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Abstract

Antimicrobial peptides (AMPs) are typically thought of as molecular hole punchers that directly 

kill pathogens by membrane permeation. However, recent work has shown that AMPs are 

pleiotropic, multifunctional molecules that can strongly modulate immune responses. In this 

review, we provide a historical overview of the immunomodulatory properties of natural and 

synthetic antimicrobial peptides, with a special focus on human cathelicidin and defensins. We 

also summarize the various mechanisms of AMP immune modulation and outline key structural 

rules underlying the recently-discovered phenomenon of AMP-mediated Toll-like receptor (TLR) 

signaling. In particular, we describe several complementary studies demonstrating how AMPs self-

assemble with nucleic acids to form nanocrystalline complexes that amplify TLR-mediated 

inflammation. In a broader scope, we discuss how this new conceptual framework allows for the 

prediction of immunomodulatory behavior in AMPs, how the discovery of hidden antimicrobial 

activity in known immune signaling proteins can inform these predictions, and how these findings 

reshape our understanding of AMPs in normal host defense and autoimmune disease.
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1. Organization of Review

Antimicrobial peptides (AMPs) have been studied for over 40 years in the context of innate 

host defense. Initial studies focused on understanding their microbicidal mechanisms and 

identifying common structural and physicochemical features essential to this activity [1,2]. 

However, within the last 10 years, dramatic progress has been made in elucidating how 

AMPs interact with the host innate and adaptive immune systems, and how this synergizes 
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with their direct activity on the pathogen. With the rise of drug-resistant infections, there is a 

resurgence of interest in the design and development of AMPs with potent, selective activity 

and favorable immunomodulatory profiles [3–6]. In a complementary direction of inquiry, 

AMPs have also been repeatedly implicated in the dysregulation of inflammation, such as in 

chronic autoinflammatory diseases like lupus and psoriasis. Therefore, improving AMP-

mediated immune signaling can bolster responses to infections [7], while disruption of this 

behavior could provide a therapeutic opportunity for autoimmune diseases [8].

In this review, we provide a summary of recent studies on the immunomodulatory activities 

of AMPs, including both endogenous and synthetically designed AMPs. While some effort 

has been made to show the history of this conceptual development, we note that reviews of 

this nature are always incomplete, and involve foregrounding of select work. Moreover, 

because of the diversity in sequence and structure of AMPs, it is difficult to predict 

immunomodulatory behavior for all AMPs and identify universal themes. We highlight 

recent work from our group that suggests a deterministic mechanism for how a surprisingly 

broad range of AMPs signals to the immune system. Using an unconventional combination 

of techniques from physics, chemistry, computational biology, and immune activation 

experiments, we describe a novel physical basis for AMP-induced immunomodulation via 

Toll-like receptors (TLRs). We find that AMPs can structurally organize and scaffold 

immune ligands into spatially periodic nanocrystalline and sometimes liquid crystalline 

complexes, and that the crystallinity of AMP–nucleic acid complexes can determine the 

degree of immune amplification in well-defined in vitro systems [9,10]. This represents a 

significant generalization of the central paradigm in immunology. Innate immune receptors 

can recognize not just pathogen-associated molecular patterns (PAMPs) of single ligand 

molecules, but also recognize nanocrystalline arrangements of AMPs and ligands, ultimately 

leading to potent immunomodulation that depends sensitively on crystallinity parameters 

such as the inter-ligand spacing and the number of repeating ligands. Finally, we review 

recent literature that focuses on immune signaling molecules with hidden antimicrobial 

activity (“kinocidins”), and how these molecules may augment and modify our perspectives 

on AMP immunomodulation.

2. Immunomodulatory Activity of Antimicrobial Peptides

Based on experiments both in vitro and in vivo, the immunomodulatory profiles of AMPs 

have been extensively studied, with human cathelicidin LL37 and defensins being the best-

characterized [11]. Typical experiments that are conducted to assess the immunomodulatory 

behavior of AMPs include measurements of in vitro cytokine production from immune cells, 

real-time quantitative PCR monitoring of the expression of genes involved in inflammation, 

and challenge with TLR-ligands in mouse models of infection or inflammatory disease [12]. 

AMPs are usually co-administered with canonical immune ligands such as 

lipopolysaccharide (LPS), CpG oligonucleotides, and Poly(I:C) (viral double-stranded RNA 

mimic), and resulting changes in cytokine production are measured. From the body of 

literature, it is clear that AMPs are involved in triggering both pro-inflammatory and anti-

inflammatory immune responses, and do so through distinct mechanisms that depend on 

biological context.
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Examples of AMP-induced immunomodulation are legion (Figure 1): An early study in 

mice demonstrated that LL37 is a potent antisepsis agent that inhibits macrophage 

stimulation by bacterial endotoxins like LPS and lipoteichoic acid (LTA), and protects mice 

from endotoxemia [13,14]. LL37 upregulated production of MCP-1, IL-8, but not TNF-α, 

and led to recruitment of immune cells to the site of infection [15]. More specifically, LL37 

chemoattracts leukocytes via the formyl peptide receptor-like 1 (FPRL1) [16]. In a similar 

manner, human β-defensins are chemotactic for immune cells by binding to the CCR6 

receptor, a chemokine receptor found on dendritic cells and memory T cells [17]. In the 

human airway, defensins induce significant IL-8 production from airway epithelial cells, 

which lead to neutrophil chemotaxis [18]. In addition, human neutrophil peptide (HNP) 

defensins demonstrate significant direct chemotactic activity for monocytes [19]. HNP 

defensins are also involved in modulation of host antibody responses. HNPs directly induced 

proliferation of and cytokine production from T helper cells, enhanced systemic IgG 

responses, and fostered B cell-T cell interactions to bridge innate and adaptive immunity 

