confocal 
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microscopy analysis where NRF1 and CD1 was co-localized in the nucleus (Fig. 3E). The 

interaction between NRF1 and CD1 was further evaluated using an antibody that can 

monitor both cytosolic and nuclear pool of NRF1. We found that the interaction was 

restricted only inside the nucleus (supplementary Figure 1C).

3.4 Depletion of CD1 rescues transcriptional activation of NRF1, mitochondrial mass, and 
mtDNA content

To understand whether depletion of CD1 can rescue the mitochondrial mass, we 

administered CD1-RNAi through intranasal delivery within 30 mins of TBI; although the 

expression level of CD1 was shown to be increased within 4h of TBI. Western blot analysis 

monitored the level of CD1. We found that intranasal administration of cyclin D1-RNAi 

causes a significant decrease in CD1 level in the cortex either after sham or TBI (Fig. 4A, 

Input). To see whether depletion of CD1 has any influence on either acetylation of NRF1 or 

the interaction between NRF1 and p300 after TBI, we performed immunoprecipitation assay 

and found that the TBI- induced decrease in the level of interaction between NRF1 and p300 

was rescued in mice administered with CD1-RNAi compared to control RNAi (Fig. 4A, B). 

Consistent with this result, we found that acetylation of NRF1 was recovered after depletion 

of Cyclin D1 before TBI in mice (Fig 4A, C).

To see whether depletion of CD1 can rescue the transcriptional activity of NRF1, we 

measured the TFAM level by western blot analysis after Cyclin D1-RNAi and found that 

protein level of TFAM was significantly increased compared to control RNAi (Fig. 4D, E). 

Similarly, the expression of COXII, encoded by mt-DNA was also rescued after depletion of 

cyclin D1 in mice before TBI (Fig. 4F, G). This result suggests that depletion of cyclin D1 

can rescue the mtDNA content by rescuing the transcriptional activity of NRF1. We also 

have measured the mitochondrial mass in mice administered either with control RNAi or 

CD1-RNAi using MitoTracker Green. We found that TBI-induced loss of mitochondrial 

mass was rescued in mice where CD1 was depleted following TBI (Fig. 4H).

4. Discussion:

Previous studies have linked CD1 with neuronal death and neurodegeneration in models of 

cerebral ischemia (Li et al., 1997; Small et al., 2001), spinal cord injury (Byrnes and Faden, 

2007), and Alzheimer’s disease (Raina et al., 2000). Our study suggests that activation of 

CD1 following TBI affects mitochondrial mass through impairment of a key transcription 

factor, NRF1 in the nucleus. TBI leads to a decrease in acetylation of NRF1 due to a reduced 

interaction between NRF1 and p300. An increase in the level of CD1 blocks the interaction 

between NRF1 and p300 in the nucleus, and as a result, the transcriptional activity of NRF1 

was reduced. Administration of RNAi for CD1 rescues the interaction between p300 and 

NRF1 and recovers the transcriptional activity of NRF1 following TBI (Fig. 4I).

Although the influence of CD 1 has been established in the neuronal cell survival or death, 

the influence of CD1 in mitochondrial function has not been shown yet. This study provides 

evidence in support of the fact that augmentation in cyclin D1 can directly influence the 

mitochondrial mass via modulating the transcriptional activity of NRF1. Mitochondrial mass 

is one of the critical factors to maintain the function of mitochondria including energy 
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metabolism. The mitochondrial oxidative phosphorylation (OXPHOS) is critical for energy 

(ATP) production in eukaryotic cells (Chaban et al., 2014). The OXPHOS enzymes are 

multimeric complexes (Chaban et al., 2014), and NRF1 mostly transcribes genes coding for 

mitochondrial proteins involved in energy production (Reinecke et al., 2009). Thus, either 

depletion or inactivation of NRF1 will lead to an impairment in OXPHOS which ultimately 

leads to mitochondrial dysfunction and oxidative stress inside cells. TBI-induced, a decrease 

in transcriptional activation of NRF1, can explain how a loss of mitochondrial mass 

contributes to compromise in the mitochondrial function and induce oxidative stress. As a 

part of the mechanism, we have shown that reducing the loss of mitochondrial mass by 

reducing the level of cyclin D1 would be a novel strategy to rescue mitochondrial function 

following TBI.

The current literature mostly focuses on the fact that inactivation of PGC1α contributes to 

the loss of mitochondrial mass in several neurodegenerative diseases (Austin and St-Pierre, 

2012; Corona and Duchen, 2015; Cui et al., 2006). Here we have shown that TBI causes a 

loss of mitochondrial mass independent of activation of PGClα instead, it depends on the 

activation of another transcription factor, NRF1. Also, we have provided evidence that NRF1 

interacts with an acetyltransferase p300 and acetylation of NRF1 is indispensable for its 

catalytic activity. Our study may provide the first-time evidence where activation of NRF1 

regulates mitochondrial mass independent of PGClα. Because impairment in mitochondrial 

mass contributes to several neurodegenerative diseases such as Alzheimer’s Diseases (AD) 

and Parkinson’s Disease (PD), the elucidation of the role of NRFI to mitochondrial mass can 

be extended to understand the pathology and develop the therapeutic strategy against these 

disorders.

