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Abstract

The gastrointestinal tract is a complex environment in which the host immune system interacts 

with a diverse array of microorganisms, both symbiotic and pathogenic. As such, mobilizing a 

rapid and appropriate antimicrobial response depending on the nature of each stimulus is crucial 

for maintaining the balance between homeostasis and inflammation in the gut. Here we focus on 

the mechanisms by which intestinal antimicrobial peptides regulate microbial communities during 

dysbiosis and infection. We also discuss classes of bacterial peptides that contribute to reducing 

enteric pathogen outgrowth. This review aims to provide a comprehensive overview on the 

interplay of diverse antimicrobial responses with enteric pathogens and the gut microbiota.
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1. Introduction

The mammalian intestine is faced with the constant challenge of communicating with the 

external environment, which include commensal microbes collectively known as the gut 

microbiota. Extensive co-evolution between the gut microbiota, their metabolic byproducts, 

and the host has resulted in a symbiotic relationship that contributes to shaping mammalian 

immune responses [1]. Disruptions in this homeostasis, known as dysbiosis, are associated 

with a plethora of disorders including inflammatory bowel disease (IBD), metabolic 

disorders, and cardiovascular disease [1, 2], suggesting that balanced intestinal microbiology 

ecology is crucial for maintaining a healthy immune system. In addition to non-infectious 

insults, the gut serves as a portal of entry for many food-borne bacterial pathogens. In order 

to successfully colonize the mammalian gut, enteric pathogenic bacteria must first encounter 

the commensal microbiota and establish an environmental niche, thereby disturbing the 
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intestinal equilibrium. Thus, host responses are adapted to promote tolerance of 

commensals, as well as to confer protection against infection.

One of the mechanisms by which the host controls the microbiota and defends against 

infection with pathogens is the production of antimicrobial peptides (AMPs). AMPs are a 

diverse class of molecules that exert their antimicrobial activity by different mechanisms, 

including the disruption of bacterial membranes, and the sequestration of essential nutrients. 

In the gut, AMPs are produced by enterocytes and by Paneth cells, which are specialized 

epithelial cells that are positioned in the small intestinal crypts, in close proximity to the 

stem cells from which all the distinct lineage of gut epithelial cells originate. In addition, 

goblet cells produce mucin, which contributes to host defense by providing a physical 

separation between the epithelial layer and the gut microbiota. Given the importance of the 

gut epithelium for the maintenance of intestinal homeostasis, even slight perturbations in 

epithelial cell function can have drastic consequences. For example, defects in AMP 

responses increase host susceptibility to infection with enteric pathogens, including but not 

limited to, Yersinia pseudotuberculosis, Listeria monocytogenes and Citrobacter rodentium 
[3–6]. Moreover, individuals with IBD exhibit reduced intestinal AMP expression, which 

may contribute to the observed alterations in the gut microbiota [7, 8]. Thus, stringent 

regulation of AMP production is essential for limiting both commensal- and infection-

induced dysbiosis. In addition to host-derived AMPs, peptides from bacteria have been 

shown to exhibit antimicrobial activity against other microbes, in some cases providing an 

effective weapon against pathogens.

Here we discuss the mechanisms by which intestinal AMPs promote host defense against 

bacterial infection, and also cover the strategies that certain enteric pathogens employ to 

subvert these activities. To a lesser extent, we highlight the contribution of host-derived 

AMPs for the maintenance of intestinal homeostasis. Equally as important are the AMP 

responses at other epithelial sites, including the lung, skin, and reproductive tract, which 

have been extensively reviewed elsewhere [9–13]. Furthermore, we describe the classes of 

bacterial-derived peptides that have recently been identified to restrict pathogen colonization 

in the intestine. We finally consider harnessing AMP activities as potential therapeutics for 

the treatment of gastrointestinal infections.