[20]. In mice, the murine β-defensin 2 (mDF2β), a small AMP produced in response to 

bacterial infections of mucosal tissue and skin, has also been shown to directly activate 

immature dendritic cells as an endogenous ligand for TLR4, resulting in the production of 

pro-inflammatory chemokines and cytokines [21]. The rhesus macaque θ-defensin RTD-1 

inhibits production of pro-inflammatory cytokines induced by a variety of TLR ligands in 
vitro, including CpG DNA and LPS [22]. In a mouse model of bacterial sepsis, RTD-1 also 

suppressed pro-inflammatory cytokines and enhanced survival [23]. Granulysin is a human 

AMP produced by cytotoxic T-cells that forms membrane pores and induces apoptosis [24]. 

During Propionibacterium acnes infection, a fragment of granulysin (31–50v44w) was 

reported to inhibit production of IL-12 and chemokines MCP-1, IP-10, and MDC from 

human monocytes [25]. The porcine cathelicidin PR-39 is a broad-spectrum AMP that was 

observed to induce IL-8 production from macrophages. Truncation mutants of PR-39 were 

also found to differentially regulate the production of TNF-α [26]. Dual-functional synthetic 

host defense peptide mimics have been recently developed that capture both antimicrobial 

and immunomodulatory properties, while circumventing the issues common to peptide-

based antimicrobials, such as hemolysis and short half-lives due to rapid degradation in vivo. 

These synthetic mimics of AMPs have demonstrated the ability to effectively kill 

Staphylococcus aureus and inhibit TLR2-mediated inflammation normally associated with 

the bacterial infection [27,28]. One synthetic design in particular, Clavanin-MO, derived 

from a marine tunicate AMP, was shown to recruit leukocytes, induce production of GM-

CSF, IFN-ɣ, and MCP-1, stimulate secretion of the anti-inflammatory cytokine IL-10, and 

inhibit production of pro-inflammatory cytokines IL-12 and TNF-α [29].

We have summarized only ~10 examples of endogenous and synthetic AMPs that possess 

immunomodulatory activity above; there are more that exhibit this behavior. To make sense 

of the vast diversity of evidence documenting the immune signaling activity of AMPs, we 

suggest a conceptual framework for AMP activity based on recent structural studies, and ask 

whether we can deduce deterministic rules governing AMP-mediated immunomodulation. 

To do this, we first analyze the molecular interactions between AMPs, nucleic acid immune 

ligands, and their respective TLRs.
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TLRs were first discovered in Drosophila and were found to comprise one arm of the innate 

immune system [30,31]. Innate immune cells can detect microbial pathogens through 

pattern-recognition receptors (PRRs), which sense signature PAMPs from microorganisms, 

signal to the host the presence of infection, and trigger inflammatory responses. The TLRs, a 

family of PRRs, are transmembrane proteins that have specialized recognition of multiple 

ligand classes. TLR2 senses a wide range of lipoproteins/lipopeptides, peptidoglycans, and 

lipoteichoic acids from bacteria. Moreover, it heterodimerizes with either TLR1 or TLR6 to 

specifically recognize triacylated or diacylated lipopeptides, respectively [32,33]. LPS, a 

major constituent of the outer wall Gram-negative bacteria, is detected by TLR4, and 

bacterial flagellin, a structural protein component of flagella, is recognized by TLR5 

[34,35]. Several TLRs are also known to detect nucleic acids and are implicated in antiviral 

responses. Double-stranded RNA (dsRNA), typically generated from viral replication, is 

recognized by TLR3 [36,37], while TLR7 and TLR8, which are similar in structure, both 

respond to single-stranded RNA (ssRNA) [38–40]. TLR9 has been identified as the receptor 

for unmethylated CpG-rich DNA motifs of bacteria [41] and viral double-stranded DNA 

(dsDNA) [42,43].

The interaction of TLRs with PAMPs activates signal transduction pathways that lead to the 

production of pro-inflammatory cytokines. In general, TLRs 1, 2, 4, 5, and 6 primarily 

detect molecules unique to bacteria, and thus, allows for efficient discrimination of self and 

non-self. On the other hand, TLRs 3, 7, 8, and 9 recognize nucleic acids, which are not 

exclusive to microbial pathogens (Figure 1). In these cases, discrimination of self and non-

self is typically achieved by the accessibility of the ligands to TLRs. More specifically, this 

subgroup of TLRs are localized to intracellular compartments [44–47], and therefore, are 

exposed to foreign nucleic acids released into the compartments by endocytosed pathogens 

but not to the self-nucleic acids.a However, under certain circumstances, such as poor 

clearance of apoptotic cells or cellular damage, self-nucleic acids may become aberrantly 

accessible to TLRs and can lead to autoimmunity [34,51–54]. Structural studies of the 

receptor–ligand complexes for TLR1–TLR2 heterodimer [55,56], TLR2–TLR6 heterodimer 

[57], TLR3 homodimer [58,59], TLR4 homodimer [55,56], and TLR5 homodimer [60] 

revealed that they all share an “m”-shaped architecture, composed of two individual 

horseshoe-shaped TLR ectodomains [61]. These findings together suggest that the activation 

of TLRs may be governed by a common mechanism.

