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Abstract

Background—Late HIV diagnosis following severe co-morbidity remains common in resource 

limited settings. Neurodevelopmental recovery during antiretroviral therapy (ART) for late-

diagnosed children is understudied. We determined 6-month neurodevelopmental trajectories in 

HIV-infected children initiating ART during hospitalization.

Methods—HIV-infected children initiated ART following HIV diagnosis during hospitalization 

in Kenya. The Malawi Developmental Assessment Tool (MDAT) was administered after clinical 

stabilization within 1-month and at 6-months post-ART initiation. Baseline versus 6-month Z-

scores for each developmental domain were compared; cofactors for change in z-scores were 

evaluated using linear regression.

Results—Among 74 children, median age was 1.7 years (interquartile range, 0.8, 2.4) and 

median z-scores for gross motor, fine motor, social, and language domains were −1.34, −1.04, 

−0.53, and −0.95, respectively. At baseline, children with higher plasma viremia had lower social 

z-scores (P=0.008). Better nourished (weight-for-age z-score [WAZ] ≥-2) children had higher z-

scores in all developmental domains (all P-values ≤0.05). After 6 months on ART (n=58), gross 

and fine motor z-scores improved significantly (mean change 0.39; P=0.007 and 0.43; P=0.001, 

respectively), but social and language did not. Children with better immune and growth response 

to ART had higher gains in gross motor (0.05 per unit-gain CD4%, P=0.04; 0.34 per unit-gain 
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WAZ; P=0.006 and 0.44 per unit-gain height-for-age z-score (HAZ); P=0.005), social (0.37 per 

unit-gain WAZ; P=0.002) and language (0.25 per unit-gain HAZ; P=0.01).

Conclusions—Children had significant neurodevelopmental gains during 6-months of ART, and 

children with better growth and immune recovery had greater improvement. Prompt 

commencement of ART may improve neurodevelopment in addition to immunity and growth.
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INTRODUCTION

Globally, 1.8 million children are HIV-infected, most of whom reside in sub-Saharan Africa 

(1). With improved survival (2, 3) it is important to optimize long-term growth, 

development, health and quality of life. Early HIV diagnosis and treatment are essential for 

the best outcomes (4, 5). However, late HIV diagnosis remains common in sub-Saharan 

Africa (6–9). In 2015, UNAIDS estimated that only 49% of HIV-infected children were 

receiving antiretroviral therapy (ART) (1).

HIV-infected children have high risk of neurodevelopmental compromise. In historical birth 

cohorts of HIV-infected infants with either no or limited ART, 26–36% of children had 

motor or cognitive delay by age 24 months (10–12). In long-term treated pediatric cohorts, 

learning difficulties and low cognitive scores have been common (13–15). HIV-related 

cognitive impairment likely results from a local inflammatory cascade involving small 

molecules, cytokines and chemokines, that can damage neurons and is driven by low-level 

viral replication and recruitment of activated immune cells to the brain (16). Abnormalities 

in white matter microstructure and subcortical gray matter are linked to cognitive deficits in 

children and adolescents (17–20). Children with greater severity of HIV disease prior to 

ART have worse cognition compared with asymptomatic children (13, 21, 22).

For infants who start ART within the first few months of life, cognitive compromise may be 

minimal. Early-treated infants in South Africa had similar one-year neurodevelopmental 

ability as HIV-uninfected infants (5). The extent to which ART benefits neurodevelopment 

in older children is less clear. Few studies have prospectively followed children from ART 

initiation. School-aged Thai and Cambodian children did not have cognitive improvements 

during their first 3 years of ART (23), and similarly, South African children (median age, 5 

years), did not have improved cognitive performance 6 months after initiating ART (24). 

However, in the Democratic Republic of Congo, children with median age 44 months had 

significant 1-year gains in both motor and cognitive scores after initiating ART (25).