2. Host-derived AMPs that directly target bacteria

A major mechanism by which many AMPs mediate killing is by direct interaction with 

structural components of bacterial membranes, leading to pore-formation, subsequent loss of 

membrane potential, and eventual cell lysis [14]. One such family includes defensins, which 

are small, cationic peptides. The two major subfamilies, α- and β-defensins (encoded by the 

DEFA and DEFB genes, respectively), are classified based on structural differences in the 

pairing of their cysteine residues while a third group, the θ-defensins, adopt a distinct 

cyclical conformation [15]. In humans, protein products of six α- and ten β-defensins have 

been identified [16, 17], while θ-defensins have only been found in non-human primates 

[18].
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Human α-defensins were initially identified as neutrophil protein products that exhibited 

antimicrobial activity, and denoted as human neutrophil peptides (hNP) 1–4 [19–21]. In 

addition to direct membrane disruption by these peptides, some members such as hNP-1, can 

interact with and sequester lipid II to inhibit bacterial cell wall synthesis as a mechanism of 

microbial killing [22, 23]. The only α-defensins that are produced in the human gut are 

human defensin 5 and 6 (HD5 and HD6), with their expression restricted to Paneth cells 

[24]. Importantly, HD5 and HD6 are synthesized as inactive precursors that rely on 

proteolysis by trypsin for their maturation and antibacterial function [25, 26]. Although in 
vitro studies have extensively demonstrated the antimicrobial properties of HD5 [26, 27], the 

contribution of this α-defensin for enteric immunity remained elusive until the development 

of an elegant transgenic mouse model. In particular, mice genetically modified to express 

HD5 in Paneth cells conferred resistance to oral challenge with the enteric pathogen 

Salmonella enterica serovar Typhimurium (S. Typhimurium) (Figure 1A) [28]. This 

protection was specific to the intestinal compartment, as HD5 became dispensable for host 

protection towards systemic delivery of pathogens [28]. Later studies also ascribed a role for 

HD5 in regulating the intestinal microbiota in the absence of infection by significantly 

reducing the levels of segmented filamentous bacteria (Figure 1B) [29], commensals 

belonging to the Clostridiales family that have important immunomodulatory properties (rev 

in [30]). Although HD5 and HD6 share structural similarities, HD6 exhibits negligible direct 

antimicrobial activity [31–33]. Instead, HD6 confers host protection by self-oligomerizing 

into nanonets which subsequently surround and entrap pathogens by binding to conserved 

surface structures (e.g. flagellin, fimbriae, or invasion apparatuses) [31]. As such, HD6 

restricts S. Typhimurium infection by limiting intestinal epithelial cell invasion (Figure 1C) 

[31]. Importantly, this antimicrobial activity of HD6 also extends to Yersinia enterocolitica 
and L. monocytogenes in vitro [31, 34], suggesting a broad antimicrobial function for this 

peptide. Similar to HD5 and HD6, production of α-defensins in mice (more commonly 

referred to as cryptdins) is restricted to Paneth cells [35, 36], and requires post-translation 

processing by proteases for their maturation [37, 38]. Studies with cryptdins have uncovered 

their antimicrobial activities in vitro [39, 40], and their importance in vivo is illustrated by 

the finding that mice that lack mature cryptdins exhibit increased susceptibility to oral 

challenge with S. Typhimurium (Figure 1D) [38]. Moreover, the finding that S. 
Typhimurium can reduce expression of mouse cryptdins [41] further implies the contribution 

of these peptides for host defense in the intestinal compartment.

In contrast to intestinal α-defensin expression by Paneth cells, β-defensins are expressed by 

enterocytes of both the small and large intestines [42]. In humans, the most-studied intestinal 

β-defensins are human β-defensins 1–4 (hBD-1, hBD-2, hBD-3, and hBD-4). Regulation of 

these various peptides is distinct: hBD-1 appears to be constitutively expressed [42], hBDs 

2–3 are upregulated following exposure to infectious and inflammatory stimuli [43–45], and 

hBD4 levels are increased in colonic epithelial cells from patients with ulcerative colitis 

[46]. The in vitro antimicrobial activity of hBDs 2–4 against bacterial pathogens including 

Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Streptococcus 
pyogenes is well-established [47–50]. Interestingly, direct killing by hBD-1 under aerobic 

conditions is relatively poor compared to the other defensins [51]. Surprisingly, hBD-1 

underwent a dramatic conformational change in anaerobic conditions, similar to the 
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environment of the intestine, which revealed its potent antimicrobial activity against Gram-

positive commensals [52]. Recent evidence shows that this form of hBD-1 can also function 

in a novel capacity by entrapping bacteria [53]. Similar to hBDs 1–4, murine β-defensins 

(mBDs) exhibit broad-spectrum antimicrobial activity in vitro [54–56], and their expression 

can be induced in intestinal epithelial cells [55]. Nevertheless, the in vivo requirement of 

mBDs for controlling intestinal pathogens remains to be determined.