The structural basis for activation of these TLRs by nucleic acids have been studied using X-

ray crystallography [58,61–63]. While activation of TLRs has been shown to modulate and 

induce the production of AMPs from immune cells [64–67], the direct immunomodulatory 

effects of AMPs on TLRs are less clear. AMPs have been found within or co-localize and 

interact with a variety of immune cells, including dendritic cells, monocytes, B cells, and T 

cells [15,68–70]. AMPs are also produced by a variety of non-canonical immune cells such 

as keratinocytes [71]. A multitude of studies have demonstrated links between AMP 

expression, modulation of innate immune receptors like TLRs, and the subsequent 

upregulation or downregulation of pro-inflammatory and anti-inflammatory cytokines 

aRecent studies have reported that both TLR7 and TLR9 can also be expressed on the cell surface [48–50]

Lee et al. Page 4

Semin Cell Dev Biol. Author manuscript; available in PMC 2020 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(Figure 1). We describe several recent studies of AMP interactions with TLRs, and how an 

understanding of the structural rules underlying TLR activation can enable prediction of 

immunomodulatory abilities of a broad range of molecules.

3. AMP-mediated immunomodulation via Toll-like receptors

3.1 dsDNA binding and TLR9 activation

TLR9 is typically thought of as a sensor for CpG DNA, which is relevant to viral and 

bacterial infections [63]. However, in a landmark study, Lande et al. demonstrated that 

human cathelicidin LL37 could potently activate plasmacytoid dendritic cells (pDCs) by 

forming immune complexes with human genomic dsDNA, accessing endosomal 

compartments, and binding to TLR9 (Figure 1) [72,73]. In the normal course of infection, 

LL37 enhances appropriate immune responses by binding to microbial DNA and inducing 

TLR9 activation. However, binding of LL37 to self-DNA and inappropriate activation of 

pDCs can break immune tolerance to self-nucleic acids and lead to autoimmunity. Indeed, 

overexpression of LL37 in autoimmune diseases like lupus [74] and psoriasis [75] has been 

linked to exacerbation of inflammation via TLR9 hyperactivation in pDCs and keratinocytes 

[76]. Interestingly, neutrophil extracellular traps (NETs), which are prevalent in autoimmune 

diseases [77,78], have been shown to release LL37–DNA complexes, which contribute to 

dysregulation of inflammation in lupus via pDC activation [74]. Intracellular LL37 can also 

enhance DNA-mediated TLR9 activation in B cells [79], in addition to dendritic cells and 

macrophages [80].

However, the ability to enable immune recognition of DNA and induce TLR9 activation in 

immune cells is not unique to LL37. Subsequent studies have shown that the AMPs human 

β-defensin 2 (hbD2), human β-defensin 3 (hbD3), and lysozyme can also co-assemble with 

dsDNA to activate pDCs, in a manner analogous to LL37 [81]. In the context of the immune 

response to malaria, histone–DNA complexes from Plasmodium falciparum were shown to 

activate dendritic cells via TLR9 [82]. Histones have also been well-characterized as 

antimicrobial peptides [83,84], in addition to their DNA-binding properties, suggesting that 

histones play dual roles in microbial defense and immunomodulation. Other DNA-binding 

proteins have also demonstrated the ability to enable TLR9 recognition of DNA. High-

mobility group box-1 protein (HMGB1) is a nuclear DNA-binding protein released from 

necrotic cells that forms immune complexes with DNA and stimulates cytokine production 

through a TLR9-dependent pathway [85]. Other members of the HMGB family also 

facilitate recognition of nucleic acids by PRRs [86–88]. Interestingly, even pathogenic 

amyloids, some of which have been shown to have hidden antimicrobial activity [89,90], are 

able to induce chemoattraction [91] and bind to dsDNA and induce type I IFN production 

via TLR9 [92].

One potentially interesting question to ask is whether TLR9-activation by AMP–DNA 

immune complexes and the subsequent induction of an adaptive immune response resulting 

in autoantibody production against dsDNA leads to a self-amplifying pathway that further 

potentiates TLR9 activation. In a study of immune complexes obtained from lupus patients, 

anti-dsDNA autoantibodies were found to form complexes with DNA, enter endosomal and 

lysosomal compartments, and activate dendritic cells through cooperation of CD32 and 
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TLR9 [93]. In a separate study, immune complexes formed between anti-nucleosome 

autoantibodies and mammalian DNA were shown to activate TLR9 in B cells [51].

From the examples above, it is evident that immune amplification of TLR9-mediated 

inflammation can be triggered by the formation of various protein–DNA complexes. 

Furthermore, this phenomenon is general and occurs across a broad range of molecules, 

including but clearly not limited to AMPs. What is equally clear from these studies is that a 

large number of natural AMPs and related molecules can induce TLR9 signaling through 

dsDNA binding, but many other molecules that also bind to dsDNA cannot. To delineate the 

necessary and sufficient criteria for immune activation by AMP–dsDNA complexes, we 

utilized high-resolution small-angle synchrotron X-ray scattering (SAXS) to solve the 

structures of complexes formed between dsDNA and AMPs, and correlated these findings 

with measurements of pDC IFN-α production [9]. We found that cationic molecules (such as 

AMPs) can form columnar nanocrystalline complexes with dsDNA, and that the inter-DNA 

spacing between parallel DNA columns changes with the identity of the cationic molecule. 

For 15 AMP–DNA and polycation–DNA complexes, measured inter-DNA spacings were 

correlated with induced IFN-α production from pDCs. Two functional classes of complexes 

were found: Complexes with inter-DNA spacings in the range of d = 3–4 nm led to strong 

amplification of IFN production (e.g., LL37–DNA and hbD3–DNA), while those with inter-

DNA spacings outside of this range, d < 3 nm or d > 4 nm, resulted in significantly lower 

levels of IFN production, despite the fact that both classes of complexes have roughly 

equivalent levels of endosomal access. Interestingly, the optimum spacing of 3–4 nm is 

strongly suggestive, as it is approximately commensurate with the steric size of TLR9. 