We characterized neurodevelopmental trajectories and cofactors for change among HIV-

infected children age <6 years and initiating ART after hospitalization in Kenya. We 

hypothesized that children with better response to ART would have higher 

neurodevelopmental gains during ART.
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METHODS

Study Population

This study was nested within the Pediatric Urgent Start of Highly Active Antiretroviral 

Treatment (PUSH Study) randomized clinical trial (RCT) of urgent (ART at <48 hours) 

versus post-stabilization (ART at 7–14 days) ART (NCT02063880) (n=191) (26). Ethical 

approval was obtained from the University of Washington (UW) Institutional Review Board, 

the University of Nairobi/Kenyatta National Hospital (KNH) National Hospital Ethics and 

Research Committee, the Pharmacy and Poisons Board, and the Ministry of Health, Kenya. 

From 2013–2015, hospitalized HIV-infected children were identified at KNH and Mbagathi 

District Hospital in Nairobi and Jaramogi Oginga Odinga Teaching & Referral Hospital and 

Kisumu East District Hospital in Kisumu, Kenya. Routine HIV testing was conducted as 

described previously (9). Inclusion criteria for the parent RCT were: HIV-positive, <12 years 

of age, and ART naïve [other than antiretrovirals used for prevention of mother to child 

transmission (PMTCT)]. Children were excluded from the parent RCT if they had evidence 

of, or suspected, central nervous system infection. At enrollment and scheduled follow-up 

visits, children had a clinical exam and developmental and growth assessments. All children 

in both treatment arms, who were clinically stable, and who were within the age inclusion 

criteria for the Malawi Developmental Assessment Tool (MDAT) (age <5.5 years to 

accommodate the 6 month follow-up) were eligible to receive neurodevelopmental 

assessments. Weight, height and head circumference were determined using a calibrated 

weighing scale, a measuring rod and a non-elastic measuring tape. Blood specimens were 

collected at enrollment and week 24 for hemoglobin, plasma HIV RNA, and CD4 count and 

percentage.

Per 2011 Kenyan guidelines, children >3 years or >10 kilograms (kg) received abacavir 

(ABC) plus lamivudine (3TC) plus nevirapine (NVP) or efavirenz (EFV). Children <3 years 

or <10kg received ABC plus 3TC plus NVP or ritonavir-boosted lopinavir (LPV/r) if 

previously exposed to NVP as part of PMTCT (27). Starting September 2014, all children 

<3 years were started on LPV/r-based regimens regardless of NVP exposure, in accordance 

with national guideline changes (28).

Developmental Assessments

Assessments were performed using the MDAT, which has been validated and demonstrated 

to have good sensitivity and specificity in rural and urban African settings (29). A 

standardized script for each item was developed, which was translated to Kiswahili and 

back-translated to ensure accuracy prior to study start. Clinicians administered items in 

either English or Kiswahili depending on caregiver and child preference. Assessments were 

performed following clinical stabilization, at either 2 or 4 weeks post-ART (baseline) and at 

24 weeks (6 months) post-ART initiation. The MDAT assesses gross motor, fine motor, 

social, and language domains, with 34 pass/fail items in each. Cognitive skills are assessed 

within the language and fine motor domains. Most gross and fine motor and language items 

must be directly observed, and some may be caregiver reported. All social items may be 

caregiver reported. Items were administered until a child had 6 consecutive passes and 6 

consecutive fails. Domain specific raw scores were calculated using the number of passes, 
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assuming passes for items preceding the 6 consecutive passes. Raw scores were converted to 

z-scores using norm data for healthy children in rural and urban Malawi (n=1445) and 

collected by MG (29).

Laboratory Testing

Laboratory assays were performed at the University of Nairobi and Centers for Disease 

Control and Prevention/Kenya Medical Research Institute (CDC/KEMRI) in Kisumu. HIV 

RNA was quantified using the Abbot Real-time HIV-1 Assay (Abbott Molecular Inc., Des 

Plaines, IL). CD4+ T cell count and percentage were determined using a FACSCount 

(Nairobi) and a FACSCalibur (Kisumu).