The blood-brain barrier (BBB) is known to protect the brain from unwanted systemic 

circulatory toxins and pathogens by blocking the entry of molecules owing to the tight 

junctions (Mathupala, 2009). Under the physiological condition, the integrity of the BBB is 

critical to protecting the CNS; however, under the pathological condition, the integrity of 

BBB functions as a barrier to delivering drugs to the injured brain. Interestingly, intranasal 

delivery of drugs is a non-invasive and cost-effective method to deliver drugs without 

affecting the BBB fimction(Fukuda and Badaut, 2013). The exact mechanisms involved in 

intranasal drug delivery to the CNS are not fully understood. Anatomical and functional 

studies have suggested that this method works because of the unique connection which the 

olfactory and trigeminal nerves provide between the brain and external environments. The 

neural connections between the nasal mucosa and the brain provide a unique pathway for the 

non-invasive delivery of therapeutic agents to the CNS (Dhuria et al., 2010; Ilium, 2000; 

Mathison et al., 1998; Tayebati et al., 2013; Thome and Frey, 2001). The olfactory neural 

pathway provides both an intraneuronal and extraneuronal pathway into the brain (Tayebati 

et al., 2013; Thome et al., 1995). In fact, Dr. Frey and his associates have shown that 

intranasal delivery of compounds such as insulin-like growth factor and deferoxamine to 

brain diseases such as stroke and Alzheimer’s disease, provided efficient improvements in 

recovery with no significant side-effects (Danielyan et al., 2010; Hanson and Frey, 2008; 

Hanson et al., 2009; Liu et al., 2001a; Liu et al., 2001b; Wei et al., 2007). One of the primary 

reason for having promising results is that the intranasal cavity has access to the brain and is 

unhindered by the BBB (Chauhan and Chauhan, 2015; Djupesland et al., 2013). SiRNA, in 
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general, cannot cross the BBB because of its high charge and molecular weight (Pardridge, 

2007; Upadhyay, 2014). However, intranasal delivery of siRNA can reach the brain cells and 

provided beneficial effects against stroke (Kim et al., 2012). In this study, we have shown 

that intranasal delivery of CD1-RNAi rescues the loss of mitochondrial mass by rescuing the 

transcriptional activation of NRF1. Thus, our study provides a novel approach to deliver 

drugs to the brain following TBI.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Mitochondrial mass was compromised after TBI.

• The level of NRF1, a key transcription factor to maintain mitochondrial mass 

remains unaltered after TBI.

• A decrease in acetylation of NRF1 is responsible for attenuation of its 

transcriptional activity.

• An increase in interaction between NRF1 and cyclin D1 in the nucleus 

prevents acetylation of NRF1.
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Figure 1: TBI causes a decrease in mitochondrial mass.
(A) Fold changes in mitochondrial mass obtained from staining from MitoTracker Green 

was monitored in both sham and TBI samples by a spectrofluorometer. It was shown that 

TBI causes a decrease in mitochondrial mass (n=3–5; one-way ANOVA, p<0.005). (B-C) 

Mitochondrial DNA quantification by Real-time PCR was represented by mitochondrial 

COXII (B) and mitochondrial ND1 (C) normalized to nuclear ß-globin isolated from nuclear 

DNA. It was shown that COXII and ND1 was decreased significantly after TBI. (n=3–5; 

one-way ANOVA, p<0.005) (D-E) Western blot and quantitative analysis of the expression 

of TFAM (D) and COXII (E) level in both sham and TBI samples. The band intensity of 

TFAM (D) and COXII (E) was monitored by Image J. The expression level of TFAM and 

COXII was decreased significantly after TBI. (n=3–5; one-way ANOVA, *p<0.005).
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Figure 2: TBI does not affect the expression level of PGC1α and NRF1; however, decreases 
acetylation level of NRF1.
(A) Western blot analysis of NRF1 and PGClα in both sham and TBI samples and it was 

shown that the expression level of NRF1 remains the same after TBI. (B-C) Confocal 

microscopic analysis of PGClα (B) and NRF1 (C) in both sham and TBI samples and it 

shows that there is no change in the nuclear expression level of NRF1 and PGCla following 

TBI. Scale bar 10μΜ. (D) Immunoprecipitation assay detected acetylation of PGClα in both 

sham and TBI samples with PGClα antibody followed by western blotting using the acetyl- 

lysine antibody as described in the methods. The band intensity of acetylated PGClα was 
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monitored by Image J and it shows that there is no change in acetylation level of PGClα. 