Electrostatic interactions between the AMP–dsDNA complex and TLR9 are optimized when 

the inter-DNA spacing is in this range. Accordingly, the presentation of a spatially-periodic 

“grill” of parallel dsDNA by the nanocrystalline complex allows multivalent intercalative 

binding of the AMP–dsDNA complex to a cluster of TLR9 embedded in the endosomal 

membrane [94] (Figure 2A, B).

To understand these effects further, we formulated a mathematical model and conducted 

Monte-Carlo simulations of TLR9 binding to AMP–dsDNA complexes. As the inter-DNA 

spacing between parallel DNA ligands was varied, we observed different regimes of binding. 

At inter-DNA spacings smaller than the steric size of TLR9 (< 3 nm), low numbers of TLR9 

were bound to the DNA due to sterically reduced accessibility to binding sites. Similar 

effects were observed when the inter-DNA spacings were too large (> 4 nm). However, as 

the inter-DNA spacing approached the optimal range (3–4 nm), we observed a drastic 

increase in the number of bound TLR9, experimentally correlating with the two orders of 

magnitude higher levels of immune activation and cytokine production [9,94].

The effect observed in experiments and in simulations is a variation of the phenomenon of 

“superselectivity”, one amplified by electrostatic effects. Superselectivity is defined as a 

superlinear relationship between the surface density of receptors and the surface density of 

bound ligands. The idea of superselectivity driven by ligand clustering is quite general. 

Nanoparticles and multivalent polymers have been recently engineered to bind 

superselectively to specific receptors in the context of cancer therapy and tissue targeting 

[95–97]. This strategy has been extended to the targeting of multiple receptors 
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simultaneously [98]. The quantitative description of superselectivity is cognate to the idea of 

an “immunological synapse” in immunology, which was proposed in the context of specific 

ligand–receptor interactions [99], in which a cluster of ligands binding to a cluster of 

receptors drives a qualitatively different downstream response compared to single ligand–

receptor interactions. This effect has been described for T-cell signaling [100], antigen-B 

cell receptor interactions [101], cell-surface binding of glycosaminoglycan [102], and 

dectin-glucan interactions [103]. To see how self-assembly of AMPs with dsDNA drives 

potent superselective binding of clustered DNA to TLR9 in pDCs, thereby driving dramatic 

upregulation of pro-inflammatory cytokines [9,94], it is helpful to consider the two binding 

surfaces that ultimately interact with one another. An “m”-shaped TLR9 dimer, which 

features two highly cationic horseshoe-shaped TLR9 ectodomains that form a groove for 

binding anionic dsDNA, can spatially organize with one another on the endosomal 

membrane to optimize binding to DNA. The surface of an LL37–DNA complex effectively 

presents a “grill” of periodic DNA ligands to these TLR9 receptors. When DNA ligands on 

the surface of an LL37–DNA complex has a periodicity that matches up with the periodicity 

of the cationic surfaces of clustered TLR9 dimers, strong intercalative binding can occur in 

which the TLR9 horseshoes penetrate the grill and effectively crosslink DNA. In fact, 

simulations show a strong recruitment of TLR9 to the LL37-DNA complex, resulting in 

superselective binding between the organized DNA and large numbers of TLR9 [9].

In the present context, a brief digression to recent advances in our understanding of 

electrostatic interactions in aqueous media is helpful, since such interactions govern the 

organization of DNA (and other nucleic acids) in nanocrystalline complexes, as well as the 

binding of these complexes to TLR. DNA and RNA are biological polyelectrolytes that carry 

uncompensated negative charge. Although these charges are strongly screened by the 

dielectric response of water and by the effects of salt, counterion entropy can result in 

surprisingly strong interactions between such charged objects. Like-charged objects repel 

because of the osmotic pressure of “squeezed” counterion distributions, and oppositely 

charged objects attract because of the entropy gain from the release of counterions into the 

bulk solution: the free energy gain upon binding between two oppositely charged macro-ions 

scales as kBT multiplied by the number of counterions released (with an even larger 

contribution if one includes ion hydration effects). Recent work that combines experiments 

and computer simulations shows that the osmotic pressure of counterions released during 

electrostatic binding of oppositely charged macro-ions can enhance the stability of 

polyelectrolyte complexes [104,105]. Examples of this type of electrostatic self-organization 

include chromosomes [106–110], non-viral gene delivery systems such as cationic polymers 

[111,112], dendrimers [113,114], and cationic lipids [115–118].

The degree of multivalent binding between TLR9 receptors and the DNA nanocrystalline 

complex depends in part on the size of the crystalline domain presented to the TLR9 

receptors and thereby on the finite lateral size of the DNA bundle. Experiments show that 

the electrostatic complexes always appear to grow to a limited size [119,120], which will 

tend to limit the number of bound TLRs. It has been suggested that kinetics may limit the 

size of these polyelectrolyte aggregates [121]. Finite-sized polyelectrolyte bundles at 

equilibrium may also occur if steric effects from the finite size of the compensating ions 

prevent the bundle from reaching charge neutrality [122]. Likewise, frustration inherent in 
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the bundle structure may cost an energy penalty [116,122]. Recent theoretical work has 

proposed that finite-sized condensed bundles are a consequence of the chirality of the 

semiflexible polyelectrolytes, which results in elastic strain from lattice shear increases as 

the bundle grows [123].