A second class of cationic peptides that function by directly disrupting bacterial membranes 

are the cathelicidins. There have been over 30 cathelicidins identified in mammalian species 

(rev in [57]), including mouse mCRAMP and its human ortholog LL-37 [58, 59]. Intestinal 

cathelicidins are constitutively expressed by colonic epithelial cells during homeostasis [60], 

but may be markedly upregulated in response to enteric infection [60, 61]. Similar to α-

defensins, cathelicidins are synthesized as inactive forms that require proteolytic processing; 

the human precursor hCAP18 is cleaved at the C-terminus to liberate the mature LL-37 

peptide [62]. Notably, cathelicidin deficiency increases susceptibility to infection with 

enterohemorrhagic E. coli (EHEC) and C. rodentium (Figure 1E), highlighting the 

importance of this peptide for maintaining intestinal immunity against pathogens [6, 63]. 

Given the importance of cathelicidin for intestinal immunity it is perhaps unsurprising that 

pathogens, including the Shigella spp., are able to counteract these responses by 

downregulating cathecidin expression [64]. Conversely, increasing cathelicidin expression 

by administration of the short chain fatty acid butyrate reduces the severity of shigellosis 

[65].

Similar to defensins and cathelicidins, the regenerating (Reg) protein family is a group of 

soluble lectins that interact with structural components on the bacterial surface. RegIIIγ and 

its human ortholog RegIIIα (also known as HIP/PAP) are expressed by Paneth cells [66, 67] 

and enterocytes [68] in response to various stimuli including infection, inflammation, and 

Toll-like receptor signaling [4, 66, 69–71]. In homeostatic conditions, RegIIIγ regulates 

intestinal homeostasis by maintaining a physical separation between epithelial cells and the 

microbiota (Figure 1F) [72]. Another well-studied murine isoform, RegIIIβ, is often co-

regulated alongside RegIIIγ [69, 70]. Like the aforementioned cationic AMPs, maturation 

of the Reg proteins relies on proteolytic processing, specifically trypsin-mediated removal of 

an N-terminal fragment [73–75]. Mechanistically, RegIII lectins are selective for Gram-

positive bacteria through interaction with cell wall peptidoglycan [66, 76, 77], subsequently 

oligomerizing to induce pore formation [77]. Recent studies suggest that some members, 

such as RegIIIβ, can also target Gram-negative bacteria through interaction with surface 

Lipid A moieties [75, 78]. The importance of RegIIIγ and RegIIIβ for host protection is 

emphasized by the increased susceptibility of mice defective in these host responses to 

intestinal infection with L. monocytogenes (Figure 1F), and Vancomycin-Resistant 

Enterococcus (VRE) (Figure 1G), and Y. pseudotuberculosis (Figure 1H), [4, 5, 71]. 

Paradoxically, RegIIIβ deficiency can prolong enteric S. Typhimurium infection in specific 

cases by suppressing the recovery of a balanced microbial ecosystem (Figure 1I) [79], 

implying that the contribution of lectins may be distinct for different pathogens.

Another mechanism by which AMPs target pathogens is through enzymatic degradation of 

bacterial membranes. One such protein, lysozyme (reviewed in [80]), specifically hydrolyzes 
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peptidoglycan linkages while a second protein, secretory phospholipase A2 (sPLA2), targets 

membrane phospholipids [81]. Both enzymes are produced and secreted by Paneth cells 

[82–84], and have a preference towards Gram-positive pathogens [85, 86]. Importantly, 

infection with intestinal pathogens disrupts secretory processes [87], which can interfere 

with AMP delivery into the intestinal lumen. Host cells subsequently employ alternative 

compensatory mechanisms in order to preserve intact immune responses. In particular, 

Paneth cells maintain their antimicrobial potency during S. Typhimurium infection by 

rerouting lysozyme to be secreted by secretory autophagy (Figure 1J) [88].