(n=3–5; one-way ANOVA, p<0.005) (E) Immunoprecipitation assay detected the interaction 

between PGClα and p300 in both sham and TBI samples by PGClα antibody followed by 

western blotting by p300 antibody as described in the methods. Image J monitored the band 

intensity of the interaction between PGClα and p300. The data shows that there is no change 

in acetylation level of PGClα (n=3–5; one-way ANOVA, p<0.005) (F) Acetylation of NRFl 

in both sham and TBI samples were detected by immunoprecipitation assay by NRF1 

antibody followed by western blotting with the acetyl-lysine antibody. The band intensity of 

acetylated NRF1 was monitored by Image J and it shows that the acetylation level of NRFl 

was decreased significantly after TBI (n=3–5; one-way ANOVA, *p<0.005) (G) ChIP assay 

to demonstrate NRF1 binding to TFAM promoter. The band intensity of acetylated PGClα 
was monitored by Image J and it shows that NRF1 binding to TFAM promoter was 

decreased significantly after TBI (n=3–5; one-way ANOVA, p<0.005) (H) 

Immunoprecipitation assay detected the interaction between NRF1 and p300 in both sham 

and TBI samples by NRF1 antibody followed by western blotting by p300 antibody as 

described in the methods. Image J monitored the band intensity of the interaction between 

NRF1 and p300. The data shows that the interaction between NRF1 and p300 was decreased 

significantly after TBI (n=3–5; one-way ANOVA, *p<0.005). (I) Confocal microscopic 

analysis of p300 and NRF1 in both sham and TBI samples. The arrowhead shows 

colocalization and interaction between NRF1 and p300 in sham and TBI samples. The 

results show that the interaction between NRF1 and p300 was decreased in TBI mice. Scale 

bar 10μΜ.
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Figure 3: TBI causes an increase in Cyclin D1 which interacts with NRF1.
(A) Western blot analysis of cyclin D1 in both sham and TBI samples. The band intensity of 

cyclin D1 was monitored by Image J and the data shows that the expression level of CD1 

was increased in time dependent manner (n=3–5; one-way ANOVA, *p<0.005). (B) 

Confocal microscopic analysis of cyclin D1 in both sham and TBI samples. The data shows 

that cyclin D1 level was increased after TBI. Scale bar 20μΜ. (C) Confocal microscopic 

analysis to monitor neuronal and microglial expression of CD1 following TBI. We found 

that higher expression of CD1 in microglial cells were increased after TBI. Neuronal cells 

were labelled with NeuN and glial cells were labelled with Iba1. The brown arrowhead 

indicated CD1 in NeuN positive cells and white arrowheads indicates cyclin D1 in glial 

cells. Scale bar 10μΜ. (D) The interaction between NRF1 and Cyclin D1 was monitored in 

both sham and TBI samples by immunoprécipitation analysis using NRF1 antibody and 

western blotting using Cyclin D1 antibody. Actin was kept as input. The data shows that the 

interaction between NRF1 and cyclin D1 was increased significantly after TBI (n=3–5; one-

way ANOVA, *p<0.005). (E) Confocal microscopic analysis of the interaction between 

NRF1 and Cyclin D1 in both sham and TBI samples. The data shows that the interaction 

between NRF1 and cyclin D1 was increased significantly after TBI. The arrowhead shows 
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co-localization and interaction between NRF1 and Cyclin D1 in sham and TBI samples. 

Scale bar 10μΜ.
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Figure 4: Depletion of Cyclin D1 rescue the loss of mitochondrial mass following TBI.
Cyclin Dl-siRNA was administered into the mouse brain by intranasal delivery before TBI. 

(A-C) The pericontusional cortex was used to perform immunoprecipitation assay to detect 

acetylation of NRFl and the interaction between NRF1 and p300. The expression level of 

p300, cyclin D1 and Actin was monitored by western blot hybridization. The band intensity 

of the interaction between p300-NRF1 (B) and the level of acetylated NRF1 (C) was 

monitored by Image J. (n=3–5; one-way ANOVA, *p<0.005). The data shows that depletion 

of CD1 rescues acetylation of NRF1 and the interaction between p300 and NRF1. (D-E) The 
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pericontusional cortex was used to perform western blot analysis of TFAM (D) and the band 

intensity of TFAM was monitored by Image J. (n=3–5; one-way ANOVA, *p<0.005) (E) in 

both sham and TBI mice administered with either control RNAi or CD1 RNAi. The data 

shows that depletion of CD1 rescues TFAM level after TBI. (F-G) The pericontusional 

cortex was used to perform western blot analysis of COXI (F), and the band intensity of 

COXII was monitored by Image J. (n=3–5; one-way ANOVA, *p<0.005) (G) in both sham 

and TBI mice administered with either control RNAi or CD1 RNAi. The data shows that 

depletion of CD1 rescues COXII level after TBI. (I) Fold change in mitochondrial mass was 

monitored in both sham and TBI mice administered with either control RNAi or CD1 RNAi 

(n=3–5; one-way ANOVA, *p<0.005). The data shows that depletion of CD1 rescues 

mitochondrial mass after TBI.
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