Until recently, we could not predict which molecules can modulate the immune system via 

TLR9 by binding to dsDNA. The results above provide a molecular recipe that quantitatively 

correlates the structural parameters of AMP–dsDNA complexes with their immunogenic 

potential via TLR9 recognition (Figure 2A, B). We highlight one recent example from host–

pathogen interactions, where structural characterization of an amyloid–DNA complex 

enables mechanistic understanding of its immunogenic potential. An emerging field of study 

in host-pathogen interactions is centered on the biological role of bacterial functional 

amyloids. Examples include the phenol-soluble modulins from S. aureus [124,125], the 

FapC amyloid from Pseudomonas aeruginosa [126], and curli from Salmonella typhimurium 
and Escherichia coli [127]. These functional amyloids are produced in biofilms and self-

assemble with extracellular DNA to form core structural components of the biofilm matrix 

[124]. Recent work has shown that curli forms complexes with extracellular bacterial DNA 

in biofilms, and leads to hyperactivation of dendritic cells and subsequent production of type 

I interferons [128]. Furthermore, these complexes triggered the production of autoantibodies 

in a mouse model of lupus, suggesting a link between infectious disease and autoimmunity 

[128]. The immune response to curli–DNA occurs in two steps: the curli–DNA nanocrystals 

gain endosomal access and entry into immune cells by binding to TLR2, and subsequent 

immune amplification occurs via multivalent binding to TLR9 [129]. Structural 

characterization using SAXS revealed that curli–DNA complexes form nanocrystals with a 

well-defined inter-DNA spacing in the range capable of amplifying TLR9-mediated 

inflammation [129].

The framework of described above is distinct from known mechanisms through which 

AMPs interact with TLRs. (Some cationic AMPs can block LPS-mediated activation of 

macrophages via direct binding to LPS, and significantly inhibit TNF-α production [130]. 

Cathelicidin can also inhibit TLR4-mediated induction of dendritic cell maturation and 

cytokine production in allergic contact immune responses [131].) In contrast, the mechanism 

of crystalline recognition by TLRs allows for a physical mode of amplification based on 

multivalent binding. Moreover, this mechanism of recognition leads to a number of 

interesting consequences. For example, since the existence of dsDNA and LL37 are both 

necessary for high levels of TLR9 activation, LL37 indirectly becomes an auto-antigen that 

TLR9 detects without direct TLR9–LL37 binding. In a more general compass, these results 

suggest that it is possible for TLR9 to indirectly detect and respond potently to a broad range 

of molecules in the environment that are not traditional TLR9 agonists. It will be interesting 

to explore these directions in the context of nanotoxicology.

3.2 dsRNA binding and TLR3 activation

Similar to TLR9 and CpG DNA, TLR3 was initially shown to sense viral dsRNAs in the 

context of infection [132]. However, recent work has shown that TLR3 also plays an 

important role in sensing skin injury by binding to non-coding self-dsRNA [133,134]. TLR3 
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is expressed at especially high levels in human keratinocytes, and plays a role in inducing 

regeneration after skin injury [135]. Similarly, keratinocytes also produce large amounts of 

AMPs, and are important cellular mediators of microbial defense in the skin [71,136,137]. 

Although many studies have shown that AMPs can influence TLR9 activation via DNA 

binding, AMPs have also been reported to modulate TLR3-mediated immune responses to 

dsRNA (Figure 1). LL37 and other cationic peptides have been shown to enhance or inhibit 

TLR3 signaling by viral dsRNAs [138–140]. Other RNA-binding proteins have also been 

implicated in enhancement of TLR3 activation in immune cells [141,142].

Based on these findings, we hypothesized that the structural ordering of dsRNAs by AMPs 

can influence TLR3 activation, similar to how scaffolding of dsDNA by AMPs modulates 

TLR9 activation. To test this hypothesis, we set out to define the structural rules underlying 

TLR3 activation by AMPs, cognate to our previous work on TLR9. Using SAXS, we 

measured the crystallinity parameters of 15 AMP–DNA and polycation–dsRNA complexes 

and correlated them with measurements of keratinocyte IL-6 production. This model system 

was chosen in the context of innate immune responses to dsRNA in the skin, where defense 

against microbial infection is critical [137]. In addition, in autoimmune diseases like 

psoriasis, IL-6 production by keratinocytes play a role in aberrant cytokine production in 

response to LL37 [134]. We find that, similar to the TLR9–dsDNA system, AMP–dsRNA 

complexes segregate into two classes: Complexes with inter-dsRNA spacings commensurate 

with the steric size of TLR3 (~3.3–3.7 nm) lead to a ~5 to 10-fold amplification in IL-6 

production from keratinocytes (e.g., LL37–dsRNA and buforin–dsRNA) [10,143]. 

Conversely, complexes with inter-dsRNA spacings much smaller or larger (< 3 nm or > 4 

nm) than the steric size of TLR3 lead to low levels of activation (e.g., HIV TAT–dsRNA, 

lysozyme–dsRNA). A statistically significant, nonlinear relationship was found between the 

inter-dsRNA spacing and the quantitative amount of IL-6 induction (Figure 2C, D).