Other host factors that exhibit antimicrobial activity and are also expressed by intestinal cells 

include chemokines and members of the ribonuclease (RNase) superfamily. Chemokines are 

small, secreted molecules best known for their ability to orchestrate immune cell migration 

to various tissues. However, emerging evidence indicates that many chemokines may also 

function as AMPs (rev. in [89]). In particular, the interferon-inducible CXCL9, CXCL10, 

and CXCL11 chemokines have been shown to display antimicrobial activity against Bacillus 
anthracis, E. coli, and L. monocytogenes in vitro [90–93], and towards B. anthracis in vivo 
[94]. Mechanistically, these chemokines function either through directly disrupting bacterial 

membranes [92], or by targeting bacterial enzymes [93] and transporters [91, 92]. 

Importantly, induction of CXCL9, CXCL10, and CXCL11 by intestinal epithelial cells [95] 

suggests that these chemokines may play a role also in host defense against enteric 

pathogens. Indeed, intestinal CXCL9 is important for protection against C. rodentium 
infection, independently of its function in cellular recruitment (Figure 1K) [96]. The RNase 

angiogenin 4 (Ang4) is induced in Paneth cells following exposure to commensal microbiota 

[97–99]. Similar to other RNases [100, 101], Ang4 exhibits activity against both Gram-

positive and Gram-negative pathogens in vitro [98, 99], although the requirement of 

enzymatic activity for its bactericidal function is unknown. Thus, further studies into the 

mechanisms by which additional chemokines and RNases mediate bacterial killing may 

potentially lead to the development of novel therapeutic strategies.

3. Host-derived AMPs that restrict bacterial growth by indirect mechanisms

Restriction of bacterial replication can also occur when host antimicrobial factors compete 

with microorganisms for essential micronutrients in a process termed nutritional immunity 

[102, 103]. In particular, transition metal ions are required for a myriad of biological 

processes, including nucleic acid and protein synthesis, precursor biosynthesis, and 

responses to oxidative stress [104]. Iron is among the most abundant, albeit tightly regulated 

transition metals in biological systems. The majority of iron in eukaryotes is stored 

intracellularly associated with hemoglobin, and extracellular iron is associated with the 

high-affinity proteins lactoferrin and transferrin [105]. Thus, iron availability to pathogens is 

severely restricted, and is further reduced during infection [105]. Pathogens have evolved 

various mechanisms to counteract iron limitation by the mammalian host; one of these 

mechanisms is the production and expressions of siderophores. Siderophores are low 

molecular weight iron-binding compounds that are produced and secreted by bacteria to aid 

in iron acquisition (rev. in [106]). The affinity of bacterial siderophores exceeds that of host 

iron-binding proteins, thus enabling pathogens to hijack iron from the host. For example, 

members of the Enterobactericeae family, including Salmonella spp., Escherichia spp., and 
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Klebsiella spp. synthesize the siderophore enterobactin (also called enterochelin) [107–110], 

which has higher affinity for iron than host proteins like transferrin and lactoferrin [111]. To 

counteract bacterial siderophores, host cells produce lipocalin-2 (also known as siderocalin, 

24p3, or neutrophil gelatinase-associated lipocalin, NGAL), an antimicrobial protein that 

sequesters enterobactin [112, 113]. In the inflamed intestine, lipocalin-2 is primarily 

expressed and secreted by epithelial cells following stimulation by IL-17 and IL-22 (Figure 

2A) [114, 115], T cell cytokines that are highly upregulated during infectious and non-

infectious colitis [69, 70, 114–116]. These cytokines also stimulate intestinal epithelial cells 

to produce CXC chemokines, which in turn promote the migration of neutrophils to the gut 

(Figure 2B) [117]. Neutrophils contain lipocalin-2 in their granules [118], and thus are an 

additional source of lipocalin-2 during enteric infection and inflammation [114, 119]. To 

overcome lipocalin-2-mediated nutritional immunity, certain pathogens produce “stealth” 

siderophores [120]. For instance, S. Typhimurium, Klebsiella pneumoniae, and 

uropathogenic E. coli synthesizes salmochelin, a C-glucosylated derivative of enterobactin, 

which cannot be bound by lipocalin-2 [114, 121, 122]. Salmochelin production thus enables 

pathogenic microbes to evade lipocalin-2-mediated iron sequestration and thrive in the host 

(Figure 2C) [114, 121, 123]. Evasion of lipocalin-2, however, does not appear to be a trait 

that is unique to pathogens. The probiotic bacterium E. coli Nissle 1917 (EcN) also produces 

salmochelin, as well as other stealth siderophores, which allow EcN to effectively compete 

with S. Typhimurium for iron in the inflamed gut [124].