Statistical Analysis

Differences in baseline characteristics for children with and without baseline developmental 

data were compared using Wilcoxon rank sum and chi-square tests for dichotomous and 

continuous measures, respectively. Z-scores for weight-for-age (WAZ), height-for-age 

(HAZ), weight-for-height (WHZ) and head-circumference-for-age (HCZ) were calculated 

using the WHO child growth standard reference population (30). Underweight, stunting, 

wasting and microcephaly were defined as z-score <-2 for WAZ, HAZ, WHZ and HCZ, 

respectively. Dichotomized variables were used to evaluate severe immunosuppression 

(CD4% <15%), pre-ART viremia (HIV RNA >106 copies/mL [c/mL]), and post-ART lack 

of virologic suppression (HIV RNA >103 c/mL) (31). Cofactors for baseline developmental 

z-scores were evaluated using univariate and multivariate linear regression models. Primary 

cofactors of interest were HIV disease parameters (CD4% and plasma HIV RNA level) and 

nutritional status (WAZ and HAZ). Sociodemographic characteristics and potential 

confounders (listed below) were also evaluated. Baseline and 6-month developmental z-

scores were compared using paired t-tests. Cofactors for the magnitude of change in 

developmental z-scores from baseline to 6-months were evaluated using univariate and 

multivariate linear regression models adjusting for baseline developmental z-scores. Primary 

cofactors of interest were baseline HIV, growth parameters, and 6-month change in CD4%, 

viral suppression (plasma HIV RNA <103 c/mL), and change in WAZ and HAZ. 

Sociodemographics (child age and sex, caregiver age, marital status, and education, and 

household rent, people per room and one-room house), pre-term birth (self-report), and 

receipt of PMTCT were also evaluated. Final models for the magnitude of change outcomes 

were adjusted for baseline developmental z-score, child sex and caregiver years of 

education. These variables were selected based on associations in the univariate models at 

significance P<0.1. Variables that were collinear with cofactors of interest were not included 

in multivariate analyses. Sensitivity analyses excluding children with history of pre-term 

birth were also evaluated and results were generally similar except where noted. All analyses 

were performed using Stata SE version 13.1 (Stata Corp., College Station, Texas, USA). 

Study data were collected and managed using REDCap electronic data capture tools hosted 

at the UW Institute of Translational Health Sciences (32).
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RESULTS

Cohort Characteristics at Baseline

Among 74 children <5.5 years of age with baseline MDAT data (Figure 1), the median 

enrollment age was 1.7 years (25th, 75th percentiles, 0.8, 2.4) (Table 1). Nineteen percent of 

children had received PMTCT. Median CD4% was 18% (25th, 75th percentiles, 11, 23). 

Most (61.6%) children had a WHO Stage diagnosis of 3 or 4. Most (91.9%) had at least mild 

anemia (hemoglobin <11 g/dL) and 23.0% had severe anemia (hemoglobin <7.0 g/dL) (33). 

Most were underweight (WAZ <-2; 54.1%) or stunted (HAZ <-2; 58.1%). Nearly all 

children (93.2%) were cared for by their biological mother, and all had breastfed. Nine 

percent of caregivers reported having pre-term birth. Children who did not have an MDAT 

assessment (most often due to death or being too ill; Figure 1), were more likely to be 

underweight (77.0% vs 54.1%, P=0.003), younger (medians, 1.3 vs 1.7, P=0.05), 

immunosuppressed (CD4% medians, 13.4 vs 17.8, P=0.04), WHO stage 3 or 4 (78.7% vs 

61.6%, P=0.02) and from the Nairobi catchment site (60.8% vs 39.5% P=0.009).

Baseline Developmental Functioning

At baseline, median developmental z-scores for gross motor, fine motor, social and language 

domains were −1.34, −1.04, −0.53, and −0.95, respectively. Children with poorer HIV 

disease severity indicators and nutritional status had lower baseline developmental scores 

(Figure 2 and Table, Supplemental Digital Content 1). Children with higher plasma HIV 

RNA log10 had lower social scores (regression coefficient (RC) or mean decrease per unit 

HIV RNA increase, −0.34, P=0.008), with similar trends for gross and fine motor (P=0.07 

and P=0.06). Children who were underweight or who had stunting had lower scores in all 

domains (all P values ≤0.05), and results were similar in models adjusted for baseline CD4% 

and plasma virus level. Children with microcephaly had significantly lower gross motor 

scores (mean difference, −1.29; P=0.003). Children whose caregivers reported pre-term birth 

had lower developing functioning in gross motor, fine motor and social domains (mean 

differences, −1.06, P=0.03; −1.08, P=0.03; and −1.12, P=0.004, respectively).