To investigate interactions between the nanocrystalline dsRNA immune complexes and 

TLR3 in greater detail, we developed an improved statistical mechanical model and 

computer simulation [9,94]. The specific question we engage is whether the distance 

between ligands is the only structural characteristic of the nanocrystal that is relevant to 

immune activation. We expanded the flexibility of our model by taking into account an 

additional structural characteristic of crystallinity in addition to the inter-ligand spacing: the 

size of the nanocrystal (“domain size”), which gives the average number of ligand repeats in 

the crystal. By correlating theoretical predictions to the experimental SAXS measurements 

of crystallinity, we reveal that immune activation (and hyperactivation) via TLR3 is a 

function of the inter-dsRNA spacing and the domain size [10]. As the inter-dsRNA spacing 

is increased from below the steric size of TLR3 to optimal spacings, the number of bound 

TLR3 drastically increased in a superselective manner. For AMP–dsRNA complexes that 

exhibit optimal steric matching to TLR3, an increase in the domain size of the crystal led to 

an increase in the quantitative amount of immune activation. However, those exhibiting poor 

steric matching to TLR3 did not. Intriguingly, AMP–dsRNA complexes with slightly larger 

than optimal spacings can compensate for reduced activation with a larger domain size, to a 

certain extent, suggesting that a broader range of AMPs may have the ability to induce 

TLR3 signaling. In summary, TLR3 activation can be modulated by the ordered presentation 

of nanocrystalline AMP–dsRNA immune complexes [10].
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The qualitative concept of clustering of immune ligands to drive immune responses is not a 

new concept [144]. However, the observation that ordered, crystalline arrangements of 

dsRNA ligands within AMP–dsRNA complexes can enhance TLR3 signaling, and that such 

enhancement can be quantitatively correlated with structural parameters describing the 

degree of crystallinity are significant. Indeed, it is surprising that the innate immune system 

can recognize crystallinity in this way, rather than just PAMPs. In light of recent work on 

TLR9-mediated immune amplification by AMP–dsDNA complexes in pDCs [9], these 

results suggest general mechanisms through which innate immunity can be amplified: The 

observation of cognate phenomena across multiple cell types, TLRs, and cytokines is 

consistent with a general conceptual framework in which the ordered presentation of 

immune ligands by AMPs (and other molecules) drive immune responses, and likely can be 

extended to other TLRs and immune ligands (e.g., TLR4 and LPS).

3.3 ssRNA binding and TLR7/TLR8 activation

As with nucleic-acid-sensing TLR9 and TLR3, the recognition of ssRNA by TLR7 and 

TLR8 [38–40] is also crucial in the defense against invading pathogens. Studies have 

demonstrated that TLR7 and TLR8 recognize guanosine (G)- and uridine (U)-rich viral 

ssRNA [38], ssRNA viruses such as vesicular stomatitis virus (VSV) and influenza [40], and 

more recently, bacterial and mitochondrial RNA [145]. TLR7/8–ssRNA binding 

subsequently recruits MyD88 to activate the NF-κB and IRF7 pathways, which lead to the 

production of pro-inflammatory cytokines and type I IFN. In addition to these natural 

ssRNA agonists, synthetic imidazoquinoline-like molecules, including imiquimod (R-837), 

resiquimod (R-848), and S-27609, as well as guanosine analogues, such as loxoribine, have 

been shown to activate TLR7. Resiquimod has also been identified to activate TLR8 [146].

TLR7 and TLR8 are closely related phylogenetically and structurally to each other and to 

TLR9 [147,148], and are both found in intracellular endosomal compartments [45,46]. 

However, several key differences exist among the two receptors [146], such as distinct 

expression patterns among specific cell types. TLR7 expression primarily occurs in B cells 

and pDCs, and is associated with the production of IFN-α and IFN-α-regulated cytokines. 

In contrast, TLR8 is predominantly expressed in monocytes/macrophages and myeloid 

dendritic cells (mDCs), and is involved in the production of pro-inflammatory cytokines 

such as TNF-α [146,149–152]. Furthermore, TLR7 and TLR8 have been shown to detect 

different sequence-specific RNA motifs [149,153]. Taken together, the distinction in cell-

type expression among the two receptors to result in divergent cytokine induction profiles 

points to their specialized and complementary functionalities [146]. Their concerted action 

would therefore enable efficient and specific immune responses to different types of 

pathogens [151,154]. In fact, this specialization of TLRs is not unique to TLR7 and TLR8, 

and occurs among other TLRs. Substantial data has been collected on dendritic cell 

functional heterogeneity, such as dendritic cell subset-specific TLR expression and 

production of cytokines involved in inducing distinct effector cells [155–157].

The aberrant transportation of self-nucleic acids to endosomes enables the activation of 

TLRs, which can promote autoimmunity. In fact, self-RNA has been shown to act as ligands 

for TLR7 and TLR8 [158] and their internalization into endosomal compartments 
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exacerbates autoimmune diseases such as systemic lupus erythematosus (SLE) [159], 

psoriasis [160], and antiphospholipid syndrome (APS) [161]. Interestingly, expression of 

TLR8, but not TLR7, is correlated to disease activity in patients with systemic arthritis, 

which suggests that independent signaling through TLR8 contributes to the pathogenesis of 

the disease [162,163]. Furthermore, oligodeoxynucleotides have been shown to antagonize 

nucleic-acid-sensing TLRs to alleviate disease conditions for psoriasis [164] and SLE [165] 

mouse models. Like we have observed for TLR9 and TLR3, these findings also implicate a 

role of TLR7 and TLR8 in the development of autoimmunity and excessive inflammation.

Normally, self-nucleic acids are rapidly degraded in the extracellular environment and are 

unable to reach the endosomal compartments [44]. However, self-nucleic acids that are 

aberrantly transported into endosomes can access nucleic-acid-sensing TLRs and trigger 

pDC activation, promoting autoimmunity (Figure 1). In the case of psoriasis, self-DNA 

forms complexes with LL37 and gains access to endosomal TLR9, which triggers pDCs to 

produce IFN-α and initiate the autoimmune process [72]. LL37–self-RNA complexes have 

been observed in psoriatic skin in vivo [160] and high levels of LL37 have also been 

reported in a variety of chronic inflammatory diseases, such as rosacea [166], rheumatoid 

arthritis [167], ulcerative colitis [168], chronic nasal inflammatory disease [169], sarcoidosis 

[170], and cystic fibrosis [171]. To examine the possible involvement of TLR7 and TLR8 in 

the pathogenesis of psoriasis, Ganguly et al. investigated whether LL37 is also capable of 

interacting with self-RNA released by dying cells to activate immune cells. Similarly, LL37 

was found to complex with self-RNA via electrostatic interactions and reach the endosomal 

compartments of dendritic cells, inducing TLR7 activation in pDCs and secretion of IFN-α. 