Zinc and manganese are other important transition metal nutrients, although relatively little 

is known in comparison to iron regarding their importance in host-microbe interactions. 

Many bacteria can utilize these ions as cofactors for carbon metabolism, and also for the 

detoxification of reactive oxygen and nitrogen species [104, 125]. Uptake of these nutrients 

is mediated by specialized zinc and manganese import systems, including the transporters 

ZnuABC for zinc and MntH for manganese (rev. in [126, 127]). Importantly, defects in these 

transport systems are detrimental for bacteria under nutrient-limiting conditions, both in 
vitro and in vivo [128–132]. Given the requirement of these micronutrients for bacterial 

growth, host cells employ mechanisms to chelate zinc and manganese to reduce availability 

of these cofactors during infection. One such host protein, calprotectin, is a complex of the 

two calcium-binding proteins S100A8 and S100A9 [133]. Formation of the calprotectin 

heterodimer introduces two metal binding sites; site I is capable of binding to zinc and 

manganese with high affinity while site II only binds to zinc [134, 135]. In anaerobic, highly 

reducing conditions, site I also binds to ferric iron [136], although the relevance of this 

interaction in vivo remains unknown. The contribution of calprotectin for promoting host 

defense against S. aureus highlights the importance of zinc and manganese sequestration 

during infection [137]. However, pathogens are able to evade calprotectin-mediated metal 

sequestration to cause disease. Specifically, expression of zinc transporters facilitates 

Acinetobacter baumannii lung colonization and systemic dissemination by overcoming 

calprotectin-dependent zinc sequestration. [138]. Furthermore, S. aureus employs the 

MntABC and MntH transporters to counteract calprotectin-dependent manganese 

sequestration [130]. During intestinal infection, calprotectin is upregulated by epithelial cells 

in response to IL-17 and IL-22 and is also released into the intestinal lumen by translocating 

neutrophils (Figure 2A) [139], likely associated with neutrophil extracellular traps [140]. 
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Notably, the measurement of calprotectin as a prognostic and diagnostic marker in patients 

with IBD illustrates its abundance during enteric inflammation [141]. Therefore, enteric 

pathogens must also evade calprotectin-mediated metal sequestration in the intestinal 

compartment. Indeed, S. Typhimurium is able to resist zinc limitation by expressing the 

high-affinity transporter ZnuABC, which enables the pathogen to outcompete the microbiota 

in the inflamed gut (Figure 2D) [139]. Similarly, acquisition of manganese by the MntH and 

SitABCD transporters is essential for S. Typhimurium to evade neutrophil-dependent 

oxidative stress and calprotectin, and promote the pathogen survival in the inflamed intestine 

(Figure 2D) [142].

Whether metal nutrients availability and nutritional immunity modulate the enteric 

microbiota is relatively understudied. However, recent work has uncovered the contribution 

of micronutrients and metal-binding proteins for the maintenance of a balanced microbiota. 

For example, an excess of dietary zinc reduces the microbial diversity in the gut, which in 

turn exacerbates Clostridium difficile-associated disease [143]. Moreover, during intestinal 

inflammation, IL-22-dependent induction of lipocalin-2 and calprotectin leads to a 

suppression of commensal Enterobacteriaceae, and enhances S. Typhimurium intestinal 

colonization [69]. Lipocalin-2 has also recently been shown to limit the replication of 

commensal microbes during severe colitis and tumorigenesis [144]. Abrogating lipocalin-2 

in the context of IL-10-deficiency exacerbates the severity of colitis and tumorigenesis, 

which could be ameliorated by antibiotic administration [144, 145]. Further analyses 

revealed an enrichment of the intestinal facultative pathogenic Alistipes spp. in Lcn2 −/−Il10 
−/− mice [144], implying that inflammation and iron sequestration limits the replication of 

some members of the microbiota. Additional studies will be necessary to further investigate 

the contribution of other host antimicrobial proteins in modulating the composition of the 

gut microbiota in the healthy and in the inflamed gut.