Developmental Functioning at 6 Months Post- ART Initiation

Developmental assessments were available for 58 children at 6-months post-ART initiation 

(Figure 1). After 6 months of ART, gross motor (mean change, 0.39; standard deviation 

(SD), 1.01; P=0.007) and fine motor (mean change, 0.43; SD, 0.92; P=0.001) z-scores 

improved significantly, while social and language did not (mean changes, 0.11; SD, 1.06; 

P=0.4 and −0.20; SD, 0.65; P=0.03, respectively) (Table 2).

Children with better baseline immune and nutritional status (weight, height and head 

circumference) had greater improvements in developmental functioning after 6 months on 

ART (Figure 3 and Table, Supplemental Digital Content 2). In multivariate analysis 

adjusting for baseline developmental z-scores, child sex and caregiver years of education, 

children with baseline CD4% <15% had lower gains in social scores (mean difference in 

gain, −0.62; P=0.02), (Figure 3 and Table, Supplemental Digital Content 2). Children 

beginning ART with higher baseline stature had greater gains in gross and fine motor, social 

and language. For each one-unit increase in baseline HAZ, there was a 0.21 mean gain in 
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gross motor z-score (P=0.02), with similar results for other domains. Children with larger 

baseline head circumference had greater gains in fine motor (mean gain 0.26 per unit 

increase in HCZ; P=0.001) and social (mean gain 0.21; P=0.02). Older children had higher 

gains in social z-scores (mean gain, 0.22 per year increased age; P=0.03).

During ART, children with higher gains in weight, height, and CD4% had greater 

improvement in gross motor (mean gain, 0.34 per gain in WAZ; P=0.006, 0.44 per gain in 

HAZ; P=0.002, and 0.05 per gain in CD4%; P=0.04), social (mean gain, 0.37 per gain in 

WAZ; P=0.002) and language (mean gain, 0.25 per gain in HAZ; P=0.01), (Figure 3 and 

Table, Supplemental Digital Content 2).

DISCUSSION

Among newly diagnosed HIV-infected children age <5.5 years, we found significant gains in 

gross and fine motor domains, but not in social or language during 6 months on ART. 

Children who were better nourished, had lower viremia and better immune status at baseline 

started with higher baseline developmental z-scores. During ART, children with taller 

baseline stature, and better immune and growth recovery while on ART had greater 

developmental improvements.

During the first 6 months on ART, children in our study had substantial gains (approximately 

+0.4 SDs) in gross and fine motor, whereas social and language did not improve. These 

gains in motor function may reflect reduced virus or inflammation within the brain or 

improved overall health or both. A previous study among similarly aged (median, 44 

months) African children with late HIV diagnosis, found substantial motor and cognitive 

improvements after initiating ART (25). However, South African children initiating ART at 

mean age 60 months and with severe immunosuppression had no neurodevelopmental 

improvement during 6 months on ART (24). In another study, South African infants (mean 

age 5 months) had limited improvement, with no gain in language or motor and trend for 

improved cognition during 6 months of ART (34). Our finding of significant improvement 

following ART in an older cohort suggests residual neuroplasticity in response to viral 

suppression and immune recovery and underscores the role of prompt ART to prevent 

cognitive decline.

The first 2 years are critical for brain development (35). Several mechanisms, including 

irreversible HIV-related neuronal damage, HIV brain reservoirs refractory to ART, and 

undernutrition may limit neurodevelopmental benefits of ART. In our study, children with 

advanced HIV had poorer developmental scores at presentation. Other studies have also 

shown that children with HIV disease progression had greater memory and learning deficits 

(36), psychiatric (22) and cognitive impairment (13, 21, 22, 37) cortical atrophy, and white 

matter microstructural changes indicative of neuronal and myelin injury (17, 18, 38).