Moreover, LL37–self-RNA complexes also triggered the activation of TLR8 in mDCs to 

produce TNF-α and IL-6. Interestingly, TLR7 in pDCs and TLR8 in mDCs were activated 

by self-RNA mixed with LL37, but not when self-RNA was administered alone or mixed 

with scrambled peptide GL37. Furthermore, complexation of self-RNA with LL37 was 

shown to protect self-RNA against degradation from extracellular RNases, which normally 

prevent RNA from accessing intracellular compartments [160]. From these findings, it will 

be interesting to see if the complexation of AMPs with RNA ligands activate TLR7 and 

TLR8 in a cognate, structural manner similar to that identified for AMP–dsDNA complexes 

with TLR9 [9] and AMP–dsRNA complexes with TLR3 [10]. Present efforts are under way 

to do such studies.

4. Conclusions and Outlook

In this review, we discussed the immunomodulatory properties of natural and synthetic 

AMPs and their associated mechanisms. AMPs are known to kill microbes through direct 

activity, including membrane permeation, disruption of electrochemical gradients, and 

inhibition of metabolic machinery. However, recent evidence shows that AMPs can also 

orchestrate host immune responses by communicating with the innate and adaptive immune 

systems through receptor modulation. AMPs can directly bind to various cell-surface or 

intracellular receptors on immune cells, triggering chemotaxis, differentiation/maturation, 

and cytokine production (Figure 1).
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We also highlighted an underappreciated facet of AMP immunomodulation: AMPs can also 

organize immune ligands such as dsDNA and dsRNA into nanocrystalline complexes that 

amplify TLR9 and TLR3 activation (Figure 2). Furthermore, the degree of immune 

amplification can be quantitatively correlated from the crystallinity parameters of AMP–

nucleic acid complexes. Indeed, the same physicochemical features of AMPs that enable 

their antimicrobial and membrane activity (e.g., cationic charge, amphipathicity) also enable 

strong electrostatic binding to nucleic acids like dsDNA and dsRNA., it will be interesting to 

see whether these general mechanisms extend beyond TLRs to various cytosolic nucleic acid 

sensors. AMP involvement in these corollary pathways have been implicated in earlier 

studies. For example, LL37 can induce IFN-α production from keratinocytes by binding to 

cytosolic DNA [172]. LL37 drives IFN-β production in epidermal keratinocytes during skin 

injury via the mitochondrial antiviral-signaling protein (MAVS). LL37 enables recognition 

of self-dsRNA through MAVS in addition to TLR3 [134]. In pDCs, LL37 transports dsDNA 

into endosomal compartments, triggering TLR9 activation [72]. However, in non-pDC 

dendritic cells, LL37 enables cytosolic DNA sensing via STING and TBK1 kinase [173].

In parallel direction of inquiry, it will be informative to critically dissect the optimal 

structural and physicochemical requirements for AMP antimicrobial and 

immunomodulatory activity via TLRs, and compare and contrast these competing 

requirements. Perhaps it is worthwhile to revisit old questions regarding the structural 

requirements of AMPs in the context of immunomodulatory effects reviewed here. We have 

known for some time that cationic charge and hydrophobicity are required for AMP activity, 

and have interpreted that in the perspective of membrane activity. We can ask broader 

questions now. How does immunomodulatory behavior change with cationic charge and 

hydrophobicity? Can we predict which AMPs will be more strongly antimicrobial or 

immunomodulatory and which innate immune receptors will be involved? Can we rationally 

design AMPs and AMP-like molecules, and tune both antimicrobial and immunomodulatory 

properties independently? The majority of immunomodulatory AMPs were first 

characterized as antimicrobial peptides, and then were later found to possess 

immunomodulatory activity. However, recent work shows that many traditional immune-

signaling molecules that exert their functions through specific membrane-bound receptors 

(such as cytokines) also possess hidden direct antimicrobial activity. In fact, an increasing 

body of evidence shows that this categorical delineation between antimicrobial molecules 

and immunomodulatory molecules is becoming progressively blurred [174]. Perhaps the 

emerging “kinocidin” family of proteins can provide insight into how nature multiplexes 

antimicrobial and immunomodulatory activity. Kinocidins are cytokines with intrinsic 

antimicrobial activity [175], and many share core physicochemical and structural similarities 

with AMPs. For example, various members of the chemokine family of cytokines contain a 

β-sheet rich “ɣ-core” motif that is also characteristic of classical defensins [175,176], and 

exhibit facial amphiphilicity and net cationic charge [174,177]. Many of these molecules 

contain modular components that share structural homology with α-helical and β-sheet 

AMPs [178,179]. For example, in a pioneering screen of over 30 human chemokines from 

these families, 21 were found to possess potent broad-spectrum antimicrobial activity 

comparable to human defensins, suggesting that chemokines may also directly kill microbes 

in addition to their chemotactic functions [180]. In another series of studies, the platelet 
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chemokine (C-X-C motif) ligand 4 (CXCL4)/platelet factor 4 (PF-4), its rabbit analogue 

thrombin-induced platelet microbicidal protein 1 (tPMP-1), and a synthetic congener peptide 

derived from CXCL4 C-terminal domain was found to have potent antimicrobial properties 