4. Bacterial-derived AMPs

Similar to eukaryotic hosts, certain bacterial species have evolved to produce AMPs, a 

mechanism that confers a competitive advantage in various ecological niches, including the 

mammalian intestine. Bacteriocins are a group of ribosomally synthesized AMPs that have 

diverse functions, ranging from targeting of the bacterial membrane to interfering with 

DNA, RNA, and protein metabolism (rev. in [146]). These molecules are often produced by 

probiotic strains to facilitate their colonization in complex microbial communities. The 

activity of these peptides is dependent on their export and subsequent interaction with the 

sensitive cell. Notably, bacteriocin gene clusters are often co-regulated with genes encoding 

for cognate immunity proteins to provide the producing strain with protection against self-

killing (rev. in [147]).

Bacteriocins from Gram-positive bacteria are divided by the presence (class I) or absence 

(class II) of post-translational modifications, and are termed lantibiotics and nonlantibiotics, 

respectively [148]. Class II bacteriocins are further divided into four subgroups: class IIa are 

peptides that typically exhibit the greatest activity against Listeria, class IIb consists of two-

peptide bacteriocins, class IIc bacteriocins adopt a cyclic conformation, and class IId is 

comprised of all remaining bacteriocins that are unable to be grouped based on their 
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structure or activity [147]. The potency of bacteriocins against clinically relevant targets has 

been well documented [149–151], and the generally accepted view is that these peptides are 

most effective against Gram-positive pathogens. Mechanistically, bacteriocins have been 

shown to exert their bactericidal effect by either targeting cell wall precursors [152] or by 

inducing pore formation following interaction with transmembrane receptors [153]. With 

respect to the mammalian intestine, the Abp118 bacteriocin from probiotic Lactobacillus 
salivarius strain UCC118 reduces levels of L. monocytogenes (Figure 3A) [154] while 

thuricin CD of Bacillus thuringiensis DPC 6431 diminishes C. difficile burden (Figure 3B) 

[155]. The therapeutic potential of these bacterial peptides was also demonstrated when an 

Enterococcus faecalis strain engineered to ectopically express bacteriocins reduced intestinal 

colonization of VRE, without disruption to the indigenous microbiota (Figure 3C) [156]. 

Interestingly, bacteriocin production can also be a characteristic of virulent strains. Epidemic 

L. monocytogenes isolates produce the bacteriocin Listeriolysin S (LLS), which modulates 

the host microbiota to provide a more favorable niche for pathogen growth in the intestine 

(Figure 3D) [157].

Bacteriocins from Gram-negative microorganisms are structurally distinct from Gram-

positive bacteriocins, and are classified based on the relative peptide size, with colicins 

ranging between 25–80 kDa and microcins being less than 10 kDa [158]. Microcins are 

further subdivided into class IIa, which are not post-translationally modified, and class IIb, 

which carry a C-terminal modification containing an enterobactin-like moiety [159]. Class 

IIb microcins are also known as TonB-dependent microcins, because they require functional 

TonB in the target cell for killing [160]. Importantly, iron starvation can induce the 

production of these modified siderophores [161, 162], which target cells that express 

cognate siderophore receptors by a ‘Trojan horse’ mechanism [163]. The probiotic strain 

EcN produces two class IIb microcins, microcin M and microcin H47, which are postulated 

to function by this mode of action. Importantly, while studies have demonstrated that 

microcins can restrict growth of pathogens in vitro [164], their in vivo role has remained 

elusive. Recent work from our group has uncovered that microcin production enables EcN to 

outcompete pathogens, including S. Typhimurium and adherent-invasive E. coli, in the 

inflamed intestine, where iron is limited (Figure 3E) [165]. Moreover, therapeutic 

administration of microcin-producing EcN reduced S. Typhimurium intestinal colonization 

in mice, providing the first in vivo evidence of microcins for host protection [165]. 

Additional studies will be necessary to identify the specific bacterial targets of microcins.