We found that children with poor nutritional status had significantly lower baseline MDAT 

scores. Undernutrition is a major risk factor for poor neurodevelopment (39). Children in 

this study had substantial undernutrition compared with the general population in Kenya, in 

whom underweight, stunting and wasting were 11.0%, 26.0% and 4.0%, respectively, in 
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2014 (40). Undernutrition in this cohort may have reflected combined food insecurity, and 

the metabolic cost of HIV and acute co-morbidities.

Given that late perinatal HIV diagnosis continues to be common in sub-Saharan Africa (6–

9), it is important to identify cofactors of better neurodevelopmental recovery in this context. 

In US cohorts, children with viral suppression prior to age 5 had higher school-age IQ scores 

(41). We found that children with better pre-ART immune and nutritional status, particularly 

as indicated by height, and those with better immune and growth responses to ART had 

higher developmental gains. These findings suggest that nutritional support in newly 

diagnosed HIV-infected children might benefit their developmental trajectories.

Even under optimized circumstances, successful ART may not prevent neurodevelopmental 

impairment in HIV-infected children. In adults, evidence of neuronal damage can persist 

even in the context of effective viral suppression (42). Among very early treated infants, a 

subset still manifested brain abnormalities by age 32 months (43). During 6 months on ART, 

we did not find improvements in either social or language functioning, and z-scores 

remained approximately 0.5 SDs below the norm for both domains. Importantly, lack of 

improvement in these domains may precede long-term deficits that compromise behavior, 

functioning, school achievement and employment. School aged HIV-infected children often 

have deficits in processing speed, working memory, visual-spatial processing, attention, 

language and executive functioning (37, 44–48).

In our cohort, mean baseline developmental z-scores were ~0.5–1 SD below a Malawian 

norm and though improved significantly in some domains, remained below average after 6 

months of ART. Our findings are similar to a South African cohort (mean age 5 months) 

whose developmental scores remained significantly lower than HIV-exposed uninfected 

infants after 6 months of ART (34). In randomized trials, psychosocial stimulation improved 

neurodevelopment in HIV-infected children on ART in Uganda (mean age 3.8 years) and in 

South Africa (mean age 18 months) (49, 50). Further development and scale-up of 

interventions to augment ART are needed to optimize child outcomes in perinatally HIV-

infected children.

To our knowledge, our study is the first to use the MDAT, a publicly accessible tool that was 

culturally adapted for use in Africa, for serial developmental assessment of HIV infected 

children (29). The MDAT can be administered in 20–60 minutes and may be a useful tool 

for screening and monitoring HIV-infected infants in HIV-care settings. Unlike the Denver 

Developmental Screening Test, the MDAT provides a score that can be used to compare to 

local norms, and monitor for improvements or declines over time. Additional studies are 

needed to determine the utility of the MDAT for scaled-up assessment of child 

developmental outcomes in HIV care settings.

Strengths of this study are the sample size, prospective design, use of a detailed 

developmental assessment, and inclusion of HIV-infected children newly initiating ART. 

Children were HIV diagnosed in hospital, which unfortunately remains common (6–8). This 

study used a detailed developmental assessment, which allowed quantitative group 

Gómez et al. Page 7

Pediatr Infect Dis J. Author manuscript; available in PMC 2019 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



comparisons, and may have greater potential for scale-up than methods requiring more 

intensive training and resources.

Limitations include the relatively short follow-up, and high attrition prior to first 

developmental assessment. In addition, we lacked detailed information regarding likely key 

determinants of early childhood development including history of obstetric or birth 

complications, duration of breastfeeding, and the home caregiving environment. History of 

pre-term birth was limited due to self-report and lack of ultrasound in this setting. The 

MDAT is less widely validated than other assessments, such as the Bayley Scales of Infant 

and Toddler Development, which has been used in several other studies of infant 

neurodevelopment in HIV-infected children (10–12, 14, 15, 34). We did not evaluate 

developmental trajectories in an age-matched HIV-unexposed Kenyan cohort. Lack of 

change in language and social z-scores may have been due to low sensitivity in these 

domains or subtle differences in language, culture or environmental and psychosocial 

contexts, given that this analysis relied on Malawian norm data. The MDAT is currently 

being used in other African countries (personal communication, M. Gladstone); however, 

validation studies for use of MDAT in these settings have not yet been published.