[179,181–184]. Other studies have shown that IL-8 and MCP-1, two important mediators of 

chemotaxis, also have antimicrobial activity [185]. Strikingly, IL-8, CXCL4/PF4, and 

MCP-1 were all found to share strong structural homology with human β-defensins, namely 

the ɣ-core motif, indicating that a common scaffold has been optimized by nature for dual 

antimicrobial and immunomodulatory activity. Recently, the cytokines IL-26 and IFN-β 
were also discovered to have hidden antimicrobial activity [186,187] [188] [189]. Other 

molecules in innate immunity such as complement C3a and the S100 class of endogenous 

calcium-binding proteins have also exhibited dual antimicrobial and immunomodulatory 

activities [190–193]. The development of tools to detect hidden antimicrobial activity in 

proteins has enabled the possibility of uniting disparate peptide taxonomies under a common 

umbrella of multifunctional proteins that exhibit different degrees of antimicrobial activity, 

receptor-binding activity, and immunomodulatory ability [194–196].

In our view, it will be worthwhile in future work to work towards a more nuanced 

understanding of the self-assembly of AMPs and related molecules with traditional immune 

ligands in the context of inflammation. These studies also question the conventional 

demarcation between “pro-inflammatory” and “anti-inflammatory” AMPs and cytokines. 

Context matters especially to pleiotropic molecules, whether it is the tissue-specific 

expression of immunomodulatory mediators or activation of multiple receptors in specific 

cells in different tissues. For example, an immune signaling molecule may induce an anti-

inflammatory response via binding to its cell-surface receptor, but could simultaneously 

induce a pro-inflammatory response by binding to nucleic acids and signaling through 

TLRs. Instead of measuring a binary response, we propose models to quantitatively predict 

and measure the degree of inflammation on a continuous scale as a function of the 

biophysical and structural properties of AMPs, immune ligands, and their targets.

Finally, the ability of AMPs to modulate the innate system via mechanisms described here is 

a double-edged sword: In the normal context of infection, AMPs bolster the immune 

response by enabling immune cell signaling, recruitment, and proliferation. However, 

overexpression of AMPs has clearly been associated with exacerbation of many additional 

chronic inflammatory diseases like systemic sclerosis, vasculitis, atherosclerosis, and others. 

Further structure–function and mechanistic studies will be required to fully map out the 

immunomodulation landscapes of AMPs, their pathophysiological role in disease, and 

strategies to regulate their immunomodulatory abilities.
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Figure 1. Antimicrobial peptides can modulate immune responses through multiple mechanisms
AMPs are multifunctional molecules that can kill microbes by punching holes in their 

membranes and inhibiting intracellular machinery (upper left). AMPs can also signal to the 

host immune system (upper right), and exhibit both pro-inflammatory and anti-inflammatory 

properties. AMPs can interact directly with receptors on immune cells, or form complexes 

with immune ligands to enable modulation of multiple PRRs like TLRs. (Note that the 

illustrations of AMP–immune ligand complexes here are purely schematic in nature and do 

not reflect the actual structures of the nanocomplexes. See text for details). AMP–dsDNA, –

dsRNA, and –ssRNA complexes can enter endosomes of immune cells and bind to their 

respective TLRs, triggering activation of signal transduction pathways that lead to 

modulation of inflammation (lower right). Downstream consequences of AMP immune 

signaling include activation of transcription factors, cytokine production, immune cell 

chemotaxis, and cellular differentiation and proliferation, eventually leading to induction of 

the adaptive immune response (lower left).
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Figure 2. Nanocrystalline ordering of dsDNA and dsRNA by AMPs modulates TLR-mediated 
inflammation
(A) Schematic of nanocrystalline LL37–dsDNA complexes binding to clustered arrays of 

TLR9 dimers in the endosomal membrane (ddsDNA = 3.40 nm). (B) IFN-ɑ production from 

human pDCs as a function of the inter-dsDNA spacing of AMP–dsDNA complexes. 

Complexes with inter-DNA spacings (ddsDNA) well-matched with the steric size of TLR9 

leads to drastic amplification of inflammation, due to optimized multivalent intercalative 

binding of LL37–dsDNA to TLR9. The position of the LL37–dsDNA complex is labeled. 

Maximal IFN-ɑ production occurs for complexes with spacings in the range of 3.1–3.5 nm. 

Experimental data is adapted with permission from [9,94]. (C) Schematic of nanocrystalline 

LL37–dsRNA complexes binding to clustered arrays of TLR3 dimers in the endosomal 

membrane (ddsRNA = 3.63 nm). (D) IL-6 production from human keratinocytes as a function 

of the inter-dsRNA spacing of AMP–dsRNA complexes. Complexes with inter-RNA 

spacings (ddsRNA) well-matched with the steric size of TLR3 leads to strong amplification of 

inflammation, while those with poorly matched spacings do not. The position of the LL37–

dsRNA complex is labeled. Maximal IL-6 production occurs for complexes with spacings in 

the range of 3.3–3.7 nm. Experimental data is adapted with permission from [10]. The 

optimal inter-ligand spacings for dsRNA is slightly larger than that for dsDNA, in agreement 

with the differences in steric size of TLR9 and TLR3, and the diameters of dsDNA and 

dsRNA. Schematics of TLR binding were generated in VMD (http://www.ks.uiuc.edu/
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Research/vmd/) using crystal structures from the PDB (3WPC for TLR9 and 3CIY for 

TLR3).
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