5. Conclusions and Future Perspectives

Maintenance of homeostasis in the gut not only requires tolerance of the commensal 

microbiota, but also containment of invading pathogens. Increasing evidence indicates that 

an essential component of the immune response regulating this balance is the production of 

AMPs by intestinal epithelial cells. However, there are still many unanswered questions, 

including the effects of specific AMPs on the composition of the microbiota, alternative 

functions of known AMPs, and the identity of unknown peptides and proteins with 

antimicrobial activities. In addition to host-derived peptides, AMPs from probiotic bacteria 

are also effective in reducing pathogen colonization of the gastrointestinal tract, yet their 

specific targets remain enigmatic in most cases. Exploiting the natural activity of AMPs may 
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assist in the treatment of enteric infections or to restore intestinal dysbiosis. Therefore, a 

more comprehensive understanding of the regulatory networks governing AMP expression 

and their mechanisms of action will be fundamental for their therapeutic application.
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Figure 1. In vivo functions of intestinal antimicrobial peptides
(A) Paneth cell secretion of human defensin 5 (HD5) contributes to decreasing intestinal S. 
Typhimurium burden and (B) also strongly reduces the levels of commensal segmented 

filamentous bacteria (SFB). (C) Contrary to HD5, HD6 contributes to host defense against 

S. Typhimurium through formation of oligomers that entrap the pathogen. (D) Furthermore, 

mouse α-defensins (cryptdins) promote host defense against S. Typhimurium. (E) Epithelial 

cell-derived murine CRAMP (mCRAMP) contributes to killing of C. rodentium and 

enterohemorrhagic E. coli (EHEC). Robust production of interleukin (IL)-22 induces Paneth 

cells to express the C-type lectins RegIIIγ and RegIIIβ. (F) RegIIIγ maintains spatial 

separation between the microbiota and the epithelial cell layer and also facilitates clearance 

of pathogenic L. monocytogenes. (G) Members of the microbiota can furthermore induce 

the expression of RegIIIγ, which promotes resistance to Vancomycin-Resistant 

Enterococcus (VRE). (H) RegIIIβ is important for host protection against enteric Y. 
pseudotuberculosis but can also (I) target the enteric microbiota and consequently prolong S. 
Typhmurium infection. (J) Secretion of lysozyme by Paneth cells promote the reduction of 

intestinal S. Typhimurium burden. (K) Lastly, interferon gamma (IFNγ)-inducible 

chemokines, such as CXCL9, mediate clearance of the mouse pathogen C. rodentium by a 

mechanism independent of their chemotactic ability.
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Figure 2. Mechanisms of nutritional immunity in the inflamed intestine
(A) During infection with enteric pathogens, high levels of interleukin (IL)-17 and IL-22 

stimulate intestinal epithelial cells to express the antimicrobial protein calprotectin, which 

sequesters zinc and manganese, and lipocalin-2, which sequesters iron. (B) In addition, 

IL-17 and IL-22 also stimulate epithelial-dependent CXC-chemokine production, which 

recruit polymorphonucleaer cells (PMNs) to provide an additional source of lipocalin-2 and 

calprotectin. Nutrient-limitation by these two antimicrobial proteins restricts growth of the 

commensal microbiota. (C) However, successful pathogens like S. Typhimurium can 

overcome iron restriction by producing salmochelin, a “stealth” siderophore that is not 

bound by lipocalin-2. (D) Moreover, S. Typhimurium encodes high-affinity ZnuABC, MntH, 

SitABCD transporters to acquire zinc and manganese, which counteracts calprotectin-

dependent sequestration of these metals.
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Figure 3. Activity of bacterial-derived antimicrobial peptides in the intestine
Production of bacterocins from Gram-positive bacteria is typically a characteristic of 

probiotic strains. (A) Specifically, Abp118 of L. salivarius strain UCC118 is able to target 

pathogenic L. monocytogenes, while (B) B. thuringiensis DPC 6431 restricts C. difficile 
expansion through the activity of thuricin CD. (C) An E. faecalis strain ectopically 

expressing the bacteriocin Bac-21 is able to specifically target Vancomycin-Resistant 

Enterococcus (VRE) while maintaining the integrity of commensal bacteria. (D) In contrast 

to probiotic bacteria, some epidemic strains of the Listeria spp. produce Listeriolysin S 

(LLS) to promote virulence by targeting the host microbiota. Microcins are peptides from 

Gram-negative bacteria that are smaller than 10 kDa. (E) E. coli Nissle 1917 (EcN) 

synthesis of microcin M (MccM) and microcin H47 (MccH47) facilities clearance of 

pathogenic S. Typhimurium and adherent-invasive E. coli (AIEC) in the inflamed intestine, 

when iron is limited.
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