In conclusion, HIV-infected children with late diagnosis had improved gross and fine motor 

functioning during the first 6 months on ART, no improvement in social or language 

functioning and overall, scores remained below African norms. Immune and nutritional 

status were correlated with developmental improvement, suggesting that optimizing 

nutrition and ART may improve neurodevelopmental benefits. Residual deficits underscore 

the need for further interventions to optimize neurodevelopmental outcomes in late-

diagnosed HIV-infected children.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Flow chart depicting study participants with baseline and follow-up developmental 

assessments.
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Figure 2. 
Forest plot summarizing cofactors for baseline developmental functioning (n=74). Linear 

regression coefficients (95% confidence intervals) are denoted by black markers (horizontal 

black lines and whiskers). Circle, diamond, square and triangle markers represent gross 

motor, fine motor, social, and language domains, respectively.
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Figure 3. 
Forest plot summarizing cofactors for 6-month change in developmental z-scores for 

baseline cofactors (A) and 6-month cofactors (B) adjusting for baseline developmental z-

scores, child sex, and caregiver years of education (n=58). Analyses of change variables 

(CD4%, WAZ, HAZ, WHZ, and HCZ) are also adjusted by their baseline counterpart. 

Linear regression coefficients (95% confidence intervals) are denoted by black markers 

(horizontal black lines and whiskers). Circle, diamond, square and triangle markers represent 

gross motor, fine motor, social, and language domains, respectively.
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Table 1

Baseline characteristics of children with baseline developmental assessment (n=74)

Baseline characteristics* Median (25th, 75th

percentiles) or n (%)

Child characteristics

Age (years) 1.7 (0.8, 2.4)

Female 34 (46)

Pre-term birth 7 (9)

Ever breastfed 73 (100)

Received PMTCT† 13 (19)

WAZ −2.14 (−3.93, −1.04)

  Underweight (WAZ <−2) 40 (54)

HAZ −2.34 (−3.49, −1.18)

  Stunting (HAZ <−2) 43 (58)

WHZ −1.55 (−3.38, −0.09)

  Wasting (WHZ <−2) 31 (42)

HCZ −0.53 (−1.49, 0.50)

  Microcephaly (HCZ <−2) 9 (13)

CD4 T cell percentage 18 (11, 23)

CD4 T cell percentage <15% 28 (38)

WHO Stage 3 or 4 45 (62)

Blood hemoglobin (g/dL) 8.7 (7.5, 9.8)

Plasma HIV RNA (log10 c/ml) 5.6 (5.0, 6.2)

Child ART initiation characteristics

Randomized to ART at <48 hours 31 (42)

Initial ART Regimen:

  ABC, 3TC, EFV 15 (20)

  ABC, 3TC, LPV/r 38 (51)

  ABC, 3TC, NVP 21 (28)

Time from ART initiation to developmental assessment (days) 28 (27, 28)

Caregiver or household characteristics

Age (years) 27 (24, 31)

Biological mother 69 (93)

Married 46 (62)

Education (years) 8 (7, 11)

One-room house 28 (38)

Number of people per room 3 (2, 4)

Residing in Kisumu catchment 45 (60.8)

*
n ≥70 for all variables except received PMTCT, n=69.

†
Provided to mother only (n=2), provided to infant only (n=4), provided to both (n=7)
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Table 2

Mean baseline and 6-month developmental z-scores (N=58)

Baseline 6-month

N Mean (SD) Mean (SD) P*

Gross motor 54 −1.05 (1.36) −0.66 (1.38) 0.007

Fine motor 53 −1.03 (1.31) −0.60 (1.15) 0.001

Social 57 −0.49 (1.08) −0.38 (1.02) 0.4

Language 53 −0.89 (0.99) −1.09 (1.03) 0.03

*
Paired t-test